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Introduction 

Bonding An imbalance between the quality of power 

available and the power needed by the load apparatus 

indicates a power quality issue. In order to protect 

electronic components from power outages, many power 

enhancement devices have been developed over time 

(Vishwakarma, 2020). These can be anything from 

specifically designed power sources to power 

conditioning devices. Isolation transformers and power 

conditioning equipment include capacitors, filters, 

voltage regulators, and uninterruptible sources of power 

(UPS) to prevent power outages caused by lightning and 

power surges. Surge capacitors for transient voltage are 

another type of power conditioning equipment. The Shunt 

Active Power Filter (SAPF) (Rajeshwari et al., 2017) is 

an example of a device that enhances power quality. 

There are many potential sources of damage in 

alternating current (AC) supply systems. Natural causes 

include lightning strikes, flashovers, equipment 

breakdowns and faults, whereas voltage distortions and 

notches are examples of human-made factors. Because it 

acts as a nonlinear load and develops non-sinusoidal 

current, much of the customer's equipment contributes to 

pollution in the supply system. Power quality is measured 

in terms of these factors because of the potential for 

damage to electronic devices due to fluctuations in 
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Abstract: The increased utilization of nonlinear devices is resulting in damage to power 

distribution infrastructure by introducing harmonics into power system networks, which 

in turn causes distortion in voltage and current signals. A novel solution called Shunt 

Active Power Filter (SAPF) has been developed to address this issue using power 

electronics. This study aims to provide a method that is efficient and cost-effective for 

lowering harmonics and improving power quality in distribution infrastructure. The 

proposed method combines the Teaching learning-based optimization (TLBO) technique 

with an Artificial Neural Network Controller (TLBO-ANN) in conjunction with SAPF. 

The primary objective of the TLBO-ANN algorithms in SAPF is to minimise total 

harmonic distortion (THD) for maximum system efficiency. Initially, Gain values (Ki, 

Kp) for a regular Proportional-Integral controller are optimised with the Particle Swarm 

Optimisation (PSO) technique. Those optimized parameters obtained from the PSO-tuned 

PI controller serve as input and target datasets for training the ANN controller. 

Subsequently, the TLBO algorithm is utilized to further refine the ANN controller by 

finding the optimal weight and bias values. Using MATLAB/SIMULINK software, we 

compare the performance of the proposed algorithm to that of the PSO-tuned PI 

controller and traditional PI controller. The findings from the simulation suggest that a 

SAPF utilizing a TLBO-trained ANN controller could improve THD in the supplying 

current while maintaining harmonics within IEEE-519 accepting levels. 
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voltage, current, or frequency. Power quality problems 

can often be traced back to the voltage at the point of 

common coupling (PCC), where numerous loads are 

connected (Gowtham et al., 2016; Dorigo et al., 1999; 

Janga et al., 2020; Huaisheng et al., 2012) Some 

examples of such problems are harmonics in the voltage, 

surges of electricity spikes, notches, and 

sag/dip/swell/imbalance/fluctuations/glitches/flickers/out

ages. 

Non-linear loads, such as heaters, UPSs and variable-

speed motors, can place a burden on the power grid and 

cause outages and other problems in the supply system. 

Some nonlinear loads can cause power quality concerns 

by drawing excessive current from the AC mains, 

creating the low power factor, harmonic currents, reactive 

power stress, imbalanced currents, and an excess neutral 

current in three-phase systems are all caused by the 

unbalancing and harmonic currents that come from using 

certain non-linear loads. Problems with dielectric 

breakdown, communication system interference, breaker 

issues, incorrect measurement, negative sequence 

currents in rotating electrical machines (especially rotors 

overheating) and disturbances affecting motor control 

units and technological control devices., and many others 

can all contribute to poor power quality (Sabarimuthu et 

al., 2021).  

In some loads, however, the current changes in a way 

that is out of proportion with the voltage changes that 

occur at each half-cycle. Non-linear loads refer to this 

category of conditions. These non-linear loads produce 

the current and voltage harmonics. Many issues that 

utilities and power supply organizations face, such as low 

power factor, inefficient consumption of energy, and 

voltage fluctuations in the power system, can be traced 

back to non-sinusoidal current. A perfect compensator is 

necessary to prevent the harm caused by harmonics 

(Soliman et al., 2022). Over time, many different types of 

power enhancement devices have been developed to 

shield electronics from the consequences of grid failures. 

Methods that are both effective and efficient include 

those that are listed below. Implementing power 

conditioners and substitute energy sources. Power 

conditioning equipment includes isolation transformers, 

lightning arrestors, surge capacitors, filters, voltage 

regulators and an uninterruptible power supply. (Mikkili 

S et al., 2012; Om P et al., 2016). A Shunt Active Power 

Filter (SAPF) is one power conditioning device that 

enhances the supplied electricity's quality. By 

synchronizing the source current and voltage, current 

harmonics on the alternating current (Grid) side are 

cancelled out, and the DC link voltage is maintained at a 

constant level (Chelli et al., 2015). In order to achieve 

this goal, the real power flow in the system as well as the 

there must be no fluctuation in the amount of reactive 

power flowing into or out of the source. 

The SAPF can be controlled by a single controller or 

multiple controllers working together to maintain a 

constant DC voltage. This is accomplished by balancing 

the real power flow in the system with the reactive power 

flow that comes from or towards the source, which brings 

the source current in phase with the source voltage (Babu 

et al., 2020). This cancels out current harmonics on the 

AC side. SAPF  is necessary to eliminate 

current harmonics. The fundamental compensation 

principle of the active power filter is depicted in Figure 1. 

This principle serves as a form of energy storage to 

provide the real power difference between the load and 

the source throughout the transient period. When the load 

state changes, it affects the system's actual power; when 

that happens, the system will automatically. When 

compared to the reference voltage, the value of the 

voltage that is measured across the DC link capacitor is 

found to be different (Diab et al., 2019; Diab et al., 2018; 

Wen-guan Wang et al., 2012; Vadi et al., 2021) which 

leads to the dysfunction of the system. The reduction of 

the real power disturbance by using different controllers 

including chicken swarm optimization (Ramesh et al., 

2023; Venkata and Reddy, 2023) at the DC link 

capacitor. 

In this study, the utilization of IRP principles is 

employed to establish the desired current reference 

(referred to as PQ-theory). The hysteresis current 

controller technique estimates the reference currents to 

generate the required gating pulses (Kazemzadeh et al., 

2014). Achieving optimal performance of an artificial 

neural network (ANN)-controller (Tekwani et al., 2020) 

based on PQ theory for a direct current (dc) link voltage 

necessitates precise adjustment of weight and bias values 

(Wilamowski et al., 2010). To determine the optimal state 

of the ANN controller, a Teaching learning-based 

optimization (TLBO) (Satapathy et al., 2013) algorithm is 

implemented, enabling the fine-tuning of weight and bias 

values. 

PQ-Theory-based Reference Current Generation 

PQ theory-based constant instantaneous power control 

is for 3-phase, 3-wire power distribution systems with 

sinusoidal and symmetrical source voltages. To apply this 

theory, the three-phase source voltage (Va, Vb, Vc) and 

load current (Ila, Ilb, Ilc) must be sensed and transformed 

by the Clarke transformation into the (α, β) components. 
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These components are input for instantaneous power 

calculations (Akagi et al., 2017). An error signal from the 

reference and measured dc-link voltages determines the 

power losses component. A PI controller receives this 

error signal to calculate power losses (Ploss). The (α, β) 

components, active and reactive powers, and current 

calculation are used to estimate the reference (α, β) 

components. An inverted Clarke transformation 

transforms these components to 3 phase abc values 

(Iabc,Vabc) as shown in Figure 2, to obtain the desired 

reference current signals. 

 

 

 

 

 

Artificial Neural Network 

An "Artificial Neural Network" is a system inspired 

by the way the human brain works, which is composed of 

interconnected neural networks Similar to the human 

brain. Multiple layers of neurons that are coupled to one 

another constitute artificial neural networks. These 

neurons, represented as nodes in Figure 3, are responsible 

for processing information. Typically, a neuron will have 

a single or multiple outputs and n inputs (x1, x2,... xn) 

that will receive or send information to other neurons in 

the network. In equation 1, the neuron's output, denoted 

by Yi (Asadi et al., 2022), is the result of multiplying the 

sum of its inputs by the activation function. 

,

1

     
n

i i i j j i

j

Y f w x b
=

 
= +  

 
   (1) 

Figure 1. Schematic diagram of a Shunt Active Power Filter (SAPF). 

Figure 2. Reference generation diagram with PQ theory. 



Int. J. Exp. Res. Rev., Vol. 34: 11- 21 (2023) 

DOI: https://doi.org/10.52756/ijerr.2023.v34spl.002 
14 

The wi,j notation represents the connection weight 

between a neuron on the input and a neuron at target. 

while bi represents the neuron’s bias. The input to the 

neuron is represented by xj  and the activation function f 

determines the neural network's actions. By changing the 

weights and biases and, in some cases, the number of 

layers and neurons, neural networks can adapt to new 

data. 

Introduction to TLBO algorithm 

Teaching-learning-based optimization, frequently 

referred to as TLBO, is an acronym given to one of the 

population-based algorithms that was recently proposed. 

In the year 2011, Rao et al. presented the teaching 

learning-based optimization (TLBO) method (Rao et al., 

2011). It was inspired by the teaching and learning 

phenomenon that takes place in a classroom (Rao et al., 

2012). In the context of the population-based algorithm 

TLBO, the class is considered as a population, and each 

individual learner within the class is considered as an 

individual member of this population. It is intended that 

the students in the class will have a greater level of 

knowledge by the end of the lesson to fulfill this 

objective. The process has two stages, known as the 

"teacher phase" and the "learner phase," respectively. 

This serves as the foundation for achieving this goal. 

A. Teacher phase 

The student who presents the most outstanding 

solution in the class is chosen as the teacher. The teacher 

is regarded as the most proficient learner among the 

entire population, possessing extensive knowledge and 

experience in a particular subject. As a result, other 

students enhance their understanding by leveraging the 

expertise of the teacher. If a student provides a superior 

solution compared to the teacher, they will replace the 

teacher's role.  In the kth iteration, the knowledge of the 

ith learner is updated using the following equation 2. 

 𝑋𝑖
𝑛𝑒𝑤=𝑋𝑖 + 𝑟𝐼(𝑋𝑇 − 𝑇𝐹

𝑖. 𝑋𝑚𝑒𝑎𝑛) (2) 

 In the above scenario, knowledge of the teacher refers 

to "𝑋𝑇,”,"𝑟𝐼 ′′is a random two-digit number between zero 

and one, mean results of the learners refers to "𝑋𝑚𝑒𝑎𝑛," 

and teaching factor refers to 𝑇𝐹
𝑖  which can be obtained 

by the following equation 3. 

 𝑇𝐹
𝑖 = 𝑟𝑜𝑢𝑛𝑑 [1 + 𝑟𝑎𝑛𝑛𝑑(0,1)] (3) 

At the end of the teacher phase, all of the learners' 

knowledge is updated, and these values are now ready to 

be used as input values in the learner phase. 

B. Learner phase 

When students are in a real classroom, they can learn 

more by talking to the other students. This is what the 

TLBO learner phase is built on. During this step, the 

knowledge of the ith student is compared to that of a 

randomly chosen jth student as given in equation 4. When 

students are in a real classroom, they can learn more by 

talking to the other students. This is what the TLBO 

learner phase is built on. During this step, the knowledge 

of the ith student is compared to that of a randomly 

chosen jth student as given in equation 5. 

If  𝑓(𝑋𝑖) < 𝑓(𝑋𝑗)     𝑡ℎ𝑒𝑛,     𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 +

𝑟𝐼(𝑋𝑖 − 𝑋𝑗) 

 

(4) 

If        𝑓(𝑋𝑖) > 𝑓(𝑋𝑗)     𝑡ℎ𝑒𝑛,     𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 +

𝑟𝐼(𝑋𝑗 − 𝑋𝑖) 

 
(5) 

If the knowledge of the jth student is better at the end 

of the learner phase, the knowledge of the ith  student can 

be improved as given in equation 6. 

If       𝑓(𝑋𝑖
𝑛𝑒𝑤) < 𝑓(𝑋𝑖)  𝑡ℎ𝑎𝑛,   𝑋𝑖  =     𝑋𝑖

𝑛𝑒𝑤 (6) 

The TLBO algorithm, consisting of the teacher and 

learner phases, will continue until either the termination 

condition or the maximum number of iterations has been 

reached. 

 

 

 

Figure 3. The fundamental structure of an artificial neural network 
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Proposed Methodology 

PI controller tuned by PSO 

For SAPF, a particularly important role depends on 

the abilities of a standard PI controller to regulate the DC 

link voltage. This controller probably produces for kp and 

ki will not be optimal values. Because it needs a great 

degree of mathematical calculation, The PSO method can 

be used to determine the best possible values for both kp 

and ki. 

As shown in Figure 4, the PSO-PI controller will be 

given an error signal based on the difference between the 

actual and reference DC voltages. The PSO method must 

minimize the Integral Absolute Error (IAE) objective 

function to acquire the ideal gain values. With 1000 

maximum number of iterations and 50 Populations, the 

Optimum values of gains (Ki, Kp) are 5.65119 and 

7.93019 (Venkata et al., 2023). 

TLBO trained ANN Controller 

The main objective of a Neural Network algorithm is 

to obtain the appropriate weights and biases of the 

network to be as accurate as possible. ANN's weights and 

biases are given the right values using various 

methodological approaches. This paper used a method 

called TLBO. Figure 5 shows that the inputs (e) and 

outputs (out) of the PSO-PI controller are going to be 

used as a source of data for the neural network controller. 

 

The necessary code to set up the neural network is 

provided below. The PSO-PI controller's input and target 

values are retrieved, hidden neurons are initialised. 

This data is used to configure the ANN, and finally, the 

network's weights and biases are extracted. Then, we'll 

define a pre-trained neural network's weights and bias 

using the TLBO algorithm, with the objective function 

defined as the root mean square error. 

Step by Step approach of TLBO trained ANN 

Step1: Take the input (e) from the workspace of PSO-

PI controller. 

Step 2: Take the Target (output) from the workspace 

of PSO-PI controller. 

Step 3: Assign the number of Hidden Neurons. 

Step 4:  Define the Feed Forward Neural network 

based on hidden Neurons. 

Step 5: Set up the Neural Network with the specified 

input and output values.. 

Step 6: Generate the initial weight and biases 

Step 7: Use the root-mean-square-error as the 

objective function, by utilizing the weights and bias, Feed 

Forward Neural network, inputs and target values.  

Step 8: The neural network is trained using the TLBO 

algorithm, resulting in the updated weights, biases and 

error. 

Step 9: With this updated weights and biases again 

Figure 4. DC link voltage regulation by PSO trained PI based  SAPF 

Figure 5. Output (o) and input (e) representation in the workspace for the PSO-PI controller. 
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configure the Feed Forward Neural network. 

Step 10: Repeat steps 7 to 9 until objective function is at 

a minimum. 

Synaptic coefficients converge when they have settled 

on steady-state value and the network's Root Mean 

Square Error (NMSE) decreases below a predetermined 

threshold. Another approach to stop the learning process  

 

is to set a limit on the maximum number of iterations. 

The flowchart of the training algorithm is illustrated in 

Figure 6. 

We will ultimately obtain the feed-forward neural 

network block and inside layering structure shown in 

Figure 7  response to a given input and output. The PSO-

PI controller will substitute this feed-forward neural 

network block. 

Figure 7. Simulink block of TLBO-ANN algorithm. 

Figure 6. Flow chart of TLBO-ANN. 
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Figure 9. The waveforms of the IL, IS, IC and IS, without using SAPF. 

Figure 10. Controlling the DC voltage in a SAPF with a TLBO-ANN regulator. 

Figure 8. THD result of source current without using SAPF. 
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Figure 11. The waveforms of the IL, IS, IC and IS, by using TLBO trained ANN based SAPF 

Figure 12. THD result of IS (Grid current) by TLBO tuned ANN-based SAPF. 

Figure 13. Converges graph for the TLBO-ANN based SAPF. 
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Results and discussions 

The proposed methods for a SAPF's current control 

and reference generation were implemented with the help 

of the MATLAB simulative environment. This study was 

carried out taking into account the various possibilities 

that were presented below. A tabulation of the 

simulation's parameters that were used for the 

simulation's purposes can be found in Table 1. 

Table 1. Modeling framework in Simulink 

Particulars Values 

Voltage at the Grid 415V 

Frequency at the Grid 50 Hz 

Impedance at the Source 0.15 ohm,15mH 

Coupling inductance 15mH 

Active Power at the Load 4472 W 

Reactive Power at the Load 1718 VAR 

Connected DC Capacitance 100µF 

Without  SAPF 

In this case, we turn off SAPF and use Fast Fourier 

Transform (FFT) analysis to look at how the nonlinear 

load distorts the source current. This analysis showed that 

the distortion was close to 18.42%. The harmonic 

spectrum of the source current, as calculated by the fast 

Fourier transform, is shown in Figure 8. Figure 9 shows 

the waveforms of the IS (Grid current), IL (load current) 

that resulted from the simulation. The SAPF converter is 

not injecting a compensating current to reduce grid-side 

harmonics, as shown in Figure 9. 

TLBO-trained ANN-based SAPF 

Here, the TLBO-ANN controller Simulink block has 

taken the place of the PSO-PI controller. This Simulink 

block was taken from Figure 7 and is shown interacting 

with a feed-forward neural network in Figure 10. 

According to the results, the source current's total 

harmonic distortion (THD) appears to have dropped to 

0.86%. 

 

Table 2. Parameters of TLBO-trained ANN 

Maximum iterations 5000 

Total no of Students 25 

Teaching Factor 0.5 

Hidden Neurons 10 

No of Variables 1 

Weight Scale Upper Limits 200 

Weight Scale Lower Limits 0 

Figure 11 illustrates the waveforms of the currents 

flowing from the source, the load, and the SAPF 

compensating current. The harmonic spectrum of the 

source current is depicted in Figure 12. The TLBO-ANN 

controller's converging spectrum can be seen as depicted 

in Figure 13. This indicates that the MSE is steadily 

reducing and eventually reaching a constant value. 

The parameters for the TLBO-ANN are detailed in 

Table II (on the following page). Table III (on the 

following page) provides an overview of how the SAPF 

performed in each of the four scenarios. 

Table 3. Table of Comparison 

Slno 
Type of 

Controller 
Component 

THD 

value(%) 

1 
Without using 

SAPF 

IS (Source    

Current) 
18.42 

2 PI based SAPF 
IS (Source    

Current 
3.76 

3 
PSO tuned PI 

Based SAPF 

IS (Source    

Current 
0.93 

4 
TLBO  tuned 

ANN based SAPF 

IS (Source    

Current 
0.86 

Conclusion 

Harmonics and reactive power are just two examples 

of the increasing complexities of power quality 

issues.Active filters that employ strategies developed 

through artificial intelligence are particularly effective at 

mitigating harmonics and resolving reactive power.  

Within the scope of this article, we propose the TLBO-

trained ANN control technique. as an alternative solution 

to be used in conjunction with the SAPF. The SAPF's 

effectiveness is measured and compared in a variety of 

settings. Matlab-Simulink runs simulations of 

four different scenarios and presents the findings. 

According to simulation findings, the proposed ANN-

TLBO-based SAPF outperforms alternative scenarios in 

reducing THD in the source current. The  PSO-tuned PI-

based SAPF and SAPF with PI controller are also 

effective. According to the results, this performance 

improvement is satisfactory (within 5% of the 

recommended IEEE standard). 

A hardware-in-the-loop version of the proposed shunt 

active filter will be developed for further research. In 

addition, we plan to improve the SAPF's flexibility by 

using an ANFIS controller that includes TLBO and other 

optimization techniques. 
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