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Introduction 

From the huge amount of data, it is necessary to 

convert it into useful information, Data mining is used for 

this purpose. Data mining (Gupta, 2019) is used to find 

hidden information, unknown patterns or interesting rules 

from a large amount of data. Different data mining 

techniques exist (Ming-Syan et al., 1996) like 

classification, clustering, temporal data, and so on. 

Initially, data mining faced different requirements and 

challenges (Ming-Syan et al., 1996) to satisfy its need 

and goals. Data mining plays a key role in the KDD 

process. Knowledge Discovery from Data (KDD) process 

is the backbone of data mining; it follows the sequence of 

steps to extract knowledge from the data (Gupta, 2019).  

Data mining has various applications such as fraud 

detection, financial analysis, medical field, CRM, 

scientific applications, and other applications. The 

Apriori algorithm is one of the prime algorithms for 

determining the frequent itemsets. But, it has many 

problems, i.e., repeatedly examining the database, not 

handling the redundant transaction, and generating a large 

number of candidate sets. A novel strategy called Matrix 

Based Apriori Algorithm has been proposed to overcome 

these issues. 

Association Rule Mining 

“Association Rules Mining is one of the most 

important research areas among the researchers. Finding 

strong association rules or the connections between 

itemsets from a large amount of data is the goal of 

association rules mining. AX, where A is the 

antecedent and X is the consequent, is the symbol for an 

association rule. It implies that X could happen as well if 
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Abstract: The Apriori Algorithm is a traditional method for determining the frequent 

itemsets from a lot of data. Association rules can be generated based on frequently 

occurring itemsets. The Apriori algorithm has two bottlenecks: it generates a large number 

of candidate sets and repeatedly examines the database. It takes a long time to execute and 

takes up a lot of space. We provide a novel strategy called Matrix-Based Apriori Algorithm 

to overcome these problems.  It is easy to implement but effective in handling the issues of 

Apriori. We don't need to constantly scan the database because all operations are first 

applied to the matrix, after which the database is converted back into its original form. In 

addition, we have reduced the potential itemsets by using several pruning techniques. The 

Matrix Based Apriori algorithm outperforms the standard Apriori algorithm in terms of 

time, with an average time reduction rate of 71.5% with the first experiment and 86% with 

the second. In a similar vein, we contrasted our Matrix Based Apriori with an effective 

alternative known as improved apriori. We discovered that our method outperforms the 

upgraded apriori by 20%. 
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A happens. It is mainly used in shopping analysis to 

identify customer purchase habits. 

Basic Terminologies used in Association Rule Mining 

Let I = {I1, I2, I3, ……, In} be a collection of items 

and Tran_DB = {T1, T2, T3…, Tn} a collection of 

transactions where every transaction is also a collection 

of items. Association rules can be dominated by support 

and confidence. Support is the number of times the items 

occur in the database. Support (i1) = ratio of the number 

of times i1 appears in the database to the total number of 

transactions. Support (i1i2) = ratio of the number of times 

i1i2 appears together in the database to the total number 

of transactions. Confidence is the probability of A 

occurring when B also occurs, where A and B are two 

different itemsets. Confidence (i1i2) = ratio of Support 

(i1i2) to the Support (i1). Association mining is a process 

of finding strong association rules (Agrawal and Srikant, 

1994; Agrawal et al., 1993; Vivekanandan and 

Gunasekaran, 2019). It can be completed in two steps. 

Frequent Itemset Generation, in this step, it 

computes all itemsets that are not less than the support 

value. 

Association Rule Generation, based on step 1, it has 

pulled out all the rules that were not less than the 

confidence value. Those rules are called strong 

association rules. 

Different Algorithms used in Association Rule Mining 

The second step of an association rule, i.e., generating 

an association rule is a very direct method. So, more 

research work is only in the first step of the association 

rule, i.e., finding frequent itemsets. In general, 

Association rule mining is categorized into pairs of 

methods. 

Candidate Generation Method, this method 

generates a candidate itemset at every level. Example: 

“Apriori Algorithm (Agrawal and Srikant, 1994; Gupta, 

2019).  

No Candidate Generation Method, in this method, it 

will not generate any candidate itemset. Example: 

“Frequent Pattern algorithm” (Han et al., 2000).  

Apriori Algorithm 

Apriori algorithm is a famous algorithm for finding 

association rules. There are two important properties used 

in apriori algorithm. First, if an item is frequent, all its 

subset combinations are also frequent. Second, if an item 

is a rare, all its superset combinations also rare (Agrawal 

et al., 1993; Vivekanandan and Gunasekaran, 2019). 

There are two major steps in apriori algorithm. The join 

step is generated by connecting by itself, and the Prune 

step is the process of removing infrequent itemset. First, 

it scans the database and finds the support of each item 

and it‟s taken as C1. Then it is compared with the 

min_sup value, and all the items which are lesser than 

min_sup will be deleted. The remaining items will be 

taken as L1. To generate C2, L1 is self-connected with 

another L1 and it creates C2. Again min_sup is compared 

with C2 and deletes the itemsets which are lesser than 

min_sup. Repeat this process, until there are no more 

itemsets. 

Table 1.  Sample Database 

Transaction ID Itemsets 

T1 I1, I2, I3, I5 

T2 I2, I4 

T3 I2, I3 

T4 I1, I4, I6 

T5 I1, I3 

T6 I3, I6 

T7 I1, I3 

T8 I1, I2, I3, I5 

T9 I1, I2, I3 

T10 I4, I5 

In Table 1, it contains ten different transactions with 

six different items. Apriori algorithm applies to this 

transaction and we have different itemsets at each level. 

The overall result is described in Table 2. 

Table 2.  Result and Explanation of Apriori Algorithm 
C1 L1 

Itemsets Support Itemsets Support 

I1 6 I1 6 

I2 5 I2 5 

I3 7 I3 7 

I4 3 I4 3 

I5 3 I5 3 

I6 2 I6 2 

C2 L2 

Itemsets Support Itemsets Support Itemsets Support 

I1, I2 3 I3, I6 1 I1, I2 3 

I1, I3 5 I4, I5 1 I1, I3 5 

I1, I4 1 I4, i6 1 I1, I5 2 

I1, I5 2 I5, I6 0 I2, I3 4 

I1, I6 1  I2, I5 2 

I2, I3 4  I3, I5 2 

I2, I4 1    

I2, I5 2    

I2, I6 0    

I3, I4 0    

I3,I5 2    

C3 L3 

Itemsets Support Itemsets Support 

I1, I2, I3 3 I1, I2, I3 3 

I1, I2, I5 2 I1, I2, I5 2 

I1, I3, I5 2 I1, I3, I5 2 

I2, I3, I5 2 I2, I3, I5 
2 
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C4 L4 

Itemsets Support Itemsets Support 

I1, I2, I3, I5 2 
I1, I2, I3, 

I5 
2 

 

Demerits of Apriori Algorithm 

First, it consumes most of the time in the scanning 

databases to estimate the support value of the things or 

itemsets (Agrawal and Srikant, 1994). Second, it 

generates a vast number of candidate itemsets. If a 

transactional database has „n‟ different items, then it will 

generate 2
n
–1 candidate itemsets (Al-Maolegi and Arkok, 

2014; Vivekanandan and Gunasekaran, 2019). For each 

itemset, it scans the database to find the support count of 

the itemset. Third, it is not handling the repeated 

transactions. 

Related Works 

A mathematical model and template algorithm were 

proposed to address the complicated mining association 

rules. This mathematical model was the base for ARM. 

With the help of this template algorithm, the Apriori 

algorithm was proposed. Each iteration constructed a set 

of frequent itemsets, counted the itemset appearances, 

and discovered frequent itemsets based on min_sup. 

“Apriori-TID algorithm was proposed to compute the 

frequent occurrence itemsets. <Tid, {Xk}> was used to 

compute the frequent occurrence itemsets. Tid 

represented the transaction identifier and Xk represented 

the large itemsets in the transaction” (Agrawal and 

Srikant, 1994). It was more efficient than the original 

algorithm only when the database was small. “DHP 

algorithm proposed to enrich the original apriori 

algorithm. It has utilized a hash method for candidate 

item generation during the initial iterations and then 

gradually, the database size has reduced by using pruning 

techniques” (Park et al., 1995). This algorithm also 

worked well only if the database size was small; if the 

database was large, it took a large amount of memory for 

the hash table. 

“Dynamic Itemset Counting (DIC) (Gupta, 2019) is an 

approach to enhance the traditional apriori. It separates 

the database into different partitions. It scans the first 

partition for 1-frequent itemset and combines with the 

next partition until it completes entire partitions”. It 

works well when the database is in homogeneous. If not, 

it will not work well. “An enhanced version of apriori 

algorithm for association rules (Al-Maolegi and Arkok, 

2014)” was used to improve the performance of 

traditional apriori. It reduces the number of times the 

transactional database has been scanned. In the original 

apriori algorithm, they have made a slight variation in the 

logic that gives more efficiency for this improved 

algorithm. Association rule mining applied in direct 

marketing applications (Carter et al., 1997; Wang et al., 

2005) to yield profits in their business depends on buyer 

history. The association rule is used to form a model to 

predict the group of customers. HDO algorithm (Ji et al., 

2006) is used to find association rules in the high-

dimensional data. This procedure embraces another 

strategy to remove candidate itemsets with rare itemsets 

instead of frequent itemsets, which can be removed 

validly with the rare itemsets with lower dimension (Ji et 

al., 2006). A novel improved algorithm (Wu et al., 2010) 

was used to improve the mining capabilities of apriori 

algorithm. In this algorithm, they introduced some 

concepts called interest items and frequency threshold, 

which decrease the database search time. Also, dynamic 

mining is used to increase the performance of the 

algorithm. “Another improved algorithm was used to find 

association rules based on utility weighted score which 

are extracted from weightage constraint and utility gain 

(Sandhu et al., 2010). In this algorithm, association rules 

are generated based on frequency as well as significant of 

the itemsets. A matrix based apriori algorithm ( Wang 

and Li, 2008; Yang et al., 2018) was used to improve the 

capability of the algorithm. In the matrix-based method, 

transactional Boolean matrix was used to find the 

different candidate itemset generation. It is highly 

efficient than the original approach. An enhanced 

algorithm based on time series (Wang and Zheng, 2020) 

was used to enhance the algorithm‟s performance. This 

enhanced algorithm uses a Boolean matrix and different 

new concepts like sequence association rule and frequent 

item sequence generation.  A new apriori algorithm was 

proposed in (Wang and Li, 2008; Singh and Dhir, 2013; 

Sun, 2020; Yang et al., 2018) which is based on a support 

weight matrix. It uses 0-1 transaction matrix and gives 

association rules and significance to the user. A new 

matrix-based apriori algorithm proposed by (Shuwen and 

Jiyi, 2020) is based on horizontal index and vertical index 

value. 

A new matrix-based apriori algorithm proposed by 

(Singh and Dhir, 2013) is based on tag values with all 

transactions. It mainly reduces the 2-candidate itemsets. 

Improved apriori algorithm used by (Vivekanandan and 

Gunasekaran, 2020) reduced the candidate itemsets and 

repeated transactions efficiently. Categories of itemsets 

were discussed efficiently using frequent and infrequent 

itemsets (Vivekanandan and Gunasekaran, 2022). Utility 

Mining is an enhanced version of Apriori algorithms 

discussed deeply (Vivekanandan and Gunasekaran, 2019; 
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Vivekanandan et al., 2021). “The Apriori algorithm is 

used in rural tourism applications and is more effective 

than state-of-art algorithms” (Xiao, 2022). In this study, 

various applications of the apriori method that are used in 

China are successfully explored (Xie, 2021). An effective 

incremental frequent itemset mining with closed itemsets 

has been proposed. In this approach, new transactions 

were added dynamically (Magdy et al., 2022). “By using 

Apriori algorithm, acupoints were identified effectively 

for the treatment of COVID-19” (Zheng, 2022). A 

frequent itemset based method called “SHFIM (spark-

based hybrid frequent itemset mining)” (Al-bana and 

Farhan, 2022) were proposed to handle the big data. 

Proposed Methodology 

In this section, we have discussed our proposed matrix 

based apriori algorithm with example. Let „n‟ be the set 

of transactions with „m‟ items. In the matrix, each row 

indicates the transaction and each column indicates the 

item. If an item is available in a transaction, then it 

denotes with 1 otherwise 0 i.e., Mnm = 1 if available 

otherwise 0. Transaction count is a mechanism to handle 

the repeated transaction. Initially, we take the value 1 for 

all transactions, whenever the repeated transaction 

occurs, it removes that transaction and increments the 

value of the transaction count. 

Pruning Strategies used in Matrix Based Apriori 

Approach 

To reduce the candidate itemsets, we have proposed 

five different pruning strategies.  

Strategy I: If an itemset is not frequent, all its 

supersets are also not frequent. 

Strategy II: If an itemset is frequent, then all its non-

empty subsets are also frequent. 

Strategy III: In a matrix, whenever a column entries 

count is less than the minimum support, we can delete 

that column from the matrix. 

Strategy IV: In a matrix, whenever we get some row 

entries are 0, then we can delete that row from the matrix. 

Strategy V: If a transaction contains only „K‟ items, 

then it cannot compute K+1 itemsets. Then the 

transaction can be eliminated (Ye, 2020). 

Architecture Diagram of Matrix Based Apriori 

Approach 

Datasets have lots of irrelevant data, so it is necessary 

to do preprocessing to remove irrelevant and unwanted 

data. Minimum support and database are the inputs given 

to the MB_Apriori approach. In this approach, we have 

used a concept called Transaction Count (Tc) to remove 

repeated transactions. Once all the repeated transactions 

are removed, we create a transaction matrix and 

calculated each item‟s support.  

Figure 1. Architecture Diagram of Matrix Based Apriori Algorithm 
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Higher itemsets can be generated by performing AND 

operation between all possible columns. At each level, we 

have to check all pruning strategies to eliminate 

unwanted candidate itemsets. Finally, it gives a frequent 

itemset which is greater than or equal to minimum 

support.  

Matrix Based Apriori Algorithm 

Input: Transaction Database (TB), Minimum Support 

(Min_Support) 

Output: Frequent Itemsets 

Scan the TB and Set all transaction count is set to 1 

i.e. Tc = {1, 1…, 1}.  //Repeated Transaction 

Generate the transaction matrix 

If (Ti is repeated) then delete the transaction in the 

matrix and increment its transaction count Tc by 1. 

//Repeated Transaction  

Support = Summation of (Tc*I) i.e., support can be 

calculated by transaction count * entries (0 or 1) in the 

column and adding all the values. 

Combination can be generated by performing AND 

operation between the columns 

Apply all pruning strategies to reduce the candidate 

itemsets. 

Repeat the steps 2 and 3, until there is no more 

combination of itemsets.  

Example of Matrix Based Apriori Algorithm 

Let us take the Table 1 for our example and we 

assume minimum support = 2, In step 1, Tc = {1, 1, 1, 1, 

1, 1, 1, 1, 1, 1}. In step 2, it generates the transaction 

matrix. It is depicted in Figure 2. In Table 2, T1 and T8 

has same items i.e., T8 is a repeated transaction, so T8 

can be deleted from the matrix and increment the value of 

Tc for T1 by 1. Therefore, Tc = {2, 1, 1, 1, 1, 1, 1, 1, 1}. 

Similarly, T5 and T7 have the same items i.e., T7 is a 

repeated transaction. So, T7 can be deleted from the 

matrix and increment the value of Tc for T5 by 1. 

Therefore, Tc = {2, 1, 1, 1, 2, 1, 1, 1}. In Figure 3, T8 

and T7 are deleted from the table. 
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Figure 2. Transaction Matrix I 
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Figure 3. Transaction Matrix II 

Support(I1) = 6, Support(I2) = 5, Support(I3) = 7, 

Support(I4) = 3, Support(I5) = 3, Support(I6) = 2. In step 

3, AND operation between all the possible columns. So, 

2-Itemsets have been generated in Figure 4.  

In step 3a, we checked all six pruning strategies and 

eliminated the candidate itemsets. By using Strategy III, 

we eliminated the following itemsets columns i.e. I1I4, 

I1I6, I2I4, I2I6, I3I4, I3I6, I4I5, I4I6 and I5I6. Now we 

have only 6 columns. By using Strategy IV, we 

eliminated the following transactions, i.e., T2, T4, T6 and 

T10. Now, we have got only 4 transactions in the matrix. 

By using Strategy V, we eliminated T3 and T5. So, after 

applying all the pruning strategies, we have got the 

matrix like Figure 5. It contains only two transactions, i.e. 

T1 and T9. So, through our pruning strategies, we 

eliminated 9 columns and 6 rows. 

I1I2 I1I3 I1I4 I1I5 I1I6 I2I3 I2I4 I2I5 I2I6 
1 1 0 1 0 1 0 1 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 0 

0 0 1 0 1 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

1 1 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 
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I3I4 I3I5 I3I6 I4I5 I4I6 I5I6 
0 1 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 1 0 

0 0 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 0 0 

0 0 0 1 0 0 
Figure 4. Transaction Matrix III 

I1I2 I1I3 I1I5 I2I3 I2I5 I3I5 
1 1 1 1 1 1 

1 1 0 1 0 0 

Figure 5. Transaction Matrix IV 

Support(I1I2) = 3, Support(I1I3) = 3, Support(I1I5) = 

2, Support(I2I3) = 3, Support(I2I5) = 2, Support(I3I5) = 

2. Now, again performs AND operation between all the 

possible columns. Its result shows in Figure 6. By using 

Strategy V, T9 is deleted, so the updated matrix would 

have only 1 transaction i.e., T1. The updated matrix 

shows in Figure 7. Again, perform AND operation 

between all the possible column, then finally we have got 

the 4-Itemsets which is depicted in Figure 8. Thus, this 

algorithm ends because there are no more itemsets. 

 

I1I2I3 I1I2I5 I1I3I5 I2I3I5 

1 1 1 1 

1 0 0 0 

Figure 6. Transaction Matrix V 

I1I2I3 I1I2I5 I1I3I5 I2I3I5 

1 1 1 1 

Figure 7. Transaction Matrix VI 

I1I2I3I5 

1 

Figure 8. Transaction Matrix VII 

Results and Discussion 

We have implemented our algorithm using Python 

with a different set of transactions. TB1 contains 570 

transactions, TB2 contains 930 transactions, TB3 

contains 1260 transactions, TB4 contains 2390 

transactions and TB5 contains 3100 transactions. Our 

MB_Apriori performs well than the traditional Apriori 

algorithm. In our proposed algorithm, we handled the 

repeated transactions efficiently and also by using 

different pruning strategies, we have reduced the huge 

number of candidate itemsets efficiently. In our first 

experiment, we compare the time consumption of 

traditional apriori and MB_Apriori by applying different 

transactional databases. The experimental results are 

depicted in Figure 9. It clearly indicates that our proposed 

MB_Apriori outperforms the traditional Apriori 

algorithm. 

 

Figure 9. Time Comparison with different 

Transaction Database 

 

Table 3 showed the time consumption of MB_Apriori 

is less than the traditional apriori algorithm. Our 

experiment found that the average reducing time rate is 

71.52%. In our next experiment, we compare the time 

with one group of transactions with different support 

values. The results show that our proposed MB_Apriori 

performs well than the traditional apriori algorithm. It‟s 

clearly depicted in Figure 10. The different support 

values are given on the horizontal axis and the time is 

given on the vertical axis. The graph clearly showed that 

MB_Apriori has taken not more time than the original 

apriori algorithm. 

Table 4 showed the time consumption of MB_Apriori 

is less than the traditional apriori algorithm. With our 

experiment, we found that the average rate of time 

reduction is 86%. Our experiment took the Groceries 

dataset (Groceries Dataset, n.d.), which contains 38765 

transactions with 150 different itemsets. 
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Table 3. Rate of Time Reduction 

Transaction 

Database 

Traditional 

Apriori 

Algorithm 

MB_Apriori 

Algorithm 

Rate of 

time 

reduction 

(%) 

TB1 7 2 71.4% 

TB2 15 4 73.33% 

TB3 28 6 78.57% 

TB4 39 13 68.42% 

TB5 85 29 65.88% 
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Figure 10. Time Comparison with different Support 

value. 

Our implementation differentiates the time consumed 

of traditional apriori and MB_Apriori by using Groceries 

dataset (Groceries Dataset, n.d.). The results show that 

our MB_Apriori outperforms the traditional apriori 

approach in terms of time and efficiency with different 

support values. The different support values are given on 

the horizontal axis and the time is given on the vertical 

axis. The graph clearly showed that MB_Apriori has 

taken not more time than the original apriori algorithm. 

It‟s clearly depicted in Figure 11. 

 

Figure 11. Groceries Dataset with different Support 

value 

Table 5 showed the time consumption of MB_Apriori 

is less than the traditional apriori algorithm for the 

groceries dataset. In this experiment, we found that the 

average time reduction rate is 74.46%. We can compare 

our MB_Apriori with the Traditional Apriori algorithm 

with our solved example. Traditional Apriori algorithm 

scans the database 26 times, but our proposed 

MB_Apriori algorithm scans only one time. It is clearly 

depicted in Figure 12. So, our proposed MB_Apriori is 

96% efficient than the traditional apriori algorithm 

regarding the number of scans.  

In our next experiment, we compared our MB_Apriori 

with another proposed matrix based algorithm (Yang et 

al., 2018). Both algorithms may look similar, but in our 

approach, we included 5 different pruning strategies, so it 

reduces the candidate itemsets more efficiently than the 

improved apriori (Yang et al., 2018). We have 

implemented our algorithm using Python with a different 

set of transactions. TB1 contains 570 transactions, TB2 

contains 930 transactions, TB3 contains 1260 

transactions, TB4 contains 2390 transactions and TB5 

contains 3100 transactions.  

Our MB_Apriori performs well than the traditional 

Apriori algorithm. In our proposed algorithm, we handled 

the repeated transactions efficiently, and also by using 

different pruning strategies, we have reduced the huge 

number of candidate itemsets efficiently. In this 

experiment, we compare the time consumption of 

improved Apriori (Yang et al., 2018) and MB_Apriori by 

applying the different sets of transactional databases. The 

experimental results are depicted in Figure 13. It clearly 

indicates that our proposed MB_Apriori outperforms the 

improved Apriori algorithm. Table 6 showed the time 

consumption of MB_Apriori is less than the improved 

apriori algorithm. Our experiment found that the average 

reducing time rate is 20%. 
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Table 4. Time Reducing Rate of UF-Apriori 

Algorithm with various support values 

Minimum 

Support 

(min_sup) 

Traditional 

Apriori 

Algorithm 

MB_Apriori 

Algorithm 

Rate of 

time 

reduction 

(%) 

0.3 8.5 1.5 82.35% 

0.25 5 0.6 88.0% 

0.2 2.9 0.5 82.75% 

0.15 2 0.2 90% 

0.1 1 0.1 90% 

Table 5.  Time Reducing Rate of UF-Apriori 

Algorithm with various support values 

Minimum 

Support 

(min_sup) 

Traditional 

Apriori 

Algorithm 

MB_Apriori 

Algorithm 

Rate of 

time 

reduction 

(%) 

0.2 130 40 69.23% 

0.4 74 22 70.27% 

0.6 57 14 75.43% 

0.8 31 7 77.41% 

1 15 3 80% 
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Figure 12. Apriori versus MB_Apriori 

 

Figure 13. Improved Apriori versus MB_Apriori 

Conclusion 

In this paper, we developed a new algorithm called 

MB_Apriori to compute frequent itemsets with support 

value. Traditional Apriori algorithm has three bottle 

necks, huge time and memory usage due to a large 

number of candidate itemsets, and repeated transactions 

have not been handled. In our Matrix Based Apriori 

algorithm, transactions were converted into the matrix 

and all operations were performed on the matrix with 

different pruning strategies. Repeated transactions could 

be efficiently handled using transaction count. We 

conducted many experiments with different data sets, the 

outcomes proved that MB_Apriori outperforms the 

traditional apriori algorithm. Also, we compared our 

MB_Apriori with an improved apriori algorithm, 

MB_Apriori is better than improved apriori. In future, 

MB_Apriori will be used to compute high-utility itemsets 

with support and utility values. Also, it will be useful to 

handle negative utility and average utility itemsets. 
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