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Abstract 
Graphene is a novel, sp2 carbon atoms bonded, two-dimensional nano-material. Due to their 
favorable electronic, thermal, optical, and mechanical property, graphene and its 
derivatives, like graphene oxide (GO) and graphene quantum dots (GQDs) are used in 
widespread applications. The outstanding potentials of these compounds in the field of 
nanoelectronics, composite materials, sensors, energy technology etc helped in the rapid 
development in their functionalization, modulatory effects on various systems of our body. 
GQDs has been suggested as a new nanomaterial with improved biocompatibility, 
biodegradability, water solubility and considerably low cytotoxic effects in in vivo models, 
and are applicable for altering immune responses based on quantum confinement and edge 
effect properties. The review particularly elucidates the mechanistic approach by which 
graphene and/ or its derivatives and/ or their nano-compound aid in therapeutic 
management against myriads of immunological perspectives. GQDs have unique physio- 
chemical properties with carbon sheets showcases out-standing biological response against 
immunological interventions by altering the activities of t-cell lymphocytes. On the contrary 
GO plays a vital role in eliciting inflammatory signaling factors by controlling pro- 
inflammation and an anti-inflammatory response. Therefore, this review shall help the 
readers to have an overview of the biomedical application of graphene and its derivatives to 
design target specific drugs to regulate the immune response based prognosis and cure. 
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Introduction 
Graphene is an allotrope of carbon having a 

single layer of atoms within a two-dimensional 
hexagonal lattice where one atom forms each 
vertex (Bhattarai, 2013; Li et al., 2012; Wang et 
al., 2011). Carbon is the second most abundant 
mass within human body marks its importance 
in the chemical basis of life on earth (Malik et 
al., 2019). Thus, the physico-chemical property 
of carbon makes its allotrope, graphene, a 
potential eco-friendly candidate with a 
sustainable solution for an almost limitless 
application. 

The oxide form of graphene, i.e., graphene 
oxide, has been reported to be a biocompatible 
product having anti-inflammatory activity in 
their non nano and nano formulation (Ding et 
al., 2020; Miao et al., 2018). Graphene oxide- 
based nanomaterials have gained broad 
interests in recent research because of their 
unique physico-chemical properties specially 
based on their 2D allotropic structure making 
them more acceptable in different biological 
fields (Wang et al., 2011; Priyadarsini et al., 
2018). Aside from showing cytotoxicity in the 
cancer cell (Priyadarsini et al., 2018; Banerjee et 
al., 2019) it has also been reported that 
graphene oxide nanoparticle (GONP) has 
exceptional bio-distribution and cell interaction 
properties (Liu et al., 2012; Mu et al., 2012; 
Yang et al., 2013; Tonelli et al., 2015; Podolska 
et al., 2020). 
    Graphene quantum dots (GQDs) are edge- 
bound nanometer-size graphene pieces. They 
have fascinating optical and electronic 
properties, showcasing excellent biological and 
physico-chemical properties which regulate the 
physiology of various system of our body 
making them a potential candidate for 
biomedical applications (Chen et al., 2017; Tian 
et al., 2018, Kumar et al., 2020). Small size, high 

 
photostable nature,exceptional biocompatibility 
properties with an added antioxidant efficacy in 
the biological system makes GQD a potential 
therapeutic agent for treating myriads of 
diseases including cancer (Tian et al., 2018; Li et 
al., 2018; Fan et al., 2019; Kumar et al., 2020), 
diabetes (Faridi, et al., 2019; Du et al., 2020), 
diseases related to inflammation (Tosic et al., 
2019; Lee et al., 2020) etc. 

Therefore, the present review focuses a brief 
perspective focusing on the anti-inflammatory 
response of Graphene in their GO and GQD 
which have been found to play a key role in 
optimizing the signaling cascades for anti- 
inflammatory or pro-inflammatory responses 
depending on the individual disease concerned. 

 
Role of graphene oxide (GO) to initiate anti- 
inflammatory response through polarization of 
macrophage 

Innate immunity of the biological system acts 
as 1st line defence against pathogens, damage 
tissue and toxicants (Mukherjee et al., 2017). 
Inflammation is a major part of innate 
immunity. Although acute inflammation is good 
for our biological system, however, it becomes 
hazardous when acute inflammation is 
converted to chronic inflammation (Sansbury et 
al., 2016; Chen et al., 2017) Inflammation is the 
outcome of activation of different types of 
immune- signalling cascades (Chen et al., 2017). 

Graphene oxide (GO) has been reported to 
contain hydroxyl, carbonyl, carboxyl and 
epoxide functional groups on the surfaces of 
each sheet in their structure (Yang et al., 2016). 
These reactive functional groups thereby impart 
tremendous aqueous solubility, 
biocompatibility and multi-functionalities, of GO 
which is an essential factor for the smooth 
targeted delivery of drugs (Pei et al., 2020). 
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In response to inflammatory dysfunction GO 
has played a vital role in maintaining a balance 
in activating upstream and/ or downstream 
signalling cascades (Feito et al., 2019) GO 
activates the M2 phenotype of macrophage 
which is secreting anti-inflammatory cytokines 
like interleukin 4 (IL-4) and interleukin 10 (IL- 
10). At the infection site, first M1 initiates 
secretion of the pro-inflammatory cytokines 
such as tumour necrosis factor-α (TNF-α) and 
interleukin 6 (IL-6) and inflammation occurs. 
After 1st phage of inflammation is done, M1 
converts into M2 macrophage which starts the 
2nd phage of inflammation. In 2nd phage of 
inflammation, damaged tissue undergoes a 
repair system [Ma et al., 2015]. A longer period 
of extension of the 1st phase of inflammatory 
effect causes impairment of tissue 
reconstruction. Therefore, M2 macrophages act 
as a potential candidate for application for the 
treatment for M1 induced inflammation (Ding 
et al., 2020). Recently GO is used as an anti-
inflammatory drug that can shift M1 
macrophages to the M2 macrophages with the 
help of the polarization process [ Miao et al., 
2018]. On the other hand, GO causes 
cytotoxicity by the production of excess 
amounts of ROS generation [Zhan et al., 2020]; 
macrophage targeting polarized GO complex 
reduces the ROS generation (Han et al., 2018). 
Further, IL-4 is known to plays a vital role in 2nd 
phase inflammation (Daseke et al., 2020) where 
it can upregulate the expression of anti-
inflammatory biomarkers with MGC like IL10, 
mannose receptor (Woodward et al., 2010). It 
has also been reported that IL-1ra, IL-10 and 
transforming growth factor (TGF)-β released 
from M2 macrophages promote the signalling 
pathways of anti-inflammation thereby inducing 
tissue  repair  and  cure  of  injuries  (Atri  et  al., 
2018).    Additionally,    the   lipopolysaccharides 

activated monocytes release tumour necrosis 
factor (TNF)-α and IL-1β which are responsible for 
inflammation (Tucureanu et al., 2017). Thus, IL-
4 cytokines down regulate these inflammatory 
biomarkers along with induction of peroxisome 
proliferator-activated receptors (PPARs) protein 
with their 2 subset PPAR-γ and PPAR-δ which 
reduces the expression of IL-6 and IL-12 (pro-
inflammatory cytokines) (Natarajan et al., 2002; 
Croasdell et al., 2015; Khajebishak et al., 2019). 
Hence without PPARs, IL-4 cannot participates 
in the reduction of the expression of IL-6 and IL-
12 [Kytikova et al., 2020: Cunard et al., 2002]. 
Further, IL-10 also suppresses the TNF α ,IL-6 and 
IL-12 expression and prevents the cytokines 
overproduction (D'Andrea et al., 1993; Schülke  
2018) Moreover, IL-4, IL-10 and PPAR protein 
are suppressed NF − κβ signalling pathways. NF − κβ 
being the transcription factor that binds with 
the nuclear binding sites of the inflammatory 
gene (Driessler et al., 2004; Woodward et al., 
2010; Liu et al., 2017; Lin et al., 2017 ; 
Wierzbicki et al., 2018; Korbecki et al., 2019; Ju 
et al., 2020) therefore plays a pivotal role in the 
regulation of inflammation (Farmer et al., 2000; 
Martins et al., 2016). 
    Graphene oxide has been an effective 
scavenger of hydroxyl radicals and superoxide 
and therefore can act as an antioxidant (Qui et 
al., 2014). Thus GO has a dual role in the 
inflammatory response which can induce both 
pro and anti-inflammatory responses (Ma et al., 
2015; Dudek et al., 2016; Han et al., 2018, Diez- 
Orejas et al., 2018; Feito et al., 2019) and aid in 
regulating ROS generation through selective 
pathways. Thus, it may be stated that when GO 
is uptaken by macrophages, it shows pro-
inflammation with M1 macrophages, thereby 
ensuing  their  capability  to  polarize  the  M1 to 
M2    macrophages    or    vice    versa signalling 
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Fig. 1. Diagram of crosstalk signaling between pro-inflammation and anti-inflammation regulated by 
graphene oxide nanoparticle. 

 
Fig. 2. Graphene Quantum Dots (GQDs) internalization by DCs (Dendritic Cells) promotes Autophagy in 
them and thus induces Autophagy. 
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Fig. 3: Graphene Quantum Dots (GQDs) inducing tolerogenic functionality of DCs (Dendritic Cells) by 
inhibiting the translocation of NF-κB transcription factors into the nucleus as compared to controlled 
maturation of DCs. 
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pathways of inflammation (Fig. 1). Hence, GO 
has both inflammatory and anti-inflammatory 
response (Hoyle et al., 2018) which switches 
and crosswalk in between the two depending 
on the type of initiation and progression of the 
individual disease prognosis. 

Role of GQD inT-cell functionality by regulating 
inflammatory response 

Dendritic Cells (DCs) are the most potent 
form of APCs capable of activating or tolerizing 
antigen-specific T cells (Mildner and Jung, 
2014) i.e., DCs enable a tight-regulation of 
immune system by modifying the functions of 
T cells. On exposure to GQDs, DCs were found 
to internalize them, and exhibited a kind of 
altered development, maturation and 
differentiation (Tomić et al., 2017). Further, 
studies indicated that increased autophagic 
gene transcription, lowered ROS generation 
and nuclear translocation of NF-κB regulated 
impaired function of DCs (Tomić et al., 2017). 
Administration of GQDs inhibited the 
production of pro-inflammatory and T-helper 
(Th1) cytokines and increase the production of 
anti-inflammatory and Th2 cytokines using 
human peripheral blood mononuclear cells 
(Tomić et al., 2017; Lee et al., 2020). Since, 
GQD cannot affect the T cells directly by 
altering the immunogenic responses, GQDs 
lowers the phenomenon of T cell proliferation, 
development of Th1 and Th17 cells and T-cell 
mediated cytotoxicity by targeting the 
functions of monocyte-derived Dendritic Cells 
(DCs). GQDs also induces suppressive 
regulatory T cells i.e. GQDs have a pro- 
tolerogenic effects on DC (Tomić et al., 2017; 
Tosic et al., 2018; Lee et al., 2020). 

Dendritic Cells can exhibit both 
inflammatory responses like phenotypic 

maturation of DCs, production of pro-
inflammatory cytokines such as Interleukin 
(IL)-12,  IL-1β, Lymphotoxin (LT)-α, IL-6, IL-8 
and differentiation of pro-inflammatory T 
helper (Th1) and Th17 cells, and Cytotoxic T 
lymphocytes (CTLs) as well as anti-
inflammatory responses by secreting anti-
inflammatory cytokines such as IL-10, which 
permits DCs to induce immunosuppressive 
regulatory T cells (Treg) and Th1-suppressing 
Th2 response (Raker and Domogalla, 2015). 
Thus it can be inferred that DCs become 
functionally mature to either give rise to an 
immunostimulatory phenotype (as occurs in 
case of infections) or to a tolerogenic 
phenotype which is linked with immune- 
suppression to self-antigens (also cancer). This 
dual function of DCs is critical to Autophagy 
which can reduce antigen presentation, DC 
maturation and T cell activation.e Autophagy 
has an inhibitory role in immunogenic 
maturation of DCs and positive role in 
tolerogenic maturation of DCs [Ghislat and 
Lawrence, 2018]. Thus, it can be anticipated 
that autophagy is triggered by GQD which in 
turn is responsible for the tolerogenic 
functions in DCs, which would serve beneficial 
in the inflammatory T cell-mediated 
pathologies, but harmful to anti-cancer 
therapy by GQDs (Tomić et al., 2017; Qin et al., 
2015; Ghislat and Lawrence, 2018). Reports 
suggest that GQDs disrupt the mTOR 
(mammalian target of rapamycin) mediated 
cell survival and induces autophagy in DCs and 
thus suppressing their maturation and 
inducing the tolerogenic properties of DCs (Fig. 
2). The nuclear translocation of NF-κB has also 
been found to be crucial for the development 
and induction of tolerogenic DCs (Tomić et al., 
2017;   Iruretagoyena,   2006;   Carreño   et al., 
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2010) (Fig 3). Several literature reports suggest 
that ROS production during aerobic activities 
of the cell can also participate in the induction 
of autophagy as an effective defence response 
towards cellular stress [Fang et al., 2017]. The 
process of DC migration, maturation and its 
ability to stimulate antigen-specific T cells as 
well as T cell activation and cytokine 
production is balanced by autophagy regulated 
by transcriptionally activated genes or mTOR 
proteins (Amiel et al., 2012; Sukhbaatar et al., 
2016; Tomić et al., 2017). The GQDs induced 
cytokine generation and activated overall 
inflammatory signalling factors, induces 
apoptosis and autophagy of macrophages via 
activation of p38 MAPK and NF-kB signalling 
pathway, subsequently intensifying the 
tolerogenic activity of dendritic cells by 
stimulation of Treg cells (Qin et al., 2015; 
Tomić et al., 2017). 

 
Conclusion 

The immune system shields the host body 
by responding to either/ or both external and 
internal stimuli. In the present review, we 
tried to elucidate the potential use of 
graphene in its two form graphene oxide and 
graphene quantum dots to promote cytokine-
induced inflammation, leading to apoptosis 
and autophagy of macrophages via activation 
of p38 MAPK and NF-kB signalling cascades 
thereby maintaining an optimum balance by 
switching its activity between pro-
inflammatory and anti-inflammatory response 
factor. Thus, GO and/ or GQDs displayed to be 
the most promising cellular biocompatible and 
bio-available substance in triggering immune 
responses through several pathways thereby 
paving a new insight towards its improved 
application   for   therapeutic   management of 
inflammatory  disorders and might  be  used as 

an adjunct to develop a newer version of 
vaccines in the near future. 
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