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Introduction 

In the past several years, the Internet of Things (IoT) 

has emerged as a major trend in the information 

technology (IT) sector (Nguyen et al., 2019; 

Ghasempour, 2019). Other smart gadgets, security 

systems, machineries, cameras, sensors, vehicles, and 

more are all incorporated into the IoT along with laptops, 

tablets, and smartphones. The primary objective of the 

Internet of Things is to facilitate a wide range of 

applications and services, such as those in the 

transportation and traffic management sectors, the 

healthcare industry, the energy sector, the healthcare 

sector, the vehicle network sector, and the industrial 

sector (Fu et al., 2018; Zuo et al., 2015). The data these 

programmes produce is enormous, and it takes time and 

effort to organise, store, and analyse it so that it may be 

used to serve users and their goals better (Lin et al., 

2016). Even the most sophisticated devices lack the 

processing power to keep up with the growing number 

and diversity of Internet of Things (IoT) applications 

(Chen et al., 2018). 

An IoT community can be fostered implicitly by using 

a cloud infrastructure. Cloud computing (CC) is 

commonly understood to be a massive data centre that 

provides users with easy virtual access to both receive 

and supply resources (Liu et al., 2018). The storage, 

battery life, network capacity, and processing constraints 

of today's smart gadgets can be overcome with the use of 

powerful computing environments like cloud and fog 

computing. This optimisation entails outsourcing time-

consuming operations to these computer environments 

while giving smart devices reasonable workloads. Fog 

computing (FC) is an important part of IoT ecosystems 

since it is a distributed computing paradigm (Abualigah 

and Diabat, 2020). It functions as a separate computer 

model by relying on fog nodes to facilitate service 

availability, data preservation, and communication 

broadcasting. By allocating data centre resources in 

accordance with where mobile users are, fog computing 

bolsters cloud computing's utility (Vijayalakshmi et al., 

2020). For fog nodes, the major goal of job scheduling is 

to maximise efficiency and performance. Fog computing 

allows faster data transfer and less network congestion 

(Wang et al., 2018). But with these improvements come 

new difficulties in coordinating activities and allocating 

resources. 
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As shown in Figure 1, the fog computing architecture 

is a three-tiered network. Cloud servers that store and 

analyse massive amounts of data are located on the top 

layer, which represents the core zone of cloud computing. 

In the middle layer, located there specifically to aid 

mobility, are fog computing zones filled with fog 

machines. The next layer is the Internet of Things devices 

zone (Yang et al., 2020; Ghasempour and Moon, 2016), 

which includes sensors, laptops, cell phones, 

automobiles, and personal computers used by end users. 

Using a hybrid metaheuristic algorithm like AGWO 

(Ant Grey Wolf Optimisation) for cost-aware task 

scheduling in a cloud fog scenario can be difficult for a 

number of reasons. Some of the main problems with this 

strategy are as follows: 

1. Problem Complexity: Task scheduling in a cloud 

fog environment is inherently complex due to the 

dynamic nature of the environment, the heterogeneity of 

resources, and the presence of multiple objectives and 

constraints. AGWO needs to address these complexities 

and find efficient scheduling solutions while considering 

cost factors. However, modelling and representing the 

problem accurately within the AGWO framework can be 

challenging, requiring careful consideration of various 

factors and trade-offs. 

2. Algorithm Parameter Tuning: AGWO involves 

several parameters that need to be carefully tuned for 

optimal performance. Determining the appropriate 

population size, convergence criteria, search operators, 

and other parameters can be non-trivial. The effectiveness 

and efficiency of AGWO heavily depend on finding the 

right parameter settings, which often require extensive 

experimentation and expertise. Inadequate parameter 

tuning can lead to suboptimal results or even algorithm 

failure.  

3. Scalability: When working with huge quantities of 

cloud fog, the scalability of AGWO presents considerable 

difficulty. Finding optimal solutions becomes 

computationally demanding when the number of 

activities and resources grows exponentially. AGWO's 

population-based approach can help distribute the search 

process, but efficiently handling massive problem sizes 

and resource constraints remains challenging.  

5. Balance between Exploration and Exploitation: 

AGWO needs to strike a balance between exploration and 

exploitation to effectively search the solution space. 

Exploration involves searching for new and potentially 

better solutions, while exploitation focuses on refining 

and improving existing solutions. Achieving the right 

balance is crucial to avoid getting trapped in local optima 

and to discover high-quality scheduling solutions. 

Designing mechanisms that dynamically adjust the 

exploration-exploitation trade-off can be challenging and 

requires careful consideration. 

Figure 1. System architecture 



Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023) 

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005 
43 

6. Incorporating Real-Time Factors: In a cloud fog 

environment, real-time factors such as task arrivals, 

resource availability, and changing workload patterns 

need to be considered. AGWO should adapt and respond 

to these dynamic factors to ensure timely and efficient 

task scheduling. Incorporating real-time information into 

the algorithm and developing strategies to handle 

dynamic environmental changes pose significant 

challenges. 

7. Benchmarking and Comparative Evaluation: It is 

crucial to compare AGWO's performance with other 

existing algorithms and approaches to assess its 

effectiveness. Conducting fair and comprehensive 

benchmarking studies can be challenging due to the 

diversity of problem instances, performance metrics, and 

evaluation criteria. It requires designing appropriate test 

scenarios, selecting suitable benchmarks, and ensuring 

consistency in experimental setups. 

The AGWO (Ant Grey Wolf Optimization) algorithm 

is a hybrid metaheuristic approach proposed for cost-

aware task scheduling in a cloud fog environment. It 

combines artificial intelligence techniques and nature-

inspired optimization algorithms to address the 

challenges of task scheduling while considering cost 

factors. The cloud fog environment refers to a distributed 

computing paradigm that extends the capabilities of cloud 

computing by incorporating fog nodes, which are located 

closer to the edge of the network. Fog nodes provide 

resources and services to nearby devices, enabling faster 

response times and reducing network congestion. 

distributing tasks to appropriate resources, including fog 

node clusters and cloud servers, is an important part of 

task scheduling in cloud fog systems. However, cost 

factors, including energy consumption, resource 

utilization, and communication overhead, must also be 

considered to achieve cost efficiency. The AGWO 

algorithm takes inspiration from the hunting behavior of 

grey wolves in nature. Grey wolves exhibit collaborative 

hunting strategies, combining individual exploration with 

coordinated pack movements. AGWO emulates these 

behaviors by using a population of ant grey wolves to 

search for optimal task-scheduling solutions. Each grey 

wolf in the algorithm's initial population stands for a 

different possible answer. These solutions are scored 

using a fitness function that takes into account both 

efficiency metrics (like makespan) and performance 

metrics (like energy usage and resource utilization). 

AGWO utilizes a hybrid approach, combining global 

search and local search mechanisms. The global search 

mechanism allows grey wolves to explore the entire 

search space, while the local search mechanism focuses 

on refining solutions in the local neighborhood. This 

combination of exploration and exploitation enhances the 

algorithm's ability to find high-quality scheduling 

solutions. Cost awareness is achieved by incorporating 

cost factors into the fitness evaluation process. By 

considering cost metrics alongside performance metrics, 

AGWO aims to find solutions that minimize the overall 

cost while meeting the performance requirements. 

AGWO aims to optimize task scheduling by reducing the 

makespan (total time taken to complete all tasks) and 

minimizing the associated costs. It leverages the hybrid 

metaheuristic approach to handle cloud fog environments' 

complex and dynamic nature. The motivation behind 

developing AGWO (Ant Grey Wolf Optimization) for 

cost-aware task scheduling in a cloud fog environment 

using a hybrid metaheuristic algorithm stems from 

several key factors: 

1. Cost Efficiency: Cloud fog environments involve 

the utilization of resources distributed across cloud 

servers and fog nodes. Efficiently scheduling tasks in 

such environments requires considering cost factors such 

as energy consumption and resource utilization. The 

motivation behind AGWO is to develop a task scheduling 

algorithm that explicitly incorporates cost awareness, 

aiming to minimize the overall cost while meeting 

performance objectives. 

2. Heterogeneity and Dynamism: Cloud fog 

environments are characterized by the presence of 

heterogeneous resources and dynamic workloads. Fog 

nodes located at the edge of the network have limited 

resources compared to cloud servers. Task arrivals, 

resource availability, and workload patterns can also 

change rapidly. AGWO's motivation lies in addressing 

the challenges posed by the heterogeneity and dynamism 

of the environment, aiming to optimize task scheduling 

decisions accordingly. 

3. Performance Optimization: While cost reduction is 

a primary objective, AGWO also focuses on optimizing 

performance metrics such as makespan. Efficient task 

scheduling ensures that tasks are allocated to suitable 

resources to minimise the total time taken to complete all 

tasks. AGWO aims to find scheduling solutions that 

strike a balance between cost reduction and performance 

optimization, thus enhancing the overall efficiency of 

task execution in cloud fog environments. 

4. Nature-Inspired Optimization: AGWO takes 

inspiration from the hunting behavior of grey wolves. 

Grey wolves exhibit collaborative and adaptive strategies 

for successful hunting. The motivation behind adopting a 

nature-inspired optimization approach is to develop an 

algorithm that emulates the wolves' behaviors to 
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effectively explore the solution space and find high-

quality task scheduling solutions. 

5. Hybrid Metaheuristic Approach: AGWO integrates 

global and local search mechanisms to exploit their 

strengths. In order to find potential regions, the global 

search mechanism looks across the entire solution space, 

while the local search mechanism concentrates on 

improving solutions that are close to the best ones. 

Improving the algorithm's exploration and exploitation 

skills leads to more optimal or near-optimal scheduling 

solutions, which is why the hybrid metaheuristic 

approach was developed. 

By incorporating cost-awareness, addressing the 

heterogeneity and dynamism of cloud fog environments, 

optimizing performance metrics, and employing a hybrid 

metaheuristic approach, AGWO aims to provide an 

effective and efficient solution for cost-aware task 

scheduling. The motivation is to contribute to the 

development of scheduling algorithms that meet the 

unique challenges and requirements of cloud fog 

environments, ultimately improving resource utilization, 

reducing costs, and enhancing overall system 

performance (Abualigah et al., 2020; Wang et al., 2020). 

IoT contexts have varying user requirements, and fog 

computing platforms outperform cloud computing in 

terms of performance. Therefore, a fundamental difficulty 

needs to be addressed: optimally scheduling activities in 

fog computing by efficiently distributing resources and 

aligning them with user demands. 

First, the paper's key contributions are discussed, and 

second, the paper's core evaluation process and 

comparisons are outlined. 

We propose the following improvements to the 

current state of the art in order to enhance IoT services in 

a cloud-fog computing environment: 

(i) To provide efficient task scheduling in cloud-fog 

environments, we present a hybrid evolutionary method 

named AGWO. This algorithm combines the 

foundational GWO methodology with the adaptive ACO 

strategy to increase convergence speed and searching 

explorations. 

(ii) Quality of service (QoS) and overall cost are two 

competing criteria that must be taken into account when 

designing a cost model for Internet of Things (IoT) tasks 

transmitted for processing in a cloud-fog framework. 

(iii) Comparing the makespan and task execution cost 

of the proposed scheduling strategy to those of other 

approaches applied to realistic workloads. 

The outline of this paper looks like this: 

The article continues with the following structure. 

Section 2 examines various methods currently used for 

creating task scheduling. In Section 3, we discuss the 

system model and problem formulation for TS in detail, 

and in Section 4, we detail the AGWO task scheduling 

results that we believe to be the most effective. Section 5 

presents a discussion of the AGWO methodology and 

their limitations. Finally, the work is summed up in 

Section 6. 

Literature Survey 

Task scheduling in the cloud is addressed by the 

hybrid method proposed by Zhang et al. (2018), which 

combines the Biogeography-Based Optimisation (BBO) 

algorithm and the grey wolf optimisation (GWO). This 

method was designed to maximize resource utilization 

and minimize makespan time. The suggested HBBOG 

algorithm has been shown to perform better than 

conventional BBO and GWO algorithms in experiments 

regarding solution quality and convergence speed. 

An MGWO-based task scheduling technique is 

presented for fog computing environments by Saif et al. 

(2019). The algorithm considers limitations on resources 

and task dependencies to maximise resource utilization, 

reducing energy consumption and optimising makespan 

time. The suggested MGWO algorithm is shown to be 

useful in delivering efficient task scheduling in fog 

computing settings by experimental results. 

An enhanced GWO method is given for task 

scheduling in cloud-fog computing systems (Bacanin et 

al., 2019), as suggested by Bacanin, Nebojsa, et al. To 

improve the effectiveness of the solutions and 

convergence speed, the algorithm uses an adaptive search 

mechanism and a dynamic pheromone updating strategy. 

The enhanced GWO algorithm outperforms standard 

optimization techniques in terms of makespan, load 

balancing, and resource utilization, as determined by 

experimental evaluations. 

For scheduling tasks in cloud-fog computing, (Kaur 

and Aron, 2021) present a hybrid algorithm that 

incorporates ACO and GWO. Considering limited 

resources, the program seeks to optimize makespan and 

energy consumption. The hybrid Tabu-GWO-ACO 

algorithm improves the basic techniques in terms of 

solution quality and convergence speed, as shown by 

experimental results. 

Dynamic task scheduling in cloud-fog computing 

environments utilising the MGWO method is the subject 

of (Najafizadeh et al., 2022). To schedule effectively, the 

algorithm takes into account dynamic changes in 

workload and the availability of resources. The MGWO 

algorithm performs in terms of make time and resource 
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utilization, and experimental results suggest that it 

operates well in dynamic circumstances. 

Yin et al. (2022) proposed a method for scheduling 

tasks in cloud-fog computing environments based on 

combining the monarch butterfly optimization algorithm 

and the improved ant colony optimization algorithm 

(HMA). To identify near-optimal solutions, the authors 

framed the scheduling problem as an optimization task 

and used HMA to solve it. Extensive experiments were 

run to assess the effectiveness of the suggested method to 

minimize service delay and task energy consumption. 

The outcomes proved that HMA performed better than 

competing algorithms when it came to scheduling tasks. 

By combining Grey Wolf Optimisation (GWO) and 

the Modified Moth Flame algorithm (MMFA), the unique 

hybrid algorithm proposed by (Gupta and Singh, 2022) 

enhances Deep reinforcement learning (DRL) by 

furnishing a local search mechanism for scheduling tasks 

in fog computing scenarios. The authors offer an 

alternative fitness function that factors in task 

dependencies, resource availability, and communication 

costs. Throughput, latency, makespan time, and energy 

usage were all assessed experimentally to determine the 

algorithm's efficacy. Results demonstrated the hybrid 

GMFA algorithm's effectiveness in scheduling jobs. 

(Abualigah et al., 2020) introduced an enhanced 

version of TS-GWO for task scheduling in cloud and fog 

computing. The authors incorporated a dynamic 

parameter adaptation mechanism to improve the 

algorithm's convergence speed and search efficiency. 

Extensive simulations were performed to evaluate the 

proposed approach's performance in terms of makespan 

reduction, load balancing, and resource utilization. The 

results demonstrated the superiority of the enhanced TS-

GWO algorithm over traditional TS-GWO and other 

existing algorithms. 

For cloud-fog computing, (Subramoney et al., 2022) 

suggested an MS-PSO based task scheduling method. To 

effectively assign tasks to available resources, the authors 

framed the scheduling problem as an optimisation task 

and used the MS-PSO algorithm. The effectiveness of the 

algorithm in terms of makespan, resource utilisation, and 

energy usage was measured by experimental assessments. 

The outcomes confirmed the MS-PSO algorithm's 

superiority over the conventional methods in attaining 

effective task scheduling. 

For the purpose of load balancing in cloud-fog 

computing environments, (Kakkottakath et al., 2022) 

created a multi-objective hybrid particle search 

optimisation algorithm (MOHPSO). The authors used a 

modified PSO algorithm to balance competing demands 

on available resources and schedule tasks accordingly. 

The algorithm's effectiveness in load balancing, 

makespan, and resource utilisation was determined by 

running a series of simulations. The findings proved the 

efficiency of the hybrid MOHPSO algorithm in satisfying 

load-balancing requirements. 

An updated version of the improved differential 

evolution (IDE) algorithm was suggested by (Li et al., 

2020) to schedule tasks in fog computing environments 

energy-efficiently. The algorithm's convergence rate and 

power consumption were optimised by implementing a 

dynamic parameter adaption method. Extensive studies 

were conducted to measure the algorithm's effectiveness 

in energy savings, maximising available resources, and 

making the most of available time. The findings proved 

that the improved IDE method delivered energy-efficient 

task scheduling. 

Task scheduling in cloud-fog computing 

environments: a comparison of the GA-PSO method and 

the genetic algorithm (GA) by (Subramoney and 

Nyirenda, 2020). The algorithms' makespan, resource 

utilisation, and load balancing were analysed, and a 

variety of fitness functions were presented. The results 

demonstrated that the GA-PSO method was superior than 

GA in optimising makespan reduction and load balancing 

targets. 

In order to better schedule tasks in the cloud, (Ahmed 

et al., 2019) suggested a Moth Search Algorithm (MSA) 

based on a Differential Evolution (DE) technique. The 

authors used DE to assign jobs to available resources 

effectively by casting the scheduling problem as an 

optimisation challenge. They compared DE's efficiency, 

effectiveness, and energy usage to that of several 

different metaheuristic algorithms. The findings proved 

the efficiency of DE in cloud computing systems for 

scheduling tasks. 

An adaptive version of Differential Evolution was 

described by (Jing et al., 2021) for use in load balancing 

in fog computing settings. In order to tailor DE's 

mutation and crossover techniques to the peculiarities of 

a fog computing system, the scientists suggested a 

methodology called dynamic Moth-Flame Optimisation 

Differential Evolution (DMFO-DE). The effectiveness of 

the algorithm in terms of load distribution, turnaround 

time, and resource consumption was measured by 

extensive simulations. The findings show that adaptive 

Differential Evolution successfully accomplished the load 

balancing goals in fog computing. 

Table 1 shows that previous researchers classified 

cloud computing paradigms based on parameters 

including makespan, energy usage, and SLA-based trust 
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characteristics. We present an efficient and grey wolf 

optimization algorithm (AGWO), which uses ACO and 

GWO techniques to plan tasks in a fog environment 

while taking into account make time and total cost. The 

proposed method is especially useful for scheduling 

latency-sensitive applications, such as automotive 

networks, and for real-time applications, such as smart 

cities. 

Table 1. Comparison study of existing scheduling 

parameters 

Authors 
Technique 

Used 

Parameters 

Addressed 

Zhang et al., 2018 HBBOG 

Resource 

utilization and 

makespan time 

Saif et al., 2023 MGWO 

Resource 

utilization, energy 

consumption and 

makespan time 

Bacanin et al., 

2019 
GWO 

Makespan, load 

balancing, and 

resource utilization 

Kaur and Aron, 

2021 

Tabu-

GWO-

ACO 

Makespan and 

energy 

consumption 

Wang et al., 2022 MGWO 
Maketime and 

resource utilisation 

Yin et al., 2022 HMA 
Energy 

consumption 

Gupta and Singh, 

2022 
MMFA 

Throughput, 

latency, maketime 

and energy 

consumption 

Abualigah et al., 

2020 
TS-GWO 

Makespan, load 

balancing, and 

resource utilization 

Jing et al., 2021 QoS-

DPSO 

Time, reliability, 

cost 

Chen et al., 2022 
DRL 

Response time, 

success rate, cost 

Elaziz et al., 2021 
AOAM 

Makespan, energy 

consumption 

Hussain et al., 

2022 DVFS 

Energy 

consumption, 

electricity price 

Medishetti and 

Karri, 2023 
IDOA 

Makespan time, 

VM failure rate, 

degree of 

imbalance 

Medara  et al., 

2021 
EASVMC 

energy 

consumption, 

resource utilization, 

VM migration 

Mohammadzadeh 

et al., 2021 
HGALO-

GOA 

Cost, makespan, 

energy 

consumption 

Kumar et al., 2023 

EEOA 

Cost, energy 

consumption, 

makespan 

Proposed 

algorithm 
AGWO Makespan and cost 

System Model and Problem Formulation 

System Model 

In order to better understand the proposed system, this 

article will outline the system model and the interaction 

between the various components involved in task 

scheduling (TS). The TS problem is also formulated for 

the audience to understand. 

Based on our findings, we suggest a three-tiered 

architecture that includes cloud nodes, fog nodes, and 

Internet of Things (IoT) smart devices. In Figure 1 we see 

a simplified diagram of the entire proposal. This initial 

tier comprises smart sensors, wearable tech, and medical 

equipment. Nodes in the cloud or fog system can process 

service requests from these gadgets. 

Personal computers, mini-servers, and smart gateways 

are all examples of nodes found in the middle layer, 

referred to as the fog nodes layer. With limited resources, 

each fog node serves as a smart server. Our architecture 

concludes in a cloud node layer comprising powerful 

servers with scalable computing resources capable of 

simultaneously processing many separate tasks. If you 

need to minimise delays and boost processing efficiency, 

scheduling time-sensitive tasks on a nearby fog node is 

the way to go. However, due to the superior 

computational power of cloud nodes, these types of 

intensive computations should be routed there rather than 

to fog nodes. 

The suggested architecture depends significantly on 

the Fog Broker, which will live in the fog nodes layer. 

The Fog Broker incorporates the Resource Monitoring 

Service, the Task Scheduler, and the Task Manager. 

Requests for tasks come into the Task Manager from 

users and devices all over the IoT. It stores information 

about the tasks and resources they need, then sends that 

information to the Task Scheduler. The status of all 

available resources is tracked and recorded by the 

Resource Monitoring Service. The Task Scheduler 

benefits from its cooperation with both fog nodes and 

cloud nodes, which it uses to make more informed 

scheduling decisions. 
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 The created methods for scheduling tasks are 

executed by the Task Scheduler, which forms the 

backbone of the Fog Broker. The Task Scheduler 

distributes work orders to computers based on their 

specific requirements, in addition to the capabilities of 

the available resources and the characteristics of the 

submitted tasks. Therefore, task requests are processed 

quickly and communicated back to the Fog Broker for 

distribution. 

Problem Formulation 

Task scheduling in a cloud-fog setting is formulated 

mathematically and described in the next section. Let's 

pretend the suggested cloud-fog computing infrastructure 

includes a set of n separate tasks 

  1,  2,  3,... T T T T Tn=  that have been submitted to the 

Fog Broker for execution. The time limit, file size of 

input and output, memory requirements, and other 

parameters are all unique to each Tk work. Millions of 

Instructions (MI) are used to quantify how long a process 

takes to complete. There are a total of m nodes in the 

cloud-fog system, which includes both cloud and fog 

nodes. This set can be written as 

  1,  2,  3,...,  CN CN CN CN CNm=  where CNj is the 

jth computer in the network. CPU speed, RAM size, 

network throughput, and storage space are only some of 

the characteristics unique to each CNj. MIPS (Millions of 

Instructions Per Second) is the standard measure of a 

CN's processing speed. 

( )   cloud FogCN N U N=  …………………(1) 

Figure 2 depicts the scheduling system as a direct 

acyclic graph (DAG), with T representing the set of n 

tasks (t1, t2,..., tn) and E representing the set of directed 

edges (dependence or priority limitations) between jobs 

in the workflow. G = (P, EG) is a complete graph that can 

be used as an alternate representation for the nodes in a 

cloud-fog network. 

Figure 2 depicts a DAG with eight tasks (T1, T2,..., 

Tn) and their respective processors (Pf1, Pf2,..., Pfn) in 

fog computing and cloud computing, respectively. The 

cloud nodes and the results from the fog nodes are 

integrated after the input tasks have been handled. The 

main objective is to allocate tasks to processors in such a 

way as to optimise system performance while minimising 

resource consumption and other related costs. In this 

case, our task scheduler thinks about these things while 

deciding how to divide up processor time. 

Since there are n task requests and m computing 

nodes, the ECT matrix has nm dimensions to indicate the 

expected computation time for each task request for every 

computing node. The Task Scheduler uses the ECT 

matrix to schedule tasks. The following formula can be 

used to determine the estimated execution time, denoted 

by the symbol ECTk,j, for task Tk on compute node CNj. 

The expected execution time (ECT) of task Tk on 

computing node CNj can be expressed as: 

,  _ _  /  _ _k jECT Task Length k Computing Power j=  …. (2) 

Here, Computing Power_j denotes the Millions of 

Instructions Per Second (MIPS) level processing power 

of computing node CNj, and Task length_k is the MIPS-

level length of the task Tk. 

It is known that the problem of allocating jobs to 

available compute nodes is NP-complete. The primary 

T1,T2,T3,T4,……………..,Tn

Pf1
Pfn-1 Pfn

Pc1 Pcn

Figure 2. Random workflow for cloud-fog scheduling 
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objective is to find a timetable that reduces the makespan 

(the time it takes to complete the task). By keeping the 

makespan as small as possible, we can ensure that no 

single operation takes too long to complete. In this 

research, we focus on reducing the makespan of a cloud-

fog system by solving the task scheduling (TS) problem. 

The following formula can be used to determine the 

makespan (MK) for a given schedule Z: 

A schedule Z's makespan (MK) is determined by the 

maximum total expected execution time (ECT) across all 

computing nodes CNj, where j ranges from 1 to m, and 

considering all task requests Tk, where k ranges from 1 to 

n. The equation to calculate the makespan is: 

( )  ,      1,  2,  { | }...,   k jMK Z max ECT j m=   .. (3) 

At this stage, the task scheduling (TS) problem can be 

mathematically formulated as follows: To minimize the 

makespan of a schedule Z, represented by the function 

f(Z), which can be defined as: 

              𝑓(𝑍)  =  𝑚𝑖𝑛 { 𝑚𝑎𝑥 { 𝛴 𝐸𝐶𝑇𝑘,𝑗| 𝑗 ∈

{1, 2, . . . , 𝑚} } | 𝑘 ∈ {1, 2, . . . , 𝑛} } ………….. (4) 

In this formulation, f(Z) seeks to minimize the 

maximum total expected execution time (ECT) across all 

computing nodes CNj, considering all task requests Tk. 

Execution time 

Minimize the overall execution time (makespan) of 

task scheduling in a cloud and fog computing system. 

Let's consider the following variables and parameters: 

• Task set:    1,  2,  3,  ...,  T T T T Tn= where 

each task Tk represents an individual task with attributes 

such as task length, memory requirements, input/output 

file sizes, and deadline. 

• Computing nodes: 

( )  1,  2,  3,...,  CN CN CN CN CNm=  where CNj is a 

computational node with its own CPU speed, memory 

size, network bandwidth, and storage capacity. 

The execution time of task Tk on computing node CNj, 

denoted as ECTk,j, can be calculated using a mathematical 

equation that considers the characteristics of the task and 

the computing node. This equation can be customized 

based on the specific system and requirements but 

generally involves factors such as task length, computing 

power, communication latency, and resource constraints. 

An example equation for calculating ECTk,j is: 

( ) _ ,  _ ,  _ , ,  _
,

ECT f TL k CP j CL k j RC j
k j

=   ……(5) 

TL represents the task length, CP represents the 

computation power, CL represents the communication 

latency, and RC represents the Resource constraints. 

Here, f() represents the mathematical function that 

considers the relevant parameters. The equation can be 

further refined and customized based on the specific 

considerations and optimization goals of the task 

scheduling problem in cloud and fog computing. The 

objective is to find an optimal scheduling solution that 

minimizes the overall execution time by assigning tasks 

to suitable computing nodes while considering factors 

such as task dependencies, resource availability, and 

communication overhead. 

Response time 

minimize the overall response time of task scheduling 

in a cloud and fog computing system. 

Let's consider the following variables and parameters: 

• Task set:    1,  2,  3,  ...,  T T T T Tn=  where 

each task Tk represents an individual task with attributes 

such as task length, memory requirements, input/output 

file sizes, and deadline. 

• Computing nodes: 

( )  1,  2,  3,...,  CN CN CN CN CNm=  where CNj is a 

collection of computing nodes, each with its own 

parameters including CPU speed, memory size, network 

throughput, and available disc space. 

The response time of task Tk on computing node CNj, 

denoted as RTk,j, can be calculated using a mathematical 

equation that considers various factors such as task 

length, communication latency, resource availability, and 

scheduling overhead. This equation can be customized 

based on the specific system and requirements. An 

example equation for calculating RTk,j, is:                                           

( ) _ ,  _ , ,  _
,

RT g TL k CL k j RA j
k j

=  ……..(6)                                  

TL represents the task length, CL represents the 

communication latency, and RA represents the Resource 

availability. The g() notation here denotes the particular 

mathematical function that makes use of all of the 

appropriate variables. The equation can be modified and 

improved upon in light of the unique constraints and 

optimisation targets of the cloud and fog computing work 

scheduling problem. 

Makespan 

The makespan is the overall amount of time needed to 

finish all of the tasks in a particular schedule when using 

cloud computing for task scheduling. When comparing 

different task scheduling algorithms for use in the cloud, 

the makespan is a crucial indicator of how well each one 

performs. 

The makespan, denoted as MK, can be calculated 

using the following equation: 

( ){ | }      MK max CompletionTime Tk Tk T=  .. (7) 
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Completion Time(Tk) is the time it took to complete 

the task Tk. The schedule's total time to completion is 

represented by the maximum completion time selected 

from the list of tasks using the equation. 

Objective function 

The objective function in task scheduling for cloud 

computing represents the optimization goal that a 

scheduling algorithm aims to achieve. It quantifies a 

metric that needs to be minimized or maximized to find 

an optimal task schedule. 

Minimising the makespan, or the total amount of time 

needed to finish all the activities in a given schedule, is a 

common objective function in cloud computing task 

scheduling. Other goals, such as energy usage, resource 

utilisation, or cost, may also be taken into account, 

however, depending on the specific needs and aims. 

Let's denote the objective function as f(Z), where Z 

represents a schedule of task assignments to computing 

nodes. The equation for the objective function in task 

scheduling can be formulated as follows: 

( ) ( )  f Z g Z=                       ………….(8) 

Here, g() is the mathematical function that quantifies 

the objective. The specific form of the objective function 

equation depends on the optimization goal and the 

constraints considered in the task scheduling problem. 

For example, if the objective is to minimize the 

makespan, the objective function equation can be: 

( ) ( )      f Z min MK Z=      ………….(9) 

Where MK(Z) represents the makespan of the 

schedule Z, which can be calculated using appropriate 

equations as discussed earlier. Other objective functions 

can be formulated accordingly, incorporating different 

metrics or constraints relevant to the specific task 

scheduling problem in cloud computing. 

Initialization 

The initialization step in the proposed Ant Grey Wolf 

Optimization (AGWO) algorithm for task scheduling in 

cloud computing is a process that sets up the initial 

population of grey wolves and ants in the search space. 

While this step is primarily implemented using 

randomization, it is not explicitly defined by a 

mathematical equation. The initialization procedure can 

be described as follows: 

1. Initialize Grey Wolves: 

o Set the population size of grey wolves as NP. 

o Generate NP random positions in the search space for 

the grey wolves. 

o Each position represents a potential solution for task 

scheduling. 

2. Initialize Ants: 

o Determine the number of ants as NA. 

o Generate NA random positions in the search space for 

the ants. 

o Each position represents a candidate solution for a 

task assignment. 

The initialization step aims to create an initial diverse 

set of solutions by randomly assigning positions to the 

grey wolves and ants in the search space. These positions 

represent potential task assignment configurations on the 

available computing nodes. It's important to note that the 

specific details of the initialization process, such as the 

population size and position assignment, can be tailored 

based on the problem requirements and characteristics. 

The main objective is to ensure a varied set of initial 

solutions that can be further optimized during the 

subsequent steps of the AGWO algorithm. 

Following the initialization, the AGWO algorithm 

progresses to the Ant Colony Optimization (ACO) and 

Grey Wolf Optimization (GWO) phases, along with other 

operations, to refine the task scheduling solutions and 

achieve optimal or near-optimal results. 

Updating stage 

In the proposed Ant Grey Wolf Optimization 

(AGWO) algorithm for task scheduling in cloud 

computing, the updating stage refers to the process of 

updating the positions of grey wolves and ants based on 

their search behavior and the quality of solutions. While 

this stage involves iterative updates, it is not represented 

by a single mathematical equation. However, I can 

provide an overview of the updating process in AGWO: 

1. Ant Colony Optimization (ACO) Phase: 

o o Based on trial pheromones and heuristic 

information, each ant builds a proposed solution by 

assigning tasks to compute nodes probabilistically. 

o The effectiveness of the ant-built solutions informs the 

maintenance of the pheromone trails. 

2. Grey Wolf Optimization (GWO) Phase: 

o The grey wolves use their hunting behavior to explore 

the search space and refine the solutions. 

o The positions of grey wolves are updated based on the 

fitness of the solutions and the social hierarchy among 

the grey wolves (alpha, beta, delta). 

3. Local Search: 

o A local search operation may be performed to further 

refine the solutions obtained from the ACO and GWO 

phases. 

o This can involve neighborhood exploration or local 

optimization techniques. 
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The updating stage involves iterative updates of the 

positions of grey wolves and ants based on the evaluation 

of their solutions and searches behavior. The specific 

equations and update rules used in AGWO can vary 

based on the task scheduling problem and the design 

choices of the algorithm. 

It's important to note that the AGWO algorithm 

combines the principles of ACO and GWO, and the 

updating stage integrates their respective mechanisms to 

refine the task scheduling solutions. The algorithm 

iteratively improves the solutions through multiple 

iterations until convergence or a termination condition is 

met, aiming to find optimal or near-optimal task 

assignment schedules in cloud computing environments. 

Proposed AGWO Algorithm 

Pseudo code for AGWO Task Scheduling (Input: 

tmax, m, n, N): 

    1: Set the initial value for the population X. 

    2: t = 1. 

    3: while t <= tmax do 

    4:     Compute the fitness value (Fi) for each solution 

Xi. 

    5:     Determine the best solution Xb. 

    6:     Update X1 using Eq. (2). 

    7:     for i = 2 to N do 

    8:         rand = random value between 0 and 1. 

    9:         if rand < 1/3 then 

    10:            Enhance Xi using Eq. (4). 

    11:        else if 1/3 < rand < 2/3 then 

    12:            Enhance Xi using Eq. (6). 

    13:        else 

    14:            Enhance Xi using Eq. (7). 

    15:        Compute the fitness of each solution Xi. 

    16:        Update Xb. 

    17:        Compute the probability Pri using Eq. (8). 

    18:        Improve Xi using Eq. (9). 

    19:    t = t + 1. 

    20: End while 

    21: Return Xb. 

Based on the probabilities (Pri) of each solution, either 

Ant Colony Optimisation (ACO) or Grey Wolf 

Optimisation (GWO) operators are used to update the 

feasible regions. The probabilities (Pri) are calculated as 

follows:                              

( )   /      1  Pri Fiti Fiti for i to N=  = ……….. (10) 

where Fiti represents the fitness value of solution i, 

and N is the total number of solutions." 

 

 

Results 

To implement the proposed algorithm, we utilized the 

CloudSim (Abualigah, Laith, et al. 2020) toolkit for 

modelling the cloud environment. Extensive experiments 

were conducted using a simulation strategy. In order to 

validate the effectiveness of the AGWO algorithm, we 

provide evaluation comparisons with the widely-used 

MOTSAO, CSDEO, QoS-DPSO and BLEMO 

algorithms. 

We conducted simulations using a machine with an 

Intel Core i5-3373U CPU running at 1.8 GHz and 6 GB 

of RAM to get AGWO's results. CloudSim Toolkit was 

used to implement the AGWO algorithm, and its 

performance was measured in terms of both cost and 

makespan. In the study, we only investigated tasks that 

were not dependent on results from other tasks. It was 

believed that the links' data-transfer speeds would be 

distributed normally, within the range of 40 Mbps to 

10,000 Mbps. Parameters used in the simulation analysis 

are outlined in Table 2. These parameters include the 

pheromone value, the local evaporation rate (p), and the 

global evaporation rate (τ). The table shows how many 

ants, tasks, virtual machines, and data centres were used 

to run the simulation. 

Table 2. Scheduling based on ACO parameters 

α β p τ ζ Imax ants tasks VM 

2 10 0.8 1.0 0.2 4 15 35-

150 

8-24 

 

Table 3. Cloudsim toolkit parameters 

Parameter Cloud Fog 

Number of VMs [10,15,20] [15,20,35] 

Computing 

power (MIPS) 

[3000:5000] [1000:2000] 

RAM (MB) [5000:20000] [250:5000] 

Bandwidth 

(Mbps) 

[512:4096] [128:1024] 

Cost (G$) [0.6:1.0] [0.2:0.5] 

 

Makespan 

The proposed method consistently obtains the best 

makespan of any known heuristic. Compared to other 

comparable algorithms such as MOTSWAO, CSDEO, 

QoS-DPSO, BLEMO, the proposed AGWO consistently 

generated better makespan results across all scenarios, as 

represented by the graph displaying in the figure 3 best 

makespan results for real-time workloads with varying 

task sizes. The conclusion is that AGWO is an excellent 

method for addressing important challenges in cloud fog 

task allocation scheduling. 
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Figure 3. Makespan calculation of proposed method 

Throughput 

Using realistic workloads, the below figure 4 

compares the throughput attained by the MOTSWAO, 

CSDEO, QoS-DPSO, BLEMO and the proposed AGWO 

algorithm. The throughput measurement is the number of 

IoT tasks on the horizontal axis of these diagrams and on 

the vertical axis. These results demonstrate that AGWO 

outperforms all other evolutionary algorithm techniques 

tested in terms of throughput across all task dimensions 

and workloads. It demonstrates that the AGWO algorithm 

can discover near-optimal solutions to real-world 

problems with reliability and consistency. In many test 

cases and workloads, traditional MOTSWAO and 

CSDEO techniques produce a higher throughput than 

QoS-DPSO and BLEMO. In terms of throughput, the 

results indicate that the MOTSWAO method outperforms 

the CSDEO method across all task dimensions and 

demands. h- DEWOA converges faster compared to 

BLEMO and other metaheuristic algorithms. This 

advantage makes the hybridization of the proposed 

AGWO superior to other methods in terms of throughput. 

 
Figure 4. Throughput calculation of proposed method 

 

Execution time 

It demonstrates that the proposed method (AGWO) 

reduces overall execution time, particularly for numerous 

activities as shown in figure 5. The AGWO scheduler 

uses a hybrid of the ACO and GWO algorithms to assign 

resources; as a result, less time is wasted searching and 

all jobs receive near-perfect VM. AGWO is 

approximately 28.3 percent more efficient than GWO. 

When there are few requests, MOTSWAO and CSDEO 

can complete the task rapidly. However, as the number of 

tasks increases, the execution time of these algorithms 

increases substantially. Compared to MOTSWAO and 

CSDEO, QoS-DPSO, BLEMO processing delays for 

improvement are 8.6 and 9.12 percent, respectively. 

 
Figure 5. Execution time of proposed method 

Response time 

Below figure 6 depict the typical response times for 

Internet of Things-related tasks. Response time is the 

time required for an IoT device to submit a request and 

then receive a response. Compared to other 

methodologies, the MOTSWAO’s Internet of Things 

(IoT) response time is the quickest (58.12 seconds). 

MOTSWAO and CSDEO outperform QoS-DPSO by 

35.32 and 19.56 seconds, respectively. It depicts the 

typical response periods for the real time workloads, 

broken down by specific tasks. MOTSWAO requires a 

lot of time, and the recommended AGWO method 

requires the shortest turnaround time among the real-time 

tasks. Due to their slow response periods, the 

MOTSWAO and CSDEO methods break the SLA in a 

significant way. Taking into account actual demands, the 

previous data indicate that throughput time and makespan 

have improved significantly. The success of AGWO can 

largely be attributed to the incorporation of CSDEO and 

QoS-DPSO into the proposed algorithm. We conclude 

that the AGWO we created is the most effective method 

to address cloud-fog Task Scheduling optimization 
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concerns because it consistently generates the best 

solutions. 

 
Figure 6. Response time of proposed method 

Cost 

It has been observed that among the algorithms, 

MOTSWAO has the most expense and AGWO has the 

lowest. As seen in Figure 7, both CSDEO and BLEMO 

are reasonably priced when it comes to using cloud and 

fog resources. Remember that MOTSWAO will charge 

you more because it prioritises reducing the time it takes 

to complete a task over other factors. In contrast, the 

average cost of CSDEO is reduced by 3.5% while the 

average cost of MOTSWAO is reduced by 25.38&percnt; 

with QoS-DPSO. This is mostly because the proposed 

method reduces costs by distributing tasks to the most 

cost-effective resources, regardless of factors like 

additional charges and energy use. 

 
Figure 7. Total Cost calculation of proposed method 

Discussion 

When evaluating AGWO's (Ant Grey Wolf 

Optimization) performance for cost-aware task 

scheduling in a cloud fog environment, two important 

metrics to consider are makespan and cost. The 

discussion on the results of AGWO concerning these 

metrics: 

1. Makespan: Makespan refers to the total time 

taken to complete all tasks in the scheduling process. 

AGWO aims to minimize the makespan by optimizing 

task allocation and resource utilization. By leveraging the 

hybrid metaheuristic approach, AGWO explores different 

scheduling strategies and adjusts the positions of the ant 

grey wolves in the search space to find better solutions. 

The effectiveness of AGWO in minimizing the 

makespan would depend on the problem instance, the 

characteristics of the tasks and resources, and the 

algorithm parameters. In general, AGWO's exploration 

capability, combining global and local search strategies, 

can help in finding scheduling solutions that reduce the 

makespan compared to traditional methods. However, the 

degree of improvement would vary depending on the 

problem's complexity and the algorithm's efficiency in 

exploring the search space. 

2. Cost: AGWO incorporates cost factors into the 

task scheduling process to optimize the overall cost. This 

includes considerations such as energy consumption, 

resource utilization, and communication overhead. The 

cost-awareness of AGWO allows it to find scheduling 

solutions that minimize the cost while meeting the 

performance requirements. 

The impact of AGWO on cost reduction would 

depend on the specific cost factors considered, the 

problem instance, and the weights assigned to these 

factors in the fitness evaluation. By integrating cost 

metrics into the fitness function, AGWO can guide the 

search process towards cost savings solutions. The 

algorithm's ability to balance cost and performance can 

help in achieving cost reduction compared to traditional 

scheduling methods that do not explicitly consider cost 

factors. 

It's important to note that the trade-off between 

makespan and cost exists in AGWO. Optimizing one 

metric may lead to compromises in the other. The 

algorithm's parameter settings and the problem 

requirements can influence the extent of this trade-off. To 

assess the performance of AGWO in terms of makespan 

and cost, it is essential to compare it with other existing 

task scheduling algorithms and approaches. 

Benchmarking experiments can be conducted on various 

problem instances to evaluate AGWO's effectiveness and 

competitiveness in achieving lower makespan and cost 

compared to alternative methods. 

Limitations  

While AGWO (Ant Grey Wolf Optimization) for cost-

aware task scheduling in a cloud fog environment using a 

hybrid metaheuristic algorithm has its merits, there are 

also some limitations to consider. Here are a few 

limitations of AGWO: 

1. Parameter Sensitivity: AGWO requires parameter 

tuning to achieve optimal performance like many 

metaheuristic algorithms. The performance of AGWO 
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can be sensitive to the choice of parameters such as 

population size, convergence criteria, and search 

operators. Finding the right parameter settings can be a 

challenging and time-consuming task, requiring expertise 

and extensive experimentation. 

2. Scalability: The scalability of AGWO can be a 

limitation when dealing with large-scale cloud fog 

environments with a high number of tasks and resources. 

As the problem size increases, the complexity of the 

search space grows, which can impact the algorithm's 

performance. AGWO's population-based approach and 

distributed computation capability may help mitigate 

scalability issues to some extent, but there can still be 

limitations in handling extremely large problem 

instances. 

3. Convergence to Suboptimal Solutions: AGWO, 

like other metaheuristic algorithms, is not guaranteed to 

find the global optimal solution. Depending on the 

problem instance and algorithm parameters, AGWO may 

converge to suboptimal solutions that do not provide the 

best possible cost-aware task scheduling. The exploration 

and exploitation balance of the algorithm can impact its 

ability to escape local optima and find better solutions. 

4. Limited Problem-Specific Adaptability: AGWO, 

being a general-purpose metaheuristic algorithm, may 

lack problem-specific adaptability. It may not exploit 

specific characteristics of the cost-aware task scheduling 

problem in a cloud fog environment. As a result, AGWO 

might not fully utilize domain-specific knowledge and 

constraints, potentially leading to suboptimal solutions. 

5. Lack of Comparative Performance Evaluation: 

While AGWO shows promise in cost-aware task 

scheduling, its performance should be compared against 

other existing algorithms and approaches. Without proper 

benchmarking and comparison, it is challenging to 

determine the true effectiveness and competitiveness of 

AGWO against state-of-the-art methods. Comparative 

evaluation of different problem instances and 

performance metrics is necessary to comprehensively 

understand AGWO's strengths and weaknesses. 

Conclusions and Future Work 

In a cloud-fog computing environment, it has been 

demonstrated that a cost-aware task scheduling system 

may effectively manage the allocation and execution of 

IoT tasks. By combining the ideas of ant colony 

optimisation (ACO) and grey wolf optimisation (GWO), 

we developed a novel adaptive method to address the task 

scheduling problem. The goal of this AGWO strategy 

was to boost the efficiency of the ACO algorithm. The 

suggested algorithm was evaluated using a number of 

tests, with results compared to those of other existing 

metaheuristics and parameters The makespan time was 

reduced by 42% and we reduced the cost by 36% while 

resolving the task scheduling problem. Across a variety 

of scientific workflows and performance metrics, the 

given scheduling solution was found to be superior to 

competing approaches. It outperforms competing 

approaches while producing superior results in a less 

amount of time. To further improve the stability and 

reliability of the suggested technique in the cloud-fog 

environment, future studies will take into account other 

factors such as workload redistribution and VM failure. 

By taking them into account, the proposed method can 

achieve even higher performance levels and more 

reliability in real-world situations. 
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