

*Corresponding Author: saivivekphd@gmail.com

247

DOI: https://doi.org/10.52756/ijerr.2023.v30.022 Int. J. Exp. Res. Rev., Vol. 30: 247-256 (2023)

 Computation of frequent itemset using matrix based apriori algorithm

Samin Jayaram Vivekanandan
1,2*

 and Gurusamy Gunasekaran
3

1
Faculty of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu 600119,

India;
2
Department of Computer Science and Engineering, Dhanalakshmi College of Engineering, Chennai, Tamilnadu 601301,

India;
3
Department of Computer Science and Engineering, Dr. M. G. R. Educational and Research Institute, Chennai, Tamilnadu

600095, India

 E-mail/Orcid Id:

 SJV, saivivekphd@gmail.com, https://orcid.org/0000-0001-7581-4728;

 GG, gunasekaran.cse@drmgrdu.ac.in, https://orcid.org/0000-0003-2331-8014

Introduction

From the huge amount of data, it is necessary to

convert it into useful information, Data mining is used for

this purpose. Data mining (Gupta, 2019) is used to find

hidden information, unknown patterns or interesting rules

from a large amount of data. Different data mining

techniques exist (Ming-Syan et al., 1996) like

classification, clustering, temporal data, and so on.

Initially, data mining faced different requirements and

challenges (Ming-Syan et al., 1996) to satisfy its need

and goals. Data mining plays a key role in the KDD

process. Knowledge Discovery from Data (KDD) process

is the backbone of data mining; it follows the sequence of

steps to extract knowledge from the data (Gupta, 2019).

Data mining has various applications such as fraud

detection, financial analysis, medical field, CRM,

scientific applications, and other applications. The

Apriori algorithm is one of the prime algorithms for

determining the frequent itemsets. But, it has many

problems, i.e., repeatedly examining the database, not

handling the redundant transaction, and generating a large

number of candidate sets. A novel strategy called Matrix

Based Apriori Algorithm has been proposed to overcome

these issues.

Association Rule Mining

“Association Rules Mining is one of the most

important research areas among the researchers. Finding

strong association rules or the connections between

itemsets from a large amount of data is the goal of

association rules mining. AX, where A is the

antecedent and X is the consequent, is the symbol for an

association rule. It implies that X could happen as well if

Article History:

Received: 27th Feb., 2023

Accepted: 12th Apr., 2023

Published: 30th Apr., 2023

Abstract: The Apriori Algorithm is a traditional method for determining the frequent

itemsets from a lot of data. Association rules can be generated based on frequently

occurring itemsets. The Apriori algorithm has two bottlenecks: it generates a large number

of candidate sets and repeatedly examines the database. It takes a long time to execute and

takes up a lot of space. We provide a novel strategy called Matrix-Based Apriori Algorithm

to overcome these problems. It is easy to implement but effective in handling the issues of

Apriori. We don't need to constantly scan the database because all operations are first

applied to the matrix, after which the database is converted back into its original form. In

addition, we have reduced the potential itemsets by using several pruning techniques. The

Matrix Based Apriori algorithm outperforms the standard Apriori algorithm in terms of

time, with an average time reduction rate of 71.5% with the first experiment and 86% with

the second. In a similar vein, we contrasted our Matrix Based Apriori with an effective

alternative known as improved apriori. We discovered that our method outperforms the

upgraded apriori by 20%.

Keywords:

Frequent Itemsets,

Matrix Based Apriori

(MB Apriori),

Transaction Matrix

Int. J. Exp. Res. Rev., Vol. 30: 247-256 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v30.022
248

A happens. It is mainly used in shopping analysis to

identify customer purchase habits.

Basic Terminologies used in Association Rule Mining

Let I = {I1, I2, I3, ……, In} be a collection of items

and Tran_DB = {T1, T2, T3…, Tn} a collection of

transactions where every transaction is also a collection

of items. Association rules can be dominated by support

and confidence. Support is the number of times the items

occur in the database. Support (i1) = ratio of the number

of times i1 appears in the database to the total number of

transactions. Support (i1i2) = ratio of the number of times

i1i2 appears together in the database to the total number

of transactions. Confidence is the probability of A

occurring when B also occurs, where A and B are two

different itemsets. Confidence (i1i2) = ratio of Support

(i1i2) to the Support (i1). Association mining is a process

of finding strong association rules (Agrawal and Srikant,

1994; Agrawal et al., 1993; Vivekanandan and

Gunasekaran, 2019). It can be completed in two steps.

Frequent Itemset Generation, in this step, it

computes all itemsets that are not less than the support

value.

Association Rule Generation, based on step 1, it has

pulled out all the rules that were not less than the

confidence value. Those rules are called strong

association rules.

Different Algorithms used in Association Rule Mining

The second step of an association rule, i.e., generating

an association rule is a very direct method. So, more

research work is only in the first step of the association

rule, i.e., finding frequent itemsets. In general,

Association rule mining is categorized into pairs of

methods.

Candidate Generation Method, this method

generates a candidate itemset at every level. Example:

“Apriori Algorithm (Agrawal and Srikant, 1994; Gupta,

2019).

No Candidate Generation Method, in this method, it

will not generate any candidate itemset. Example:

“Frequent Pattern algorithm” (Han et al., 2000).

Apriori Algorithm

Apriori algorithm is a famous algorithm for finding

association rules. There are two important properties used

in apriori algorithm. First, if an item is frequent, all its

subset combinations are also frequent. Second, if an item

is a rare, all its superset combinations also rare (Agrawal

et al., 1993; Vivekanandan and Gunasekaran, 2019).

There are two major steps in apriori algorithm. The join

step is generated by connecting by itself, and the Prune

step is the process of removing infrequent itemset. First,

it scans the database and finds the support of each item

and it‟s taken as C1. Then it is compared with the

min_sup value, and all the items which are lesser than

min_sup will be deleted. The remaining items will be

taken as L1. To generate C2, L1 is self-connected with

another L1 and it creates C2. Again min_sup is compared

with C2 and deletes the itemsets which are lesser than

min_sup. Repeat this process, until there are no more

itemsets.

Table 1. Sample Database

Transaction ID Itemsets

T1 I1, I2, I3, I5

T2 I2, I4

T3 I2, I3

T4 I1, I4, I6

T5 I1, I3

T6 I3, I6

T7 I1, I3

T8 I1, I2, I3, I5

T9 I1, I2, I3

T10 I4, I5

In Table 1, it contains ten different transactions with

six different items. Apriori algorithm applies to this

transaction and we have different itemsets at each level.

The overall result is described in Table 2.

Table 2. Result and Explanation of Apriori Algorithm
C1 L1

Itemsets Support Itemsets Support

I1 6 I1 6

I2 5 I2 5

I3 7 I3 7

I4 3 I4 3

I5 3 I5 3

I6 2 I6 2

C2 L2

Itemsets Support Itemsets Support Itemsets Support

I1, I2 3 I3, I6 1 I1, I2 3

I1, I3 5 I4, I5 1 I1, I3 5

I1, I4 1 I4, i6 1 I1, I5 2

I1, I5 2 I5, I6 0 I2, I3 4

I1, I6 1 I2, I5 2

I2, I3 4 I3, I5 2

I2, I4 1

I2, I5 2

I2, I6 0

I3, I4 0

I3,I5 2

C3 L3

Itemsets Support Itemsets Support

I1, I2, I3 3 I1, I2, I3 3

I1, I2, I5 2 I1, I2, I5 2

I1, I3, I5 2 I1, I3, I5 2

I2, I3, I5 2 I2, I3, I5
2

Int. J. Exp. Res. Rev., Vol. 30: 247-256 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v30.022
249

C4 L4

Itemsets Support Itemsets Support

I1, I2, I3, I5 2
I1, I2, I3,

I5
2

Demerits of Apriori Algorithm

First, it consumes most of the time in the scanning

databases to estimate the support value of the things or

itemsets (Agrawal and Srikant, 1994). Second, it

generates a vast number of candidate itemsets. If a

transactional database has „n‟ different items, then it will

generate 2
n
–1 candidate itemsets (Al-Maolegi and Arkok,

2014; Vivekanandan and Gunasekaran, 2019). For each

itemset, it scans the database to find the support count of

the itemset. Third, it is not handling the repeated

transactions.

Related Works

A mathematical model and template algorithm were

proposed to address the complicated mining association

rules. This mathematical model was the base for ARM.

With the help of this template algorithm, the Apriori

algorithm was proposed. Each iteration constructed a set

of frequent itemsets, counted the itemset appearances,

and discovered frequent itemsets based on min_sup.

“Apriori-TID algorithm was proposed to compute the

frequent occurrence itemsets. <Tid, {Xk}> was used to

compute the frequent occurrence itemsets. Tid

represented the transaction identifier and Xk represented

the large itemsets in the transaction” (Agrawal and

Srikant, 1994). It was more efficient than the original

algorithm only when the database was small. “DHP

algorithm proposed to enrich the original apriori

algorithm. It has utilized a hash method for candidate

item generation during the initial iterations and then

gradually, the database size has reduced by using pruning

techniques” (Park et al., 1995). This algorithm also

worked well only if the database size was small; if the

database was large, it took a large amount of memory for

the hash table.

“Dynamic Itemset Counting (DIC) (Gupta, 2019) is an

approach to enhance the traditional apriori. It separates

the database into different partitions. It scans the first

partition for 1-frequent itemset and combines with the

next partition until it completes entire partitions”. It

works well when the database is in homogeneous. If not,

it will not work well. “An enhanced version of apriori

algorithm for association rules (Al-Maolegi and Arkok,

2014)” was used to improve the performance of

traditional apriori. It reduces the number of times the

transactional database has been scanned. In the original

apriori algorithm, they have made a slight variation in the

logic that gives more efficiency for this improved

algorithm. Association rule mining applied in direct

marketing applications (Carter et al., 1997; Wang et al.,

2005) to yield profits in their business depends on buyer

history. The association rule is used to form a model to

predict the group of customers. HDO algorithm (Ji et al.,

2006) is used to find association rules in the high-

dimensional data. This procedure embraces another

strategy to remove candidate itemsets with rare itemsets

instead of frequent itemsets, which can be removed

validly with the rare itemsets with lower dimension (Ji et

al., 2006). A novel improved algorithm (Wu et al., 2010)

was used to improve the mining capabilities of apriori

algorithm. In this algorithm, they introduced some

concepts called interest items and frequency threshold,

which decrease the database search time. Also, dynamic

mining is used to increase the performance of the

algorithm. “Another improved algorithm was used to find

association rules based on utility weighted score which

are extracted from weightage constraint and utility gain

(Sandhu et al., 2010). In this algorithm, association rules

are generated based on frequency as well as significant of

the itemsets. A matrix based apriori algorithm (Wang

and Li, 2008; Yang et al., 2018) was used to improve the

capability of the algorithm. In the matrix-based method,

transactional Boolean matrix was used to find the

different candidate itemset generation. It is highly

efficient than the original approach. An enhanced

algorithm based on time series (Wang and Zheng, 2020)

was used to enhance the algorithm‟s performance. This

enhanced algorithm uses a Boolean matrix and different

new concepts like sequence association rule and frequent

item sequence generation. A new apriori algorithm was

proposed in (Wang and Li, 2008; Singh and Dhir, 2013;

Sun, 2020; Yang et al., 2018) which is based on a support

weight matrix. It uses 0-1 transaction matrix and gives

association rules and significance to the user. A new

matrix-based apriori algorithm proposed by (Shuwen and

Jiyi, 2020) is based on horizontal index and vertical index

value.

A new matrix-based apriori algorithm proposed by

(Singh and Dhir, 2013) is based on tag values with all

transactions. It mainly reduces the 2-candidate itemsets.

Improved apriori algorithm used by (Vivekanandan and

Gunasekaran, 2020) reduced the candidate itemsets and

repeated transactions efficiently. Categories of itemsets

were discussed efficiently using frequent and infrequent

itemsets (Vivekanandan and Gunasekaran, 2022). Utility

Mining is an enhanced version of Apriori algorithms

discussed deeply (Vivekanandan and Gunasekaran, 2019;

Int. J. Exp. Res. Rev., Vol. 30: 247-256 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v30.022
250

Vivekanandan et al., 2021). “The Apriori algorithm is

used in rural tourism applications and is more effective

than state-of-art algorithms” (Xiao, 2022). In this study,

various applications of the apriori method that are used in

China are successfully explored (Xie, 2021). An effective

incremental frequent itemset mining with closed itemsets

has been proposed. In this approach, new transactions

were added dynamically (Magdy et al., 2022). “By using

Apriori algorithm, acupoints were identified effectively

for the treatment of COVID-19” (Zheng, 2022). A

frequent itemset based method called “SHFIM (spark-

based hybrid frequent itemset mining)” (Al-bana and

Farhan, 2022) were proposed to handle the big data.

Proposed Methodology

In this section, we have discussed our proposed matrix

based apriori algorithm with example. Let „n‟ be the set

of transactions with „m‟ items. In the matrix, each row

indicates the transaction and each column indicates the

item. If an item is available in a transaction, then it

denotes with 1 otherwise 0 i.e., Mnm = 1 if available

otherwise 0. Transaction count is a mechanism to handle

the repeated transaction. Initially, we take the value 1 for

all transactions, whenever the repeated transaction

occurs, it removes that transaction and increments the

value of the transaction count.

Pruning Strategies used in Matrix Based Apriori

Approach

To reduce the candidate itemsets, we have proposed

five different pruning strategies.

Strategy I: If an itemset is not frequent, all its

supersets are also not frequent.

Strategy II: If an itemset is frequent, then all its non-

empty subsets are also frequent.

Strategy III: In a matrix, whenever a column entries

count is less than the minimum support, we can delete

that column from the matrix.

Strategy IV: In a matrix, whenever we get some row

entries are 0, then we can delete that row from the matrix.

Strategy V: If a transaction contains only „K‟ items,

then it cannot compute K+1 itemsets. Then the

transaction can be eliminated (Ye, 2020).

Architecture Diagram of Matrix Based Apriori

Approach

Datasets have lots of irrelevant data, so it is necessary

to do preprocessing to remove irrelevant and unwanted

data. Minimum support and database are the inputs given

to the MB_Apriori approach. In this approach, we have

used a concept called Transaction Count (Tc) to remove

repeated transactions. Once all the repeated transactions

are removed, we create a transaction matrix and

calculated each item‟s support.

Figure 1. Architecture Diagram of Matrix Based Apriori Algorithm

Int. J. Exp. Res. Rev., Vol. 30: 247-256 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v30.022
251

Higher itemsets can be generated by performing AND

operation between all possible columns. At each level, we

have to check all pruning strategies to eliminate

unwanted candidate itemsets. Finally, it gives a frequent

itemset which is greater than or equal to minimum

support.

Matrix Based Apriori Algorithm

Input: Transaction Database (TB), Minimum Support

(Min_Support)

Output: Frequent Itemsets

Scan the TB and Set all transaction count is set to 1

i.e. Tc = {1, 1…, 1}. //Repeated Transaction

Generate the transaction matrix

If (Ti is repeated) then delete the transaction in the

matrix and increment its transaction count Tc by 1.

//Repeated Transaction

Support = Summation of (Tc*I) i.e., support can be

calculated by transaction count * entries (0 or 1) in the

column and adding all the values.

Combination can be generated by performing AND

operation between the columns

Apply all pruning strategies to reduce the candidate

itemsets.

Repeat the steps 2 and 3, until there is no more

combination of itemsets.

Example of Matrix Based Apriori Algorithm

Let us take the Table 1 for our example and we

assume minimum support = 2, In step 1, Tc = {1, 1, 1, 1,

1, 1, 1, 1, 1, 1}. In step 2, it generates the transaction

matrix. It is depicted in Figure 2. In Table 2, T1 and T8

has same items i.e., T8 is a repeated transaction, so T8

can be deleted from the matrix and increment the value of

Tc for T1 by 1. Therefore, Tc = {2, 1, 1, 1, 1, 1, 1, 1, 1}.

Similarly, T5 and T7 have the same items i.e., T7 is a

repeated transaction. So, T7 can be deleted from the

matrix and increment the value of Tc for T5 by 1.

Therefore, Tc = {2, 1, 1, 1, 2, 1, 1, 1}. In Figure 3, T8

and T7 are deleted from the table.

 I1 I2 I3 I4 I5 I6

Figure 2. Transaction Matrix I

I1 I2 I3 I4 I5 I6

Figure 3. Transaction Matrix II

Support(I1) = 6, Support(I2) = 5, Support(I3) = 7,

Support(I4) = 3, Support(I5) = 3, Support(I6) = 2. In step

3, AND operation between all the possible columns. So,

2-Itemsets have been generated in Figure 4.

In step 3a, we checked all six pruning strategies and

eliminated the candidate itemsets. By using Strategy III,

we eliminated the following itemsets columns i.e. I1I4,

I1I6, I2I4, I2I6, I3I4, I3I6, I4I5, I4I6 and I5I6. Now we

have only 6 columns. By using Strategy IV, we

eliminated the following transactions, i.e., T2, T4, T6 and

T10. Now, we have got only 4 transactions in the matrix.

By using Strategy V, we eliminated T3 and T5. So, after

applying all the pruning strategies, we have got the

matrix like Figure 5. It contains only two transactions, i.e.

T1 and T9. So, through our pruning strategies, we

eliminated 9 columns and 6 rows.

I1I2 I1I3 I1I4 I1I5 I1I6 I2I3 I2I4 I2I5 I2I6
1 1 0 1 0 1 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

Int. J. Exp. Res. Rev., Vol. 30: 247-256 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v30.022
252

I3I4 I3I5 I3I6 I4I5 I4I6 I5I6
0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0
Figure 4. Transaction Matrix III

I1I2 I1I3 I1I5 I2I3 I2I5 I3I5
1 1 1 1 1 1

1 1 0 1 0 0

Figure 5. Transaction Matrix IV

Support(I1I2) = 3, Support(I1I3) = 3, Support(I1I5) =

2, Support(I2I3) = 3, Support(I2I5) = 2, Support(I3I5) =

2. Now, again performs AND operation between all the

possible columns. Its result shows in Figure 6. By using

Strategy V, T9 is deleted, so the updated matrix would

have only 1 transaction i.e., T1. The updated matrix

shows in Figure 7. Again, perform AND operation

between all the possible column, then finally we have got

the 4-Itemsets which is depicted in Figure 8. Thus, this

algorithm ends because there are no more itemsets.

I1I2I3 I1I2I5 I1I3I5 I2I3I5

1 1 1 1

1 0 0 0

Figure 6. Transaction Matrix V

I1I2I3 I1I2I5 I1I3I5 I2I3I5

1 1 1 1

Figure 7. Transaction Matrix VI

I1I2I3I5

1

Figure 8. Transaction Matrix VII

Results and Discussion

We have implemented our algorithm using Python

with a different set of transactions. TB1 contains 570

transactions, TB2 contains 930 transactions, TB3

contains 1260 transactions, TB4 contains 2390

transactions and TB5 contains 3100 transactions. Our

MB_Apriori performs well than the traditional Apriori

algorithm. In our proposed algorithm, we handled the

repeated transactions efficiently and also by using

different pruning strategies, we have reduced the huge

number of candidate itemsets efficiently. In our first

experiment, we compare the time consumption of

traditional apriori and MB_Apriori by applying different

transactional databases. The experimental results are

depicted in Figure 9. It clearly indicates that our proposed

MB_Apriori outperforms the traditional Apriori

algorithm.

Figure 9. Time Comparison with different

Transaction Database

Table 3 showed the time consumption of MB_Apriori

is less than the traditional apriori algorithm. Our

experiment found that the average reducing time rate is

71.52%. In our next experiment, we compare the time

with one group of transactions with different support

values. The results show that our proposed MB_Apriori

performs well than the traditional apriori algorithm. It‟s

clearly depicted in Figure 10. The different support

values are given on the horizontal axis and the time is

given on the vertical axis. The graph clearly showed that

MB_Apriori has taken not more time than the original

apriori algorithm.

Table 4 showed the time consumption of MB_Apriori

is less than the traditional apriori algorithm. With our

experiment, we found that the average rate of time

reduction is 86%. Our experiment took the Groceries

dataset (Groceries Dataset, n.d.), which contains 38765

transactions with 150 different itemsets.

0

10

20

30

40

50

60

70

80

90

570 930 1260 2390 3100

Ti
m

e
 (

s)

Number of Transactions

Apriori vs MB_Apriori

Apriori MB_Apriori

Table 3. Rate of Time Reduction

Transaction

Database

Traditional

Apriori

Algorithm

MB_Apriori

Algorithm

Rate of

time

reduction

(%)

TB1 7 2 71.4%

TB2 15 4 73.33%

TB3 28 6 78.57%

TB4 39 13 68.42%

TB5 85 29 65.88%

Int. J. Exp. Res. Rev., Vol. 30: 247-256 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v30.022
253

Figure 10. Time Comparison with different Support

value.

Our implementation differentiates the time consumed

of traditional apriori and MB_Apriori by using Groceries

dataset (Groceries Dataset, n.d.). The results show that

our MB_Apriori outperforms the traditional apriori

approach in terms of time and efficiency with different

support values. The different support values are given on

the horizontal axis and the time is given on the vertical

axis. The graph clearly showed that MB_Apriori has

taken not more time than the original apriori algorithm.

It‟s clearly depicted in Figure 11.

Figure 11. Groceries Dataset with different Support

value

Table 5 showed the time consumption of MB_Apriori

is less than the traditional apriori algorithm for the

groceries dataset. In this experiment, we found that the

average time reduction rate is 74.46%. We can compare

our MB_Apriori with the Traditional Apriori algorithm

with our solved example. Traditional Apriori algorithm

scans the database 26 times, but our proposed

MB_Apriori algorithm scans only one time. It is clearly

depicted in Figure 12. So, our proposed MB_Apriori is

96% efficient than the traditional apriori algorithm

regarding the number of scans.

In our next experiment, we compared our MB_Apriori

with another proposed matrix based algorithm (Yang et

al., 2018). Both algorithms may look similar, but in our

approach, we included 5 different pruning strategies, so it

reduces the candidate itemsets more efficiently than the

improved apriori (Yang et al., 2018). We have

implemented our algorithm using Python with a different

set of transactions. TB1 contains 570 transactions, TB2

contains 930 transactions, TB3 contains 1260

transactions, TB4 contains 2390 transactions and TB5

contains 3100 transactions.

Our MB_Apriori performs well than the traditional

Apriori algorithm. In our proposed algorithm, we handled

the repeated transactions efficiently, and also by using

different pruning strategies, we have reduced the huge

number of candidate itemsets efficiently. In this

experiment, we compare the time consumption of

improved Apriori (Yang et al., 2018) and MB_Apriori by

applying the different sets of transactional databases. The

experimental results are depicted in Figure 13. It clearly

indicates that our proposed MB_Apriori outperforms the

improved Apriori algorithm. Table 6 showed the time

consumption of MB_Apriori is less than the improved

apriori algorithm. Our experiment found that the average

reducing time rate is 20%.

0

2

4

6

8

10

0.3 0.25 0.2 0.15 0.1

Ti
m

e
 (

s)

Support Value

Apriori vs MB_Apriori

Apriori MB_Apriori

0

50

100

150

0.2 0.4 0.6 0.8 1

Ti
m

e
 (

s)

Support Value

Apriori vs MB_Apriori

Apriori MB_Apriori

Table 4. Time Reducing Rate of UF-Apriori

Algorithm with various support values

Minimum

Support

(min_sup)

Traditional

Apriori

Algorithm

MB_Apriori

Algorithm

Rate of

time

reduction

(%)

0.3 8.5 1.5 82.35%

0.25 5 0.6 88.0%

0.2 2.9 0.5 82.75%

0.15 2 0.2 90%

0.1 1 0.1 90%

Table 5. Time Reducing Rate of UF-Apriori

Algorithm with various support values

Minimum

Support

(min_sup)

Traditional

Apriori

Algorithm

MB_Apriori

Algorithm

Rate of

time

reduction

(%)

0.2 130 40 69.23%

0.4 74 22 70.27%

0.6 57 14 75.43%

0.8 31 7 77.41%

1 15 3 80%

Int. J. Exp. Res. Rev., Vol. 30: 247-256 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v30.022
254

Figure 12. Apriori versus MB_Apriori

Figure 13. Improved Apriori versus MB_Apriori

Conclusion

In this paper, we developed a new algorithm called

MB_Apriori to compute frequent itemsets with support

value. Traditional Apriori algorithm has three bottle

necks, huge time and memory usage due to a large

number of candidate itemsets, and repeated transactions

have not been handled. In our Matrix Based Apriori

algorithm, transactions were converted into the matrix

and all operations were performed on the matrix with

different pruning strategies. Repeated transactions could

be efficiently handled using transaction count. We

conducted many experiments with different data sets, the

outcomes proved that MB_Apriori outperforms the

traditional apriori algorithm. Also, we compared our

MB_Apriori with an improved apriori algorithm,

MB_Apriori is better than improved apriori. In future,

MB_Apriori will be used to compute high-utility itemsets

with support and utility values. Also, it will be useful to

handle negative utility and average utility itemsets.

Conflict of Interest

The authors declare no conflict of interest.

References

Agrawal, R., Imielinski, T., & Swami, A. (1993).

Mining Association Rules between Sets of

Items in Large Databases. ACM Sigmoid

Record, 22(2), 207–216.

 https://doi.org/10.1145/170036.170072

Agrawal, R., & Srikant, R. (1994). Fast Algorithms

for Mining Association Rules. Proceedings of

the 20th VLDB Conference Santiago. Chile,

1994, 487–499.

Al-bana, M.R., & Farhan, M.S. (2022). An Efficient

Spark-Based Hybrid Frequent Itemset Mining.

Data (MDPI), 7(11), 1–22.

 https://doi.org/https://doi.org/10.3390/data7010011

Al-Maolegi, M., & Arkok, B. (2014). An Improved

Apriori Algorithm For Association Rules.

International Journal on Natural Language

Computing, 3(1), 21–29.

 https://doi.org/10.5121/ijnlc.2014.3103

Carter, C. L., Hamilton, H. J., & Cercone, N. (1997).

Share Based Measures for Itemsets 1

Introduction. Principles of Data Mining and

Knowledge Discovery, First European

Symposium, PKDD ’97, Trondheim, Norway,

June 24-27, 1997, Proceedings, pp. 14–24.

Groceries Dataset. (n.d.).

https://www.kaggle.com/datasets/heeraldedhia/groce

ries-dataset

Gupta, G.K. (2019). Introduction to data mining

with case studies (Third Edit). PHI Learning

Priivate Limited.

Han, J., Pei, J., & Yin, Y. (2000). Mining Frequent

Patterns without Candidate Generation. ACM

SIGMOD Record, 29(2), 1–12.

 https://doi.org/10.1145/335191.335372

Ji, L., Zhang, B., & Li, J. (2006). A New Improve-

ment on Apriori Algorithm. International

0

5

10

15

20

25

30

Apriori MB_Apriori

N
u

m
b

e
r

o
f

Sc
an

Apriori vs MB_Apriori

0

20

40

60

80

100

570 930 1260 2390 3100

Ti
m

e
 (

s)

Number of Transactions

Improved Apriori vs MB_Apriori

Improved Apriori

Table 6. Rate of Time Reduction

Transaction

Database

Improved

Apriori

Algorithm

MB_Apriori

Algorithm

Rate of

time

reduction

(%)

TB1 7 6 14.28%

TB2 15 13 13.33%

TB3 28 20 28.57%

TB4 39 32 17.94%

TB5 85 65 23.52%

Int. J. Exp. Res. Rev., Vol. 30: 247-256 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v30.022
255

Conference on Computational Intelligence and

Security, Guangzhou, China, pp. 840–844.

https://doi.org/10.1109/ICCIAS.2006.294255

Jiawei, H., & Micheline, K. (2006). Data Mining:

Concepts and Techniques (Second). Morgan

Kaufmann Publishers.

Magdy, M., Ghaleb, F.F.M., Mohamed, D.A.E.A., &

Zakaria, W. (2022). CC-IFIM: an efficient

approach for incremental frequent itemset

mining based on closed candidates. Journal of

Supercomputing, 79(7), 7877–7899.

 https://doi.org/10.1007/s11227-022-04976-5

Ming-Syan, C., Jiawei, H., & Philip, S.Y. (1996).

Data Mining: An Overview from a Database

Perspective. IEEE transactions on knowledge

and Data Engineering, 8(6), 866–883.

 https://doi.org/10.1109/69.553155

Park, J.S., Chen, M.S., & Yu, P.S. (1995). An

Effective Hash-Based Algorithm for Mining

Association Rules. ACM Sigmoid Record.,

24(2), 175–186.

 https://doi.org/10.1145/568271.223813

Sandhu, P.S., Dhaliwal, D.S., Panda, S.N., & Bisht,

A. (2010). An improvement in apriori

algorithm using profit and quantity. 2
nd

International Conference on Computer and

Network Technology, ICCNT 2010, pp. 3–7.

https://doi.org/10.1109/ICCNT.2010.46

Shuwen, L., & Jiyi, X. (2020). An Improved Apriori

Algorithm Based on Matrix. 12th International

Conference on Measuring Technology and

Mechatronics Automation (ICMTMA), pp.

488–491.

https://doi.org/10.1109/ICMTMA50254.2020.

00111

Singh, H., & Dhir, R. (2013). A New Efficient

Matrix Based Frequent Itemset Mining

Algorithm with Tags. International Journal of

Future Computer and Communication, 2016,

355–358.

https://doi.org/10.7763/ijfcc.2013.v2.184

Sun, L.N. (2020). An improved apriori algorithm

based on support weight matrix for data

mining in transaction database. Journal of

Ambient Intelligence and Humanized

Computing, 11(2), 495–501.

 https://doi.org/10.1007/s12652-019-01222-4

Vivekanandan, S.J., & Gunasekaran, G. A novel

way to compute association rules. Int. J. Syst.

Assur. Eng. Manag., (2022).

 https://doi.org/10.1007/s13198-022-01676-4

Vivekanandan, S.J., Ammu, S.P., Sripriyadharshini,

R., & Preetha, T.R. (2021). Computation Of

High Utility Itemsets By Using Range Of

Utility Technique. Journal of University of

Shanghai for Science and Technology, 23(4),

94–101.

Vivekanandan, S.J., & Gunasekaran, G. (2020). An

Improvisation on Apriori Algorithm Applied

in Medical Transaction. Journal of Green

Engineering (JGE), 10(10), 8574–8586.

Vivekanandan, S.J., & Gunasekaran, G. (2019). A

Survey on Association Rules Mining. Asian

Resonance, 8(1), 1–4.

Wang, F., & Li, Y.H. (2008). An Improved Apriori

Algorithm Based on the Matrix. 2008

International Seminar on Future BioMedical

Information Engineering, Wuhan, China, pp.

152-155.

 https://doi.org/ 10.1109/FBIE.2008.80.

Wang, C., & Zheng, X. (2020). Application of

improved time series Apriori algorithm by

frequent itemsets in association rule data

mining based on temporal constraint.

Evolutionary Intelligence, 13(1), 39–49.

Wang, K., Zhou, S., Man, J., Yeung, S., Yang, Q., &

Kong, H. (2005). Mining Customer Value:

From Association Rules to Direct Marketing.

Data Mining and Knowledge Discovery, 11(1),

57–79.

http://www.kdnuggets.com/meetings/kdd98/kdd

Wu, L., Gong, K., Ge, H.X., & Cui, J. (2010). A

Study of Improving Apriori Algorithm. 22010

2nd International Workshop on Intelligent Systems

and Applications, Wuhan, China, 2010, pp. 1-4.

https://doi.org/10.1109/IWISA.2010.5473450.

Xiao, H. (2022). Algorithm of Apriori-Based Rural

Tourism Driving Factors and Its System

Optimization. Mobile Information Systems,

2022, 9.

 https://doi.org/https://doi.org/10.1155/2022/3380609

Xie, H. (2021). Research and Case Analysis of

Apriori Algorithm Based on Mining Frequent

Int. J. Exp. Res. Rev., Vol. 30: 247-256 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v30.022
256

Item-Sets. Open Journal of Social Sciences,

09(04), 458–468.

 https://doi.org/10.4236/jss.2021.94034

Yang, Q., Fu, Q., Wang, C., & Yang, J. (2018). A

matrix-based apriori algorithm improvement.

Proceedings - 2018 IEEE 3rd International

Conference on Data Science in Cyberspace,

DSC 2018, pp. 824–828.

 https://doi.org/10.1109/DSC.2018.00132

Ye, F. (2020). Research and Application of

Improved APRIORI Algorithm Based on Hash

Technology. 2020 Asia-Pacific Conference on

Image Processing, Electronics and Computers

(IPEC), pp. 64–67.

 https://doi.org/10.1109/IPEC49694.2020.9115141

Zheng, Y. (2022). An Improved Apriori Association

Rule for the Identification of Acupoints

Combination in Treating COVID-19 Patients.

Computational Intelligence and Neuroscience,

2022, 1-9.

 https://doi.org/10.1155/2022/3900094

How to cite this Article:

Samin Jayaram Vivekanandan and Gurusamy Gunasekaran (2023). Computation of frequent itemset using matrix based apriori

algorithm. International Journal of Experimental Research and Review, 30, 247-256.

DOI : https://doi.org/10.52756/ijerr.2023.v30.022

