
*Corresponding Author: abisgin@yahoo.com 

  
89 

DOI:https://doi.org/10.52756/ijerr.2022.v29.010                Int. J. Exp. Res. Rev., Vol. 29: 89-93 (2022) 

Real-world applications of tumor mutation burden (TMB) analysis using ctDNA and 

FFPE samples in various cancer types of Turkish population 

Ibrahim Boga and Atil Bisgin* 

Cukurova University Medical Faculty, Department of Medical Genetics & Cukurova University AGENTEM (Adana Genetic 

Diseases Diagnosis and Treatment Center), Adana, Turkey 

E-mail/Orcid Id:  

IB,  ibr.boga@gmail.com,  https://orcid.org/0000-0002-8967-8218; AB,  abisgin@yahoo.com,  https://orcid.org/0000-0002-2053-9076 

Introduction 

Tumor mutation burden (TMB) is one of the most 

popular biomarkers in cancer that indicates sensitivity to 

immunotherapies and have started to be used routinely 

for immune checkpoint blockade (ICB) response across 

all cancer types ( Lawlor et al., 2021; McGrail et al., 

2022). High tumor mutational burden (TMB-H) has 

shown promise as an indicator for PD-1 inhibitor 

therapies, such as pembrolizumab that FDA had approved 

in the cases (Strickler et al., 2021). Even though there are 

differences in oncological points of view and the clinical 

approaches in terms of effectivity and utilization in 

cancer patients, no specific cut-offs have been identified, 

neither differential specimens nor subtypes of cancers.  

Next-generation-sequencing-based comprehensive 

genomic profiling (CGP) of cancer-related genes has 

become the most commonly used approach since tumor 

whole exome sequencing studies were first used to 

identify TMB scores in cancer. In addition to the 

identification of TMB scores, CGP also provides to 

detect the actionable somatic genetic alterations in 

relation to possible targeted treatment modalities. Even 

though there are different algorithms in literature to 

analyze TMB scoring, there are no large cohort studies 

evaluating the various specimens, such as formalin fixed 

paraffin embedded tissues and/or liquid biopsies in 

different cancer types of distinctive populations, to 

enlighten the fundamentals and utilization. 
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Abstract: Tumor mutation burden (TMB) has become one of the most popular approaches 

in the last decade as a molecular genetic testing strategy for cancer therapeutics that 

represents the somatic variations per Mbase in coding regions of the genome and which can 

be performed via comprehensive genomic profiling (CGP) by next generation sequencing 

(NGS). TMB is most commonly used to stratify the patients for immunotherapy as well as 

the actionable variant detection for possible other therapeutics. In this context, within this 

study, we share our results of the TMB score distribution of cancer patients together with 

distinctive diagnoses and specimens. The study was conducted from a total of 278 samples. 

One hundred seventy six (176) of them were formalin-fixed paraffin-embedded (FFPE) 

tissue samples and 102 liquid biopsy samples.  Samples were sequenced using a multi-gene 

NGS panel consisting of 486 cancer-related genes (Illumina-NextSeq500/550). 

Bioinformatics analyzes were performed using an optimized in-house bioinformatics 

pipeline. As a result, the studies of 91.7% (n=255) among all samples were successfully 

performed in which total of 21 different cancer types were included. The lung cancer group 

was the most frequent (n=43 patients), followed by 31 colorectal cancer and 22 ovarian 

cancer patients. The classification of TMB scoring was very high (>50), high (20-50), 

moderate (5-20) and low (<5). The shared data of this study represents a cancer genome 

atlas-like data set for TMBs of Turkish cancer patients in relation to various cancer types 

and specimens in comparison with The Cancer Genome Atlas (TCGA) data. 
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Thus, this aim consisted of two components: 

presenting the cumulative tumor mutation burden data of 

278 samples with 21 different cancer types and 

discussing the findings in comparison with TMB cut-off 

values presented in the literature.   

Material and Methods  

Cukurova University's institutional ethical committee 

approved this work. The Declaration of Helsinki and any 

subsequent revisions were followed in conducting the 

study. 

Sampling 

The samples used in this study were collected from 

the biobank of the Genetic Diseases Diagnosis Center 

that the written informed consent had been obtained 

priorly to the biobanking.  

FFPE and ctDNA samples were obtained from 278 

patients between 2016-2019. Genomic and circulating 

tumor DNA was extracted by the methodology 

previously optimized in our centre (Sonmezler et al., 

2020; Boga et al., 2020). Quality controls of genomic 

materials were assessed using Qubit 4 (Thermo 

Scientific, USA). Samples with inadequate 

concentrations were excluded from the study.  

NGS Methodology   

Sufficient samples went under next-generation 

sequencing work flow consisting of fragmentation, 

adapter ligation, target enrichment, library generation and 

sequencing. A CGP panel (1.3 Mbase) consisting of 486 

cancer related genes (PRKCZ, TNFRSF14, TP73, 

TNFRSF9, ERRFI1, MTOR, SPEN, SDHB, CNKSR1, 

ARID1A, RPA2, PSMB2, MYCL, MPL, MUTYH, 

CDKN2C, NRD1, JUN, JAK1, GADD45A, MSH4, 

FUBP1, PSMA5, NRAS, VTCN1, NOTCH2, MCL1, 

FAM46C, CTSS, PSMD4, PSMB4, RIT1, NTRK1, CD48, 

SDHC, DDR2, TNFSF18, TNFSF4, ABL2, MR1, PTGS2, 

CDC73, PIK3C2B, MDM4, IKBKE, IRF6, H3F3A, 

PARP1, FH, EXO1, AKT3, MYCN, DNMT3A, ASXL2, 

ALK, SOS1, EPCAM, MSH2, MSH6, PSME4, REL, 

XPO1, POLE4, ERCC3, MCM6, LRP1B, PSMD14, 

PDK1, NFE2L2, ITGAV, PMS1, SF3B1, CASP8, IDH1, 

ERBB4, BARD1, XRCC5, CUL3, DNER, PSMD1, 

RAD18, FANCD2, VHL, RAF1, TGFBR2, MLH1, 

MYD88, CTNNB1, SETD2, TREX1, RHOA, BAP1, 

PBRM1, PSMD6, MITF, FOXP1, EPHA3, CD200, 

CD80, GSK3B, CD86, MCM2, GATA2, EPHB1, 

PIK3CB, FOXL2, ATR, TERC, PRKCI, PIK3CA, SOX2, 

PSMD2, RFC4, BCL6, FGFR3, FGFBP1, RFC1, 

PDGFRA, KIT, KDR, EPHA5, TET2, INPP4B, FBXW7, 

FAT1, SDHA, TERT, IL7R, RICTOR, MAP3K1, PIK3R1, 

RAD17, MSH3, RASA1, ERAP1, ERAP2, LNPEP, APC, 

RAD50, CTNNA1, CSF1R, PDGFRB, GABRA6, NPM1, 

FGFR4, NSD1, CANX, FLT4, IRF4, PSMG4, HIST1H3B, 

HLA-F, HLA-G, HLA-A, HLA-E, HLA-C, HLA-B, MICA, 

MICB, TNF, MSH5, NOTCH4, TAP2, PSMB8, TAP1, 

PSMB9, TAPBP, DAXX, FANCE, CDKN1A, PIM1, 

CCND3, VEGFA, MCM3, EPHA7, PRDM1, ROS1, MYB, 

TNFAIP3, ESR1, ARID1B, IGF2R, PARK2, QKI, 

PSMB1, PSMG3, CARD11, PMS2, RAC1, RPA3, 

FKBP9, PSMA2, POLD2, IKZF1, EGFR, RFC2, HGF, 

CDK6, TRRAP, MCM7, MUC17, CUX1, PSMC2, 

PIK3CG, MET, SMO, BRAF, SSBP1, KEL, EZH2, 

RHEB, KMT2C, TNKS, GATA4, CTSB, FGFR1, KAT6A, 

POLB, PRKDC, MCM4, SOX17, NBN, RUNX1T1, 

RAD21, MYC, JAK2, CD274, PDCD1LG2, PTPRD, 

CDKN2A, CDKN2B, FANCG, PAX5, GNAQ, NTRK2, 

CTSL, SYK, FANCC, PTCH1, PSMD5, PSMB7, ABL1, 

TSC1, COL5A1, NOTCH1, GATA3, RET, ARID5B, 

SIRT1, C10orf54, PTEN, FAS, IDE, SUFU, SMC3, 

TCF7L2, FGFR2, PSMD13, HRAS, IGF2, LMO1, WEE1, 

PSMA1, FANCF, WT1, PSMC3, MEN1, POLD4, 

CCND1, FGF19, FGF4, FGF3, POLD3, EED, MRE11A, 

ATM, SDHD, KMT2A, CBL, CHEK1, KDM5A, CCND2, 

TAPBPL, CHD4, ETV6, CDKN1B, KRAS, ARID2, 

KMT2D, ACVR1B, ERBB3, GLI1, CDK4, MDM2, TDG, 

TCP11L2, PTPN11, TBX3, RFC5, HNF1A, PSMD9, 

ABCB9, POLE, CDK8, FLT3, FLT1, HMGB1, BRCA2, 

RFC3, RB1, DIS3, TPP2, ERCC5, IRS2, PSMB5, 

PSMB11, PSME1, PSME2, PSMA6, NFKBIA, NKX2-1, 

FOXA1, PSMC6, PSMA3, MLH3, TSHR, PSMC1, 

LGMN, DICER1, HSP90AA1, AKT1, RAD51, TP53BP1, 

PDIA3, B2M, HERC1, MAP2K1, SMAD3, CD276, 

PSMA4, NTRK3, IDH2, BLM, IGF1R, AXIN1, TSC2, 

CREBBP, GRIN2A, SOCS1, ERCC4, PALB2, CYLD, 

CBFB, CTCF, PSMB10, CDH1, ZFHX3, PSMD7, 

PLCG2, FANCA, RPA1, PSMB6, TP53, AURKB, 

MAP2K4, MYOCD, NCOR1, FLCN, LGALS9, NF1, 

SUZ12, PSMD11, LIG3, PSMB3, CDK12, ERBB2, 

PSMD3, RARA, STAT3, PSME3, BRCA1, CDC27, 

ITGB3, NPEPPS, SPOP, RNF43, RAD51C, BRIP1, 

PSMC5, CD79B, GNA13, AXIN2, PSMD12, PRKAR1A, 

SOX9, RPTOR, PSMG2, GATA6, PSMA8, SMAD2, 

SMAD4, ALPK2, BCL2, STK11, DOT1L, GNA11, 

MAP2K2, TNFSF9, CD70, TNFSF14, KEAP1, 

SMARCA4, RNASEH2A, CALR, NOTCH3, BRD4, JAK3, 

PIK3R2, IFI30, MEF2B, LPAR2, CCNE1, CEBPA, 

PSMD8, PSMC4, AKT2, AXL, CD79A, CIC, ERCC2, 

ERCC1, LIG1, POLD1, PPP2R1A, PRKCG, PSMF1, 

PCNA, BCL2L1, ASXL1, SRC, TOP1, CD40, ZNF217, 

AURKA, GNAS, PSMA7, RUNX1, ERG, PSMG1, 

HMGN1, U2AF1, ICOSLG, CRKL, LZTR1, SMARCB1, 
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CHEK2, EWSR1, NF2, MCM5, SOX10, EP300, CRLF2, 

FIGF, ACE2, DMD, BCOR, DDX3X, KDM6A, RBM10, 

ARAF, GATA1, KDM5C, SMC1A, AMER1, AR, MED12, 

ATRX, RPA4, BTK, MORC4, PSMD10, CUL4B, STAG2, 

BCORL1, PHF6, CD40LG, DHS-6600Z, Qiaseq 

Targeted DNA Panel, Qiagen, Germany) was used for 

target enrichment. Sample libraries were sequenced by 

Illumına Next Seq 500/550 System (Illumina, USA).  

Bioinformatics and TMB scoring 

The quality control assessments of output were 

performed via CLC Genomics Workbench version 

20.4.0. A TMB-specific in-house pipeline was developed 

to determine TMB scores from both FFPE and ctDNA 

specimens using GRCh38 data sets, and mapped reads 

were evaluated in terms of TMB score and actionable 

somatic alterations. Control and reference materials of 

different TMB scores were used for pipeline optimization 

(Seraseq® FFPE TMB RM Score 7, Seraseq® FFPE 

TMB RM Score 13, Seraseq® FFPE TMB RM Score 21 

and Seraseq® gDNA TMB Reference, Sera Care, UK). 

Cancer subtypes were classified based on their median 

TMB scores as very high (>50), high (20-50), moderate 

(5-20) and low (<5). 

Result 

The study was conducted from different specimens of 

278 cancer patients. Among them, while 176 were FFPE 

tissue samples, and another 102 were liquid biopsy. The 

success rate of sequencing together with TMB analysis 

was 91.7% (n=255) among all samples. Total of 21 

different cancer types was included, in which lung 

cancers were the most frequent group of 43 cases, 

followed by 31 cases of colorectal cancer and 22 of 

ovarian cancer.  

We demonstrated that measurements of TMB via CGP 

as the strongest reflective of measurements and a model 

for that considered depending upon cancer type.  We 

found that a variety of TMB scores differs between 0 and 

221.9. The median TMB ranged widely from 3.5 

muts/Mbase in colorectal cancer to 14.5 muts/Mbase in 

renal cancer. The highest TMB score in all FFPE tissue 

studies was 221.9, while the minimum score was 0.2 in 

which the lowest median was in colorectal cancer, and 

the highest median score was in renal cancer. However, 

among the ctDNA studies, TMB scores differentiated 

between 0 to 24 that the lowest ratio was in sarcomas and 

the highest ratio was in the head and neck cancer group.  

The median TMB values of 21 cancer types were 

evaluated, while 14 had unmatched FFPE and liquid 

biopsy specimens. Among them, eight (8) of these 

including lung, head and neck, brain, gastrointestinal 

stromal, hepatocellular, ovary, biliary tract and primary 

unknown cancers had higher median TMB scores than 

the score of ctDNA (in which gastrointestinal stromal 

cancer median value was <5, other types’ median scores 

Figure 1. The median mutation burden plots for each cancer type were represented. 
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were 5-20). On the other hand, six (6) cancer types 

(colorectal, breast, pancreas, sarcoma, cervix and others) 

showed higher median TMB scores in ctDNA than FFPE 

tissue (in which colorectal cancer was low, and others’ 

median TMB values were moderate).  

Among the rest, melanoma, endometrium, bladder, 

neuroendocrine and renal cancers were the subgroups that 

only had FFPE tissues with low TMB scores (<5), while 

adrenocortical and prostate cancer groups were only 

consisted of liquid biopsy specimens, which had low and 

moderate (5-20) TMB scores respectively. 

The landscape of TMB across all cancer types of 

specimens in Turkish cancer patients was given in detail 

in Figure 1. 

Moreover, the identified TMB scores of different 

cancer types of FFPE samples were compared together 

with the TCGA datasets to clarify the changes in scoring, 

as shown in figure 2 (Chalmers et al., 2017). The 

comparison was not performed between our ctDNA data 

and TCGA datasets because the TCGA did not include 

any information on ctDNA specimens but only FFPE 

samples. 

 
Figure 2. TMB scoring identified in our study groups 

of FFPE samples was listed. Comparing these scores 

with TCGA datasets was given as a heat map in which 

the statistically significant point was set on the 

graphic. 

Conclusion 

In the present study, the in-house developed algorithm 

which utilizes the mutational burden have been used and 

the distribution of these scoring in both FFPE and liquid  

biopsy samples has been compared. Such panels can 

likely be used instead of whole exome or whole genome 

studies to identify the patients for possible 

immunotherapy regimens. However, there shall be cut-off 

values but in regard to whether the specimen was FFPE 

or ctDNA, whereas the scoring showed different median 

numbers depending on the cancer types. Thus, further 

cut-off values should be optimised with a large-scale 

sampling.  

The limitation of our study was that we did not 

analyze the performance of the patients who underwent 

immunotherapy. Thus, we do not know whether the 

scoring cut-off values work in all cancer types.  

In summary, a simplified analysis with higher depth 

and coverage makes this targeted panel an attractive 

alternative to tumor whole exome sequencing (WES) for 

routine use. Even though the size of the panel influences 

the precision of TMB measurement that previous studies 

showed that too small and the measurement is clinically 

sub-optimal for patient stratification, the panel used in 

this study at 1.3 Mbase delivers accurate TMB estimation 

cost-effectively.  

Even though many cancers share common driver and 

passenger mutations, all cancers are also molecularly 

distinct. As the NGS multi-gene panels used in this study 

allow the clinical laboratories to perform pan-cancer 

analysis, these studies have significantly contributed to 

our understanding of variations and more across many 

cancer types. But there is still a need to optimise tumor 

mutation burden analysis due to the differential and 

heterogeneous data collected. Although a limited 

retrospective analysis has shown the predictivity of TMB 

score for a better response to immune checkpoint 

inhibitors, there is still no optimal cut point to define high 

and low for each cancer types. The other important 

limitation of the studies in the literature, as well as ours is 

that the number of patients of human entities was 

relatively small, which might lack power to discover 

significant differences and fail to establish the predictive 

functional TMB scoring. 

The present study has one of the most important data 

when compared with The Cancer Genome Atlas (TCGA). 

Although TCGA provides us with high-quality data and 

the included confounding factors, our study presents the 

first study that might project the importance of ethnicity 

and the impact of unaccounted confounders (such as 

treatment information, age, etc.)  

In conclusion, we found that TMB has divergent 

scoring in different cancer types, thus, further validation 

from prospective studies is still needed.  
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