

*Corresponding Author: santhosh.21phd7113@vitap.ac.in

41

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005 Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

 AGWO: Cost Aware Task Scheduling in Cloud Fog Environment Using Hybrid

Metaheuristic Algorithm

Medishetti Santhosh Kumar* and Ganesh Reddy Karri

VIT-AP University, Amaravathi, Andhra Pradesh, India

E-mail/Orcid Id:

MSK, santhosh.21phd7113@vitap.ac.in, https://orcid.org/0000-0001-5936-6582;

GRK, guncity11@gmail.com, https://orcid.org/0000-0002-5157-8125

Introduction

In the past several years, the Internet of Things (IoT)

has emerged as a major trend in the information

technology (IT) sector (Nguyen et al., 2019;

Ghasempour, 2019). Other smart gadgets, security

systems, machineries, cameras, sensors, vehicles, and

more are all incorporated into the IoT along with laptops,

tablets, and smartphones. The primary objective of the

Internet of Things is to facilitate a wide range of

applications and services, such as those in the

transportation and traffic management sectors, the

healthcare industry, the energy sector, the healthcare

sector, the vehicle network sector, and the industrial

sector (Fu et al., 2018; Zuo et al., 2015). The data these

programmes produce is enormous, and it takes time and

effort to organise, store, and analyse it so that it may be

used to serve users and their goals better (Lin et al.,

2016). Even the most sophisticated devices lack the

processing power to keep up with the growing number

and diversity of Internet of Things (IoT) applications

(Chen et al., 2018).

An IoT community can be fostered implicitly by using

a cloud infrastructure. Cloud computing (CC) is

commonly understood to be a massive data centre that

provides users with easy virtual access to both receive

and supply resources (Liu et al., 2018). The storage,

battery life, network capacity, and processing constraints

of today's smart gadgets can be overcome with the use of

powerful computing environments like cloud and fog

computing. This optimisation entails outsourcing time-

consuming operations to these computer environments

while giving smart devices reasonable workloads. Fog

computing (FC) is an important part of IoT ecosystems

since it is a distributed computing paradigm (Abualigah

and Diabat, 2020). It functions as a separate computer

model by relying on fog nodes to facilitate service

availability, data preservation, and communication

broadcasting. By allocating data centre resources in

accordance with where mobile users are, fog computing

bolsters cloud computing's utility (Vijayalakshmi et al.,

2020). For fog nodes, the major goal of job scheduling is

to maximise efficiency and performance. Fog computing

allows faster data transfer and less network congestion

(Wang et al., 2018). But with these improvements come

new difficulties in coordinating activities and allocating

resources.

Article History:

Received: 26th Jul., 2023

Accepted: 18th Sep., 2023

Published: 30th Sep., 2023

Abstract: In IoT concepts, efficient approaches like cloud-fog computing are emerging,

enhancing system benefits. The performance and output of such frameworks can be greatly

improved by optimized scheduling of Internet of Things (IoT) task requests. This study

presents a novel technique for scheduling Internet of Things requests in a cloud-fog

environment, based on an adaption of ant grey wolf optimisation (AGWO). By combining

the operators of ant colony optimisation (ACO) and grey wolf optimisation (GWO),

AGWO aims to improve the speed and quality of ACO's solution discovery. The suggested

AGWO approach is evaluated using numerous datasets of varying sizes, both synthetic and

real-world. The effectiveness of AGWO is further investigated by comparing it to standard

metaheuristic methods. The experimental results demonstrate that AGWO is superior to

competing strategies in terms of makespan time reduced by 42% and we reduced the cost

by 36% while resolving the task scheduling problem.

Keywords:

Internet of Things, grey

wolf optimisation, ant

colony optimisation,

cloud-fog computing

https://doi.org/10.52756/ijerr.2023.v33spl.005
https://crossmark.crossref.org/dialog/?doi=10.52756/ijerr.2023.v33spl.005&domain=iaph.in

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
42

As shown in Figure 1, the fog computing architecture

is a three-tiered network. Cloud servers that store and

analyse massive amounts of data are located on the top

layer, which represents the core zone of cloud computing.

In the middle layer, located there specifically to aid

mobility, are fog computing zones filled with fog

machines. The next layer is the Internet of Things devices

zone (Yang et al., 2020; Ghasempour and Moon, 2016),

which includes sensors, laptops, cell phones,

automobiles, and personal computers used by end users.

Using a hybrid metaheuristic algorithm like AGWO

(Ant Grey Wolf Optimisation) for cost-aware task

scheduling in a cloud fog scenario can be difficult for a

number of reasons. Some of the main problems with this

strategy are as follows:

1. Problem Complexity: Task scheduling in a cloud

fog environment is inherently complex due to the

dynamic nature of the environment, the heterogeneity of

resources, and the presence of multiple objectives and

constraints. AGWO needs to address these complexities

and find efficient scheduling solutions while considering

cost factors. However, modelling and representing the

problem accurately within the AGWO framework can be

challenging, requiring careful consideration of various

factors and trade-offs.

2. Algorithm Parameter Tuning: AGWO involves

several parameters that need to be carefully tuned for

optimal performance. Determining the appropriate

population size, convergence criteria, search operators,

and other parameters can be non-trivial. The effectiveness

and efficiency of AGWO heavily depend on finding the

right parameter settings, which often require extensive

experimentation and expertise. Inadequate parameter

tuning can lead to suboptimal results or even algorithm

failure.

3. Scalability: When working with huge quantities of

cloud fog, the scalability of AGWO presents considerable

difficulty. Finding optimal solutions becomes

computationally demanding when the number of

activities and resources grows exponentially. AGWO's

population-based approach can help distribute the search

process, but efficiently handling massive problem sizes

and resource constraints remains challenging.

5. Balance between Exploration and Exploitation:

AGWO needs to strike a balance between exploration and

exploitation to effectively search the solution space.

Exploration involves searching for new and potentially

better solutions, while exploitation focuses on refining

and improving existing solutions. Achieving the right

balance is crucial to avoid getting trapped in local optima

and to discover high-quality scheduling solutions.

Designing mechanisms that dynamically adjust the

exploration-exploitation trade-off can be challenging and

requires careful consideration.

Figure 1. System architecture

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
43

6. Incorporating Real-Time Factors: In a cloud fog

environment, real-time factors such as task arrivals,

resource availability, and changing workload patterns

need to be considered. AGWO should adapt and respond

to these dynamic factors to ensure timely and efficient

task scheduling. Incorporating real-time information into

the algorithm and developing strategies to handle

dynamic environmental changes pose significant

challenges.

7. Benchmarking and Comparative Evaluation: It is

crucial to compare AGWO's performance with other

existing algorithms and approaches to assess its

effectiveness. Conducting fair and comprehensive

benchmarking studies can be challenging due to the

diversity of problem instances, performance metrics, and

evaluation criteria. It requires designing appropriate test

scenarios, selecting suitable benchmarks, and ensuring

consistency in experimental setups.

The AGWO (Ant Grey Wolf Optimization) algorithm

is a hybrid metaheuristic approach proposed for cost-

aware task scheduling in a cloud fog environment. It

combines artificial intelligence techniques and nature-

inspired optimization algorithms to address the

challenges of task scheduling while considering cost

factors. The cloud fog environment refers to a distributed

computing paradigm that extends the capabilities of cloud

computing by incorporating fog nodes, which are located

closer to the edge of the network. Fog nodes provide

resources and services to nearby devices, enabling faster

response times and reducing network congestion.

distributing tasks to appropriate resources, including fog

node clusters and cloud servers, is an important part of

task scheduling in cloud fog systems. However, cost

factors, including energy consumption, resource

utilization, and communication overhead, must also be

considered to achieve cost efficiency. The AGWO

algorithm takes inspiration from the hunting behavior of

grey wolves in nature. Grey wolves exhibit collaborative

hunting strategies, combining individual exploration with

coordinated pack movements. AGWO emulates these

behaviors by using a population of ant grey wolves to

search for optimal task-scheduling solutions. Each grey

wolf in the algorithm's initial population stands for a

different possible answer. These solutions are scored

using a fitness function that takes into account both

efficiency metrics (like makespan) and performance

metrics (like energy usage and resource utilization).

AGWO utilizes a hybrid approach, combining global

search and local search mechanisms. The global search

mechanism allows grey wolves to explore the entire

search space, while the local search mechanism focuses

on refining solutions in the local neighborhood. This

combination of exploration and exploitation enhances the

algorithm's ability to find high-quality scheduling

solutions. Cost awareness is achieved by incorporating

cost factors into the fitness evaluation process. By

considering cost metrics alongside performance metrics,

AGWO aims to find solutions that minimize the overall

cost while meeting the performance requirements.

AGWO aims to optimize task scheduling by reducing the

makespan (total time taken to complete all tasks) and

minimizing the associated costs. It leverages the hybrid

metaheuristic approach to handle cloud fog environments'

complex and dynamic nature. The motivation behind

developing AGWO (Ant Grey Wolf Optimization) for

cost-aware task scheduling in a cloud fog environment

using a hybrid metaheuristic algorithm stems from

several key factors:

1. Cost Efficiency: Cloud fog environments involve

the utilization of resources distributed across cloud

servers and fog nodes. Efficiently scheduling tasks in

such environments requires considering cost factors such

as energy consumption and resource utilization. The

motivation behind AGWO is to develop a task scheduling

algorithm that explicitly incorporates cost awareness,

aiming to minimize the overall cost while meeting

performance objectives.

2. Heterogeneity and Dynamism: Cloud fog

environments are characterized by the presence of

heterogeneous resources and dynamic workloads. Fog

nodes located at the edge of the network have limited

resources compared to cloud servers. Task arrivals,

resource availability, and workload patterns can also

change rapidly. AGWO's motivation lies in addressing

the challenges posed by the heterogeneity and dynamism

of the environment, aiming to optimize task scheduling

decisions accordingly.

3. Performance Optimization: While cost reduction is

a primary objective, AGWO also focuses on optimizing

performance metrics such as makespan. Efficient task

scheduling ensures that tasks are allocated to suitable

resources to minimise the total time taken to complete all

tasks. AGWO aims to find scheduling solutions that

strike a balance between cost reduction and performance

optimization, thus enhancing the overall efficiency of

task execution in cloud fog environments.

4. Nature-Inspired Optimization: AGWO takes

inspiration from the hunting behavior of grey wolves.

Grey wolves exhibit collaborative and adaptive strategies

for successful hunting. The motivation behind adopting a

nature-inspired optimization approach is to develop an

algorithm that emulates the wolves' behaviors to

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
44

effectively explore the solution space and find high-

quality task scheduling solutions.

5. Hybrid Metaheuristic Approach: AGWO integrates

global and local search mechanisms to exploit their

strengths. In order to find potential regions, the global

search mechanism looks across the entire solution space,

while the local search mechanism concentrates on

improving solutions that are close to the best ones.

Improving the algorithm's exploration and exploitation

skills leads to more optimal or near-optimal scheduling

solutions, which is why the hybrid metaheuristic

approach was developed.

By incorporating cost-awareness, addressing the

heterogeneity and dynamism of cloud fog environments,

optimizing performance metrics, and employing a hybrid

metaheuristic approach, AGWO aims to provide an

effective and efficient solution for cost-aware task

scheduling. The motivation is to contribute to the

development of scheduling algorithms that meet the

unique challenges and requirements of cloud fog

environments, ultimately improving resource utilization,

reducing costs, and enhancing overall system

performance (Abualigah et al., 2020; Wang et al., 2020).

IoT contexts have varying user requirements, and fog

computing platforms outperform cloud computing in

terms of performance. Therefore, a fundamental difficulty

needs to be addressed: optimally scheduling activities in

fog computing by efficiently distributing resources and

aligning them with user demands.

First, the paper's key contributions are discussed, and

second, the paper's core evaluation process and

comparisons are outlined.

We propose the following improvements to the

current state of the art in order to enhance IoT services in

a cloud-fog computing environment:

(i) To provide efficient task scheduling in cloud-fog

environments, we present a hybrid evolutionary method

named AGWO. This algorithm combines the

foundational GWO methodology with the adaptive ACO

strategy to increase convergence speed and searching

explorations.

(ii) Quality of service (QoS) and overall cost are two

competing criteria that must be taken into account when

designing a cost model for Internet of Things (IoT) tasks

transmitted for processing in a cloud-fog framework.

(iii) Comparing the makespan and task execution cost

of the proposed scheduling strategy to those of other

approaches applied to realistic workloads.

The outline of this paper looks like this:

The article continues with the following structure.

Section 2 examines various methods currently used for

creating task scheduling. In Section 3, we discuss the

system model and problem formulation for TS in detail,

and in Section 4, we detail the AGWO task scheduling

results that we believe to be the most effective. Section 5

presents a discussion of the AGWO methodology and

their limitations. Finally, the work is summed up in

Section 6.

Literature Survey

Task scheduling in the cloud is addressed by the

hybrid method proposed by Zhang et al. (2018), which

combines the Biogeography-Based Optimisation (BBO)

algorithm and the grey wolf optimisation (GWO). This

method was designed to maximize resource utilization

and minimize makespan time. The suggested HBBOG

algorithm has been shown to perform better than

conventional BBO and GWO algorithms in experiments

regarding solution quality and convergence speed.

An MGWO-based task scheduling technique is

presented for fog computing environments by Saif et al.

(2019). The algorithm considers limitations on resources

and task dependencies to maximise resource utilization,

reducing energy consumption and optimising makespan

time. The suggested MGWO algorithm is shown to be

useful in delivering efficient task scheduling in fog

computing settings by experimental results.

An enhanced GWO method is given for task

scheduling in cloud-fog computing systems (Bacanin et

al., 2019), as suggested by Bacanin, Nebojsa, et al. To

improve the effectiveness of the solutions and

convergence speed, the algorithm uses an adaptive search

mechanism and a dynamic pheromone updating strategy.

The enhanced GWO algorithm outperforms standard

optimization techniques in terms of makespan, load

balancing, and resource utilization, as determined by

experimental evaluations.

For scheduling tasks in cloud-fog computing, (Kaur

and Aron, 2021) present a hybrid algorithm that

incorporates ACO and GWO. Considering limited

resources, the program seeks to optimize makespan and

energy consumption. The hybrid Tabu-GWO-ACO

algorithm improves the basic techniques in terms of

solution quality and convergence speed, as shown by

experimental results.

Dynamic task scheduling in cloud-fog computing

environments utilising the MGWO method is the subject

of (Najafizadeh et al., 2022). To schedule effectively, the

algorithm takes into account dynamic changes in

workload and the availability of resources. The MGWO

algorithm performs in terms of make time and resource

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
45

utilization, and experimental results suggest that it

operates well in dynamic circumstances.

Yin et al. (2022) proposed a method for scheduling

tasks in cloud-fog computing environments based on

combining the monarch butterfly optimization algorithm

and the improved ant colony optimization algorithm

(HMA). To identify near-optimal solutions, the authors

framed the scheduling problem as an optimization task

and used HMA to solve it. Extensive experiments were

run to assess the effectiveness of the suggested method to

minimize service delay and task energy consumption.

The outcomes proved that HMA performed better than

competing algorithms when it came to scheduling tasks.

By combining Grey Wolf Optimisation (GWO) and

the Modified Moth Flame algorithm (MMFA), the unique

hybrid algorithm proposed by (Gupta and Singh, 2022)

enhances Deep reinforcement learning (DRL) by

furnishing a local search mechanism for scheduling tasks

in fog computing scenarios. The authors offer an

alternative fitness function that factors in task

dependencies, resource availability, and communication

costs. Throughput, latency, makespan time, and energy

usage were all assessed experimentally to determine the

algorithm's efficacy. Results demonstrated the hybrid

GMFA algorithm's effectiveness in scheduling jobs.

(Abualigah et al., 2020) introduced an enhanced

version of TS-GWO for task scheduling in cloud and fog

computing. The authors incorporated a dynamic

parameter adaptation mechanism to improve the

algorithm's convergence speed and search efficiency.

Extensive simulations were performed to evaluate the

proposed approach's performance in terms of makespan

reduction, load balancing, and resource utilization. The

results demonstrated the superiority of the enhanced TS-

GWO algorithm over traditional TS-GWO and other

existing algorithms.

For cloud-fog computing, (Subramoney et al., 2022)

suggested an MS-PSO based task scheduling method. To

effectively assign tasks to available resources, the authors

framed the scheduling problem as an optimisation task

and used the MS-PSO algorithm. The effectiveness of the

algorithm in terms of makespan, resource utilisation, and

energy usage was measured by experimental assessments.

The outcomes confirmed the MS-PSO algorithm's

superiority over the conventional methods in attaining

effective task scheduling.

For the purpose of load balancing in cloud-fog

computing environments, (Kakkottakath et al., 2022)

created a multi-objective hybrid particle search

optimisation algorithm (MOHPSO). The authors used a

modified PSO algorithm to balance competing demands

on available resources and schedule tasks accordingly.

The algorithm's effectiveness in load balancing,

makespan, and resource utilisation was determined by

running a series of simulations. The findings proved the

efficiency of the hybrid MOHPSO algorithm in satisfying

load-balancing requirements.

An updated version of the improved differential

evolution (IDE) algorithm was suggested by (Li et al.,

2020) to schedule tasks in fog computing environments

energy-efficiently. The algorithm's convergence rate and

power consumption were optimised by implementing a

dynamic parameter adaption method. Extensive studies

were conducted to measure the algorithm's effectiveness

in energy savings, maximising available resources, and

making the most of available time. The findings proved

that the improved IDE method delivered energy-efficient

task scheduling.

Task scheduling in cloud-fog computing

environments: a comparison of the GA-PSO method and

the genetic algorithm (GA) by (Subramoney and

Nyirenda, 2020). The algorithms' makespan, resource

utilisation, and load balancing were analysed, and a

variety of fitness functions were presented. The results

demonstrated that the GA-PSO method was superior than

GA in optimising makespan reduction and load balancing

targets.

In order to better schedule tasks in the cloud, (Ahmed

et al., 2019) suggested a Moth Search Algorithm (MSA)

based on a Differential Evolution (DE) technique. The

authors used DE to assign jobs to available resources

effectively by casting the scheduling problem as an

optimisation challenge. They compared DE's efficiency,

effectiveness, and energy usage to that of several

different metaheuristic algorithms. The findings proved

the efficiency of DE in cloud computing systems for

scheduling tasks.

An adaptive version of Differential Evolution was

described by (Jing et al., 2021) for use in load balancing

in fog computing settings. In order to tailor DE's

mutation and crossover techniques to the peculiarities of

a fog computing system, the scientists suggested a

methodology called dynamic Moth-Flame Optimisation

Differential Evolution (DMFO-DE). The effectiveness of

the algorithm in terms of load distribution, turnaround

time, and resource consumption was measured by

extensive simulations. The findings show that adaptive

Differential Evolution successfully accomplished the load

balancing goals in fog computing.

Table 1 shows that previous researchers classified

cloud computing paradigms based on parameters

including makespan, energy usage, and SLA-based trust

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
46

characteristics. We present an efficient and grey wolf

optimization algorithm (AGWO), which uses ACO and

GWO techniques to plan tasks in a fog environment

while taking into account make time and total cost. The

proposed method is especially useful for scheduling

latency-sensitive applications, such as automotive

networks, and for real-time applications, such as smart

cities.

Table 1. Comparison study of existing scheduling

parameters

Authors
Technique

Used

Parameters

Addressed

Zhang et al., 2018 HBBOG

Resource

utilization and

makespan time

Saif et al., 2023 MGWO

Resource

utilization, energy

consumption and

makespan time

Bacanin et al.,

2019
GWO

Makespan, load

balancing, and

resource utilization

Kaur and Aron,

2021

Tabu-

GWO-

ACO

Makespan and

energy

consumption

Wang et al., 2022 MGWO
Maketime and

resource utilisation

Yin et al., 2022 HMA
Energy

consumption

Gupta and Singh,

2022
MMFA

Throughput,

latency, maketime

and energy

consumption

Abualigah et al.,

2020
TS-GWO

Makespan, load

balancing, and

resource utilization

Jing et al., 2021 QoS-

DPSO

Time, reliability,

cost

Chen et al., 2022
DRL

Response time,

success rate, cost

Elaziz et al., 2021
AOAM

Makespan, energy

consumption

Hussain et al.,

2022 DVFS

Energy

consumption,

electricity price

Medishetti and

Karri, 2023
IDOA

Makespan time,

VM failure rate,

degree of

imbalance

Medara et al.,

2021
EASVMC

energy

consumption,

resource utilization,

VM migration

Mohammadzadeh

et al., 2021
HGALO-

GOA

Cost, makespan,

energy

consumption

Kumar et al., 2023

EEOA

Cost, energy

consumption,

makespan

Proposed

algorithm
AGWO Makespan and cost

System Model and Problem Formulation

System Model

In order to better understand the proposed system, this

article will outline the system model and the interaction

between the various components involved in task

scheduling (TS). The TS problem is also formulated for

the audience to understand.

Based on our findings, we suggest a three-tiered

architecture that includes cloud nodes, fog nodes, and

Internet of Things (IoT) smart devices. In Figure 1 we see

a simplified diagram of the entire proposal. This initial

tier comprises smart sensors, wearable tech, and medical

equipment. Nodes in the cloud or fog system can process

service requests from these gadgets.

Personal computers, mini-servers, and smart gateways

are all examples of nodes found in the middle layer,

referred to as the fog nodes layer. With limited resources,

each fog node serves as a smart server. Our architecture

concludes in a cloud node layer comprising powerful

servers with scalable computing resources capable of

simultaneously processing many separate tasks. If you

need to minimise delays and boost processing efficiency,

scheduling time-sensitive tasks on a nearby fog node is

the way to go. However, due to the superior

computational power of cloud nodes, these types of

intensive computations should be routed there rather than

to fog nodes.

The suggested architecture depends significantly on

the Fog Broker, which will live in the fog nodes layer.

The Fog Broker incorporates the Resource Monitoring

Service, the Task Scheduler, and the Task Manager.

Requests for tasks come into the Task Manager from

users and devices all over the IoT. It stores information

about the tasks and resources they need, then sends that

information to the Task Scheduler. The status of all

available resources is tracked and recorded by the

Resource Monitoring Service. The Task Scheduler

benefits from its cooperation with both fog nodes and

cloud nodes, which it uses to make more informed

scheduling decisions.

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
47

 The created methods for scheduling tasks are

executed by the Task Scheduler, which forms the

backbone of the Fog Broker. The Task Scheduler

distributes work orders to computers based on their

specific requirements, in addition to the capabilities of

the available resources and the characteristics of the

submitted tasks. Therefore, task requests are processed

quickly and communicated back to the Fog Broker for

distribution.

Problem Formulation

Task scheduling in a cloud-fog setting is formulated

mathematically and described in the next section. Let's

pretend the suggested cloud-fog computing infrastructure

includes a set of n separate tasks

 1, 2, 3,... T T T T Tn= that have been submitted to the

Fog Broker for execution. The time limit, file size of

input and output, memory requirements, and other

parameters are all unique to each Tk work. Millions of

Instructions (MI) are used to quantify how long a process

takes to complete. There are a total of m nodes in the

cloud-fog system, which includes both cloud and fog

nodes. This set can be written as

 1, 2, 3,..., CN CN CN CN CNm= where CNj is the

jth computer in the network. CPU speed, RAM size,

network throughput, and storage space are only some of

the characteristics unique to each CNj. MIPS (Millions of

Instructions Per Second) is the standard measure of a

CN's processing speed.

() cloud FogCN N U N= …………………(1)

Figure 2 depicts the scheduling system as a direct

acyclic graph (DAG), with T representing the set of n

tasks (t1, t2,..., tn) and E representing the set of directed

edges (dependence or priority limitations) between jobs

in the workflow. G = (P, EG) is a complete graph that can

be used as an alternate representation for the nodes in a

cloud-fog network.

Figure 2 depicts a DAG with eight tasks (T1, T2,...,

Tn) and their respective processors (Pf1, Pf2,..., Pfn) in

fog computing and cloud computing, respectively. The

cloud nodes and the results from the fog nodes are

integrated after the input tasks have been handled. The

main objective is to allocate tasks to processors in such a

way as to optimise system performance while minimising

resource consumption and other related costs. In this

case, our task scheduler thinks about these things while

deciding how to divide up processor time.

Since there are n task requests and m computing

nodes, the ECT matrix has nm dimensions to indicate the

expected computation time for each task request for every

computing node. The Task Scheduler uses the ECT

matrix to schedule tasks. The following formula can be

used to determine the estimated execution time, denoted

by the symbol ECTk,j, for task Tk on compute node CNj.

The expected execution time (ECT) of task Tk on

computing node CNj can be expressed as:

, _ _ / _ _k jECT Task Length k Computing Power j= …. (2)

Here, Computing Power_j denotes the Millions of

Instructions Per Second (MIPS) level processing power

of computing node CNj, and Task length_k is the MIPS-

level length of the task Tk.

It is known that the problem of allocating jobs to

available compute nodes is NP-complete. The primary

T1,T2,T3,T4,……………..,Tn

Pf1
Pfn-1 Pfn

Pc1 Pcn

Figure 2. Random workflow for cloud-fog scheduling

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
48

objective is to find a timetable that reduces the makespan

(the time it takes to complete the task). By keeping the

makespan as small as possible, we can ensure that no

single operation takes too long to complete. In this

research, we focus on reducing the makespan of a cloud-

fog system by solving the task scheduling (TS) problem.

The following formula can be used to determine the

makespan (MK) for a given schedule Z:

A schedule Z's makespan (MK) is determined by the

maximum total expected execution time (ECT) across all

computing nodes CNj, where j ranges from 1 to m, and

considering all task requests Tk, where k ranges from 1 to

n. The equation to calculate the makespan is:

()  , 1, 2, { | }..., k jMK Z max ECT j m=   .. (3)

At this stage, the task scheduling (TS) problem can be

mathematically formulated as follows: To minimize the

makespan of a schedule Z, represented by the function

f(Z), which can be defined as:

 𝑓(𝑍) = 𝑚𝑖𝑛 { 𝑚𝑎𝑥 { 𝛴 𝐸𝐶𝑇𝑘,𝑗| 𝑗 ∈

{1, 2, . . . , 𝑚} } | 𝑘 ∈ {1, 2, . . . , 𝑛} } ………….. (4)

In this formulation, f(Z) seeks to minimize the

maximum total expected execution time (ECT) across all

computing nodes CNj, considering all task requests Tk.

Execution time

Minimize the overall execution time (makespan) of

task scheduling in a cloud and fog computing system.

Let's consider the following variables and parameters:

• Task set:   1, 2, 3, ..., T T T T Tn= where

each task Tk represents an individual task with attributes

such as task length, memory requirements, input/output

file sizes, and deadline.

• Computing nodes:

() 1, 2, 3,..., CN CN CN CN CNm= where CNj is a

computational node with its own CPU speed, memory

size, network bandwidth, and storage capacity.

The execution time of task Tk on computing node CNj,

denoted as ECTk,j, can be calculated using a mathematical

equation that considers the characteristics of the task and

the computing node. This equation can be customized

based on the specific system and requirements but

generally involves factors such as task length, computing

power, communication latency, and resource constraints.

An example equation for calculating ECTk,j is:

() _ , _ , _ , , _
,

ECT f TL k CP j CL k j RC j
k j

= ……(5)

TL represents the task length, CP represents the

computation power, CL represents the communication

latency, and RC represents the Resource constraints.

Here, f() represents the mathematical function that

considers the relevant parameters. The equation can be

further refined and customized based on the specific

considerations and optimization goals of the task

scheduling problem in cloud and fog computing. The

objective is to find an optimal scheduling solution that

minimizes the overall execution time by assigning tasks

to suitable computing nodes while considering factors

such as task dependencies, resource availability, and

communication overhead.

Response time

minimize the overall response time of task scheduling

in a cloud and fog computing system.

Let's consider the following variables and parameters:

• Task set:   1, 2, 3, ..., T T T T Tn= where

each task Tk represents an individual task with attributes

such as task length, memory requirements, input/output

file sizes, and deadline.

• Computing nodes:

() 1, 2, 3,..., CN CN CN CN CNm= where CNj is a

collection of computing nodes, each with its own

parameters including CPU speed, memory size, network

throughput, and available disc space.

The response time of task Tk on computing node CNj,

denoted as RTk,j, can be calculated using a mathematical

equation that considers various factors such as task

length, communication latency, resource availability, and

scheduling overhead. This equation can be customized

based on the specific system and requirements. An

example equation for calculating RTk,j, is:

() _ , _ , , _
,

RT g TL k CL k j RA j
k j

= ……..(6)

TL represents the task length, CL represents the

communication latency, and RA represents the Resource

availability. The g() notation here denotes the particular

mathematical function that makes use of all of the

appropriate variables. The equation can be modified and

improved upon in light of the unique constraints and

optimisation targets of the cloud and fog computing work

scheduling problem.

Makespan

The makespan is the overall amount of time needed to

finish all of the tasks in a particular schedule when using

cloud computing for task scheduling. When comparing

different task scheduling algorithms for use in the cloud,

the makespan is a crucial indicator of how well each one

performs.

The makespan, denoted as MK, can be calculated

using the following equation:

(){ | } MK max CompletionTime Tk Tk T=  .. (7)

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
49

Completion Time(Tk) is the time it took to complete

the task Tk. The schedule's total time to completion is

represented by the maximum completion time selected

from the list of tasks using the equation.

Objective function

The objective function in task scheduling for cloud

computing represents the optimization goal that a

scheduling algorithm aims to achieve. It quantifies a

metric that needs to be minimized or maximized to find

an optimal task schedule.

Minimising the makespan, or the total amount of time

needed to finish all the activities in a given schedule, is a

common objective function in cloud computing task

scheduling. Other goals, such as energy usage, resource

utilisation, or cost, may also be taken into account,

however, depending on the specific needs and aims.

Let's denote the objective function as f(Z), where Z

represents a schedule of task assignments to computing

nodes. The equation for the objective function in task

scheduling can be formulated as follows:

() () f Z g Z= ………….(8)

Here, g() is the mathematical function that quantifies

the objective. The specific form of the objective function

equation depends on the optimization goal and the

constraints considered in the task scheduling problem.

For example, if the objective is to minimize the

makespan, the objective function equation can be:

() ()  f Z min MK Z= ………….(9)

Where MK(Z) represents the makespan of the

schedule Z, which can be calculated using appropriate

equations as discussed earlier. Other objective functions

can be formulated accordingly, incorporating different

metrics or constraints relevant to the specific task

scheduling problem in cloud computing.

Initialization

The initialization step in the proposed Ant Grey Wolf

Optimization (AGWO) algorithm for task scheduling in

cloud computing is a process that sets up the initial

population of grey wolves and ants in the search space.

While this step is primarily implemented using

randomization, it is not explicitly defined by a

mathematical equation. The initialization procedure can

be described as follows:

1. Initialize Grey Wolves:

o Set the population size of grey wolves as NP.

o Generate NP random positions in the search space for

the grey wolves.

o Each position represents a potential solution for task

scheduling.

2. Initialize Ants:

o Determine the number of ants as NA.

o Generate NA random positions in the search space for

the ants.

o Each position represents a candidate solution for a

task assignment.

The initialization step aims to create an initial diverse

set of solutions by randomly assigning positions to the

grey wolves and ants in the search space. These positions

represent potential task assignment configurations on the

available computing nodes. It's important to note that the

specific details of the initialization process, such as the

population size and position assignment, can be tailored

based on the problem requirements and characteristics.

The main objective is to ensure a varied set of initial

solutions that can be further optimized during the

subsequent steps of the AGWO algorithm.

Following the initialization, the AGWO algorithm

progresses to the Ant Colony Optimization (ACO) and

Grey Wolf Optimization (GWO) phases, along with other

operations, to refine the task scheduling solutions and

achieve optimal or near-optimal results.

Updating stage

In the proposed Ant Grey Wolf Optimization

(AGWO) algorithm for task scheduling in cloud

computing, the updating stage refers to the process of

updating the positions of grey wolves and ants based on

their search behavior and the quality of solutions. While

this stage involves iterative updates, it is not represented

by a single mathematical equation. However, I can

provide an overview of the updating process in AGWO:

1. Ant Colony Optimization (ACO) Phase:

o o Based on trial pheromones and heuristic

information, each ant builds a proposed solution by

assigning tasks to compute nodes probabilistically.

o The effectiveness of the ant-built solutions informs the

maintenance of the pheromone trails.

2. Grey Wolf Optimization (GWO) Phase:

o The grey wolves use their hunting behavior to explore

the search space and refine the solutions.

o The positions of grey wolves are updated based on the

fitness of the solutions and the social hierarchy among

the grey wolves (alpha, beta, delta).

3. Local Search:

o A local search operation may be performed to further

refine the solutions obtained from the ACO and GWO

phases.

o This can involve neighborhood exploration or local

optimization techniques.

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
50

The updating stage involves iterative updates of the

positions of grey wolves and ants based on the evaluation

of their solutions and searches behavior. The specific

equations and update rules used in AGWO can vary

based on the task scheduling problem and the design

choices of the algorithm.

It's important to note that the AGWO algorithm

combines the principles of ACO and GWO, and the

updating stage integrates their respective mechanisms to

refine the task scheduling solutions. The algorithm

iteratively improves the solutions through multiple

iterations until convergence or a termination condition is

met, aiming to find optimal or near-optimal task

assignment schedules in cloud computing environments.

Proposed AGWO Algorithm

Pseudo code for AGWO Task Scheduling (Input:

tmax, m, n, N):

 1: Set the initial value for the population X.

 2: t = 1.

 3: while t <= tmax do

 4: Compute the fitness value (Fi) for each solution

Xi.

 5: Determine the best solution Xb.

 6: Update X1 using Eq. (2).

 7: for i = 2 to N do

 8: rand = random value between 0 and 1.

 9: if rand < 1/3 then

 10: Enhance Xi using Eq. (4).

 11: else if 1/3 < rand < 2/3 then

 12: Enhance Xi using Eq. (6).

 13: else

 14: Enhance Xi using Eq. (7).

 15: Compute the fitness of each solution Xi.

 16: Update Xb.

 17: Compute the probability Pri using Eq. (8).

 18: Improve Xi using Eq. (9).

 19: t = t + 1.

 20: End while

 21: Return Xb.

Based on the probabilities (Pri) of each solution, either

Ant Colony Optimisation (ACO) or Grey Wolf

Optimisation (GWO) operators are used to update the

feasible regions. The probabilities (Pri) are calculated as

follows:

() / 1 Pri Fiti Fiti for i to N=  = ……….. (10)

where Fiti represents the fitness value of solution i,

and N is the total number of solutions."

Results

To implement the proposed algorithm, we utilized the

CloudSim (Abualigah, Laith, et al. 2020) toolkit for

modelling the cloud environment. Extensive experiments

were conducted using a simulation strategy. In order to

validate the effectiveness of the AGWO algorithm, we

provide evaluation comparisons with the widely-used

MOTSAO, CSDEO, QoS-DPSO and BLEMO

algorithms.

We conducted simulations using a machine with an

Intel Core i5-3373U CPU running at 1.8 GHz and 6 GB

of RAM to get AGWO's results. CloudSim Toolkit was

used to implement the AGWO algorithm, and its

performance was measured in terms of both cost and

makespan. In the study, we only investigated tasks that

were not dependent on results from other tasks. It was

believed that the links' data-transfer speeds would be

distributed normally, within the range of 40 Mbps to

10,000 Mbps. Parameters used in the simulation analysis

are outlined in Table 2. These parameters include the

pheromone value, the local evaporation rate (p), and the

global evaporation rate (τ). The table shows how many

ants, tasks, virtual machines, and data centres were used

to run the simulation.

Table 2. Scheduling based on ACO parameters

α β p τ ζ Imax ants tasks VM

2 10 0.8 1.0 0.2 4 15 35-

150

8-24

Table 3. Cloudsim toolkit parameters

Parameter Cloud Fog

Number of VMs [10,15,20] [15,20,35]

Computing

power (MIPS)

[3000:5000] [1000:2000]

RAM (MB) [5000:20000] [250:5000]

Bandwidth

(Mbps)

[512:4096] [128:1024]

Cost (G$) [0.6:1.0] [0.2:0.5]

Makespan

The proposed method consistently obtains the best

makespan of any known heuristic. Compared to other

comparable algorithms such as MOTSWAO, CSDEO,

QoS-DPSO, BLEMO, the proposed AGWO consistently

generated better makespan results across all scenarios, as

represented by the graph displaying in the figure 3 best

makespan results for real-time workloads with varying

task sizes. The conclusion is that AGWO is an excellent

method for addressing important challenges in cloud fog

task allocation scheduling.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8055744/8079729/8079781/8079781-table-2-source-large.gif

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
51

Figure 3. Makespan calculation of proposed method

Throughput

Using realistic workloads, the below figure 4

compares the throughput attained by the MOTSWAO,

CSDEO, QoS-DPSO, BLEMO and the proposed AGWO

algorithm. The throughput measurement is the number of

IoT tasks on the horizontal axis of these diagrams and on

the vertical axis. These results demonstrate that AGWO

outperforms all other evolutionary algorithm techniques

tested in terms of throughput across all task dimensions

and workloads. It demonstrates that the AGWO algorithm

can discover near-optimal solutions to real-world

problems with reliability and consistency. In many test

cases and workloads, traditional MOTSWAO and

CSDEO techniques produce a higher throughput than

QoS-DPSO and BLEMO. In terms of throughput, the

results indicate that the MOTSWAO method outperforms

the CSDEO method across all task dimensions and

demands. h- DEWOA converges faster compared to

BLEMO and other metaheuristic algorithms. This

advantage makes the hybridization of the proposed

AGWO superior to other methods in terms of throughput.

Figure 4. Throughput calculation of proposed method

Execution time

It demonstrates that the proposed method (AGWO)

reduces overall execution time, particularly for numerous

activities as shown in figure 5. The AGWO scheduler

uses a hybrid of the ACO and GWO algorithms to assign

resources; as a result, less time is wasted searching and

all jobs receive near-perfect VM. AGWO is

approximately 28.3 percent more efficient than GWO.

When there are few requests, MOTSWAO and CSDEO

can complete the task rapidly. However, as the number of

tasks increases, the execution time of these algorithms

increases substantially. Compared to MOTSWAO and

CSDEO, QoS-DPSO, BLEMO processing delays for

improvement are 8.6 and 9.12 percent, respectively.

Figure 5. Execution time of proposed method

Response time

Below figure 6 depict the typical response times for

Internet of Things-related tasks. Response time is the

time required for an IoT device to submit a request and

then receive a response. Compared to other

methodologies, the MOTSWAO’s Internet of Things

(IoT) response time is the quickest (58.12 seconds).

MOTSWAO and CSDEO outperform QoS-DPSO by

35.32 and 19.56 seconds, respectively. It depicts the

typical response periods for the real time workloads,

broken down by specific tasks. MOTSWAO requires a

lot of time, and the recommended AGWO method

requires the shortest turnaround time among the real-time

tasks. Due to their slow response periods, the

MOTSWAO and CSDEO methods break the SLA in a

significant way. Taking into account actual demands, the

previous data indicate that throughput time and makespan

have improved significantly. The success of AGWO can

largely be attributed to the incorporation of CSDEO and

QoS-DPSO into the proposed algorithm. We conclude

that the AGWO we created is the most effective method

to address cloud-fog Task Scheduling optimization

0

20,000

40,000

60,000

80,000

500 1,000 1,500 2,000 2,500 3,000

M
ak

es
p

an

Tasks

MOTSWAO CSDEO QoS-DPSO BLEMO Proposed

0

20,000

40,000

60,000

80,000

500 1,000 1,500 2,000 2,500 3,000

T
h
ro

u
g
h
p

u
t

Tasks

MOTSWAO CSDEO QoS-DPSO BLEMO Proposed

0

20

40

60

80

100

120

500 1,000 1,500 2,000 2,500 3,000

E
x
ec

u
ti

o
n
 T

im
e

Tasks

MOTSWAO CSDEO QoS-DPSO BLEMO Proposed

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
52

concerns because it consistently generates the best

solutions.

Figure 6. Response time of proposed method

Cost

It has been observed that among the algorithms,

MOTSWAO has the most expense and AGWO has the

lowest. As seen in Figure 7, both CSDEO and BLEMO

are reasonably priced when it comes to using cloud and

fog resources. Remember that MOTSWAO will charge

you more because it prioritises reducing the time it takes

to complete a task over other factors. In contrast, the

average cost of CSDEO is reduced by 3.5% while the

average cost of MOTSWAO is reduced by 25.38%

with QoS-DPSO. This is mostly because the proposed

method reduces costs by distributing tasks to the most

cost-effective resources, regardless of factors like

additional charges and energy use.

Figure 7. Total Cost calculation of proposed method

Discussion

When evaluating AGWO's (Ant Grey Wolf

Optimization) performance for cost-aware task

scheduling in a cloud fog environment, two important

metrics to consider are makespan and cost. The

discussion on the results of AGWO concerning these

metrics:

1. Makespan: Makespan refers to the total time

taken to complete all tasks in the scheduling process.

AGWO aims to minimize the makespan by optimizing

task allocation and resource utilization. By leveraging the

hybrid metaheuristic approach, AGWO explores different

scheduling strategies and adjusts the positions of the ant

grey wolves in the search space to find better solutions.

The effectiveness of AGWO in minimizing the

makespan would depend on the problem instance, the

characteristics of the tasks and resources, and the

algorithm parameters. In general, AGWO's exploration

capability, combining global and local search strategies,

can help in finding scheduling solutions that reduce the

makespan compared to traditional methods. However, the

degree of improvement would vary depending on the

problem's complexity and the algorithm's efficiency in

exploring the search space.

2. Cost: AGWO incorporates cost factors into the

task scheduling process to optimize the overall cost. This

includes considerations such as energy consumption,

resource utilization, and communication overhead. The

cost-awareness of AGWO allows it to find scheduling

solutions that minimize the cost while meeting the

performance requirements.

The impact of AGWO on cost reduction would

depend on the specific cost factors considered, the

problem instance, and the weights assigned to these

factors in the fitness evaluation. By integrating cost

metrics into the fitness function, AGWO can guide the

search process towards cost savings solutions. The

algorithm's ability to balance cost and performance can

help in achieving cost reduction compared to traditional

scheduling methods that do not explicitly consider cost

factors.

It's important to note that the trade-off between

makespan and cost exists in AGWO. Optimizing one

metric may lead to compromises in the other. The

algorithm's parameter settings and the problem

requirements can influence the extent of this trade-off. To

assess the performance of AGWO in terms of makespan

and cost, it is essential to compare it with other existing

task scheduling algorithms and approaches.

Benchmarking experiments can be conducted on various

problem instances to evaluate AGWO's effectiveness and

competitiveness in achieving lower makespan and cost

compared to alternative methods.

Limitations

While AGWO (Ant Grey Wolf Optimization) for cost-

aware task scheduling in a cloud fog environment using a

hybrid metaheuristic algorithm has its merits, there are

also some limitations to consider. Here are a few

limitations of AGWO:

1. Parameter Sensitivity: AGWO requires parameter

tuning to achieve optimal performance like many

metaheuristic algorithms. The performance of AGWO

0

10

20

30

40

50

60

500 1,000 1,500 2,000 2,500 3,000

R
es

p
o

n
se

 t
im

e
(S

ec
.)

Tasks

MOTSWAO CSDEO QoS-DPSO BLEMO Proposed

0

5,000

10,000

15,000

20,000

25,000

500 1,000 1,500 2,000 2,500 3,000

C
o

st
 (

G
$

)

Tasks

MOTSWAO CSDEO QoS-DPSO BLEMO Proposed

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
53

can be sensitive to the choice of parameters such as

population size, convergence criteria, and search

operators. Finding the right parameter settings can be a

challenging and time-consuming task, requiring expertise

and extensive experimentation.

2. Scalability: The scalability of AGWO can be a

limitation when dealing with large-scale cloud fog

environments with a high number of tasks and resources.

As the problem size increases, the complexity of the

search space grows, which can impact the algorithm's

performance. AGWO's population-based approach and

distributed computation capability may help mitigate

scalability issues to some extent, but there can still be

limitations in handling extremely large problem

instances.

3. Convergence to Suboptimal Solutions: AGWO,

like other metaheuristic algorithms, is not guaranteed to

find the global optimal solution. Depending on the

problem instance and algorithm parameters, AGWO may

converge to suboptimal solutions that do not provide the

best possible cost-aware task scheduling. The exploration

and exploitation balance of the algorithm can impact its

ability to escape local optima and find better solutions.

4. Limited Problem-Specific Adaptability: AGWO,

being a general-purpose metaheuristic algorithm, may

lack problem-specific adaptability. It may not exploit

specific characteristics of the cost-aware task scheduling

problem in a cloud fog environment. As a result, AGWO

might not fully utilize domain-specific knowledge and

constraints, potentially leading to suboptimal solutions.

5. Lack of Comparative Performance Evaluation:

While AGWO shows promise in cost-aware task

scheduling, its performance should be compared against

other existing algorithms and approaches. Without proper

benchmarking and comparison, it is challenging to

determine the true effectiveness and competitiveness of

AGWO against state-of-the-art methods. Comparative

evaluation of different problem instances and

performance metrics is necessary to comprehensively

understand AGWO's strengths and weaknesses.

Conclusions and Future Work

In a cloud-fog computing environment, it has been

demonstrated that a cost-aware task scheduling system

may effectively manage the allocation and execution of

IoT tasks. By combining the ideas of ant colony

optimisation (ACO) and grey wolf optimisation (GWO),

we developed a novel adaptive method to address the task

scheduling problem. The goal of this AGWO strategy

was to boost the efficiency of the ACO algorithm. The

suggested algorithm was evaluated using a number of

tests, with results compared to those of other existing

metaheuristics and parameters The makespan time was

reduced by 42% and we reduced the cost by 36% while

resolving the task scheduling problem. Across a variety

of scientific workflows and performance metrics, the

given scheduling solution was found to be superior to

competing approaches. It outperforms competing

approaches while producing superior results in a less

amount of time. To further improve the stability and

reliability of the suggested technique in the cloud-fog

environment, future studies will take into account other

factors such as workload redistribution and VM failure.

By taking them into account, the proposed method can

achieve even higher performance levels and more

reliability in real-world situations.

Acknowledgement

I would like to express my sincere gratitude to my

Ph.D. guide Dr. K Ganesh Reddy, for his valuable

suggestions during the development of this research

work.

Conflicts of interest

The authors declare no conflict of interest.

References

Abualigah, L., & Diabat, A. (2020). A novel hybrid

antlion optimization algorithm for multi-

objective task scheduling problems in cloud

computing environments, Cluster Comput.,

24(1), 205-223.

 http://dx.doi.org/10.1007/s10586-020-03075-5

Abualigah, L., Elaziz, M.A., Hussien, A.G., Alsalibi,

B., Jalali, S.M.J., Gandomi, A.H. (2020). Ts-

gwo: Iot tasks scheduling in cloud computing

using grey wolf optimizer. Swarm Intelligence

for Cloud Computing. Chapman and

Hall/CRC, 127-152.

 https://link.springer.com/article/10.1007/s10489-020-

01947-2

Abualigah, L., Shehab, M., Alshinwan, M., Alabool,

H., Abuaddous, H.Y., Khasawneh, A.M., & Al

Diabat,M. (2020). TS-GWO: IoT tasks

scheduling in cloud computing using Grey

Wolf optimizer, in: Swarm Intelligence for

Cloud Computing, Chapman and Hall/CRC,

pp. 127–152.

 https://doi.org/10.1201/9780429020582-5

Ahmed, O.H., Lu, J., Xu, Q., Ahmed, A.M.,

Rahmani, A. M., & Hosseinzadeh, M. (2021).

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
54

Using differential evolution and Moth–Flame

optimization for scientific workflow

scheduling in fog computing. Applied Soft

Computing, 112, 107744.

 http://dx.doi.org/10.1016/j.asoc.2021.107744

Bacanin, N., Bezdan, T., Tuba, E., Strumberger, I.,

Tuba, M., Zivkovic, M. (2019). Task

scheduling in cloud computing environment by

grey wolf optimizer. IEEE, 2019, 27th

telecommunications forum (TELFOR),

Belgrade, Serbia, pp. 1-4.

 http://dx.doi.org/10.1109/TELFOR48224.2019.8971223

Chen, Z.G., Zhan, Z.H., Lin, Y., Gong, Y.J., Gu,

T.L., Zhao, F., Yuan, H.Q., Chen, X., Li, Q., &

Zhang, J. (2018). Multiobjective cloud

workflow scheduling: A multiple populations

ant colony system approach, IEEE Trans.

Cybern., 49(8), 2912–2926.

 http://dx.doi.org/10.1109/TCYB.2018.2832640

Cheng, F., Huang, Y., Tanpure, B., Sawalani, P.,

Cheng, L., & Liu, C. (2022). Cost-aware job

scheduling for cloud instances using deep

reinforcement learning. Cluster

Computing, 25(1), 619-631.

 https://doi.org/10.1007/s10586-021-03436-8

Elaziz, M.A., Xiong, S., Jayasena, K.P.N., & Li, L.

(2019). Abd Elaziz, & Mohamed, et al. (2019)

Task scheduling in cloud computing based on

hybrid moth search algorithm and differential

evolution. Knowledge-Based Systems, 169, 39-

52.

https://doi.org/10.1016/j.knosys.2019.01.023

Elaziz, M.A., Abualigah, L., Ibrahim, R. A., &

Attiya, I. (2021). IoT workflow scheduling

using intelligent arithmetic optimization

algorithm in fog computing. Computational

Intelligence and Neuroscience, 2021, 1-4.

https://doi.org/10.1155/2021/9114113

Fu, J.S., Liu, Y., Chao, H.C., Bhargava, B.K., &

Zhang, Z.J. (2018). Secure data storage and

searching for industrial IoT by integrating fog

computing and cloud computing, IEEE Trans.

Ind. Inf., 14(10), 4519–4528.

https://doi.org/10.1109/TII.2018.2793350

Ghasempour, A. (2019). Internet of things in smart

grid: Architecture, applications, services, key

technologies, and challenges, Inventions, 4(1),

22. https://doi.org/10.3390/inventions4010022

Gupta, S., & Singh, N. (2022). Fog-GMFA-DRL:

Enhanced deep reinforcement learning with

hybrid grey wolf and modified moth flame

optimization to enhance the load balancing in

the fog-IoT environment. Advances in

Engineering Software, 174, 103295.

https://doi.org/10.1016/j.advengsoft.2022.1032

95

Ghasempour, A., & Moon, T.K. (2016). Optimizing

the number of collectors in machine-to-

machine advanced metering infrastructure

architecture for internet of things-based smart

grid, IEEE Green Technologies Conference,

GreenTech, pp. 51–55.

 http://dx.doi.org/10.1109/GreenTech.2016.17

Hussain, M., Wei, L. F., Rehman, A., Abbas, F.,

Hussain, A., & Ali, M. (2022). Deadline-

constrained energy-aware workflow

scheduling in geographically distributed cloud

data centers. Future Generation Computer

Systems, 132, 211-222.

 http://dx.doi.org/10.1016/j.future.2022.02.018

Jing, W., Zhao, C., Miao, Q., Song, H., & Chen, G.

(2021). QoS-DPSO: QoS-aware task

scheduling for the cloud computing system.

Journal of Network and Systems

Management, 29(1), 5.

 https://doi.org/10.1007/s10922-020-09573-6

Kaur, M., & Aron, R. (2021). Focalb: Fog

computing architecture of load balancing for

scientific workflow applications. Journal of

Grid Computing, 19(4), 40.

 https://doi.org/10.1007/s10723-021-09584-w

Kumar, M. S., & Karri, G.R. (2023). EEOA: Cost

and Energy Efficient Task Scheduling in a

Cloud-Fog Framework. Sensors, 23(5), 2445.

http://dx.doi.org/10.3390/s23052445

Li, X., Zhang, G., Zheng, X., & Hua, S. (2020).

Delay optimization based on improved

differential evolutionary algorithm for task

offloading in fog computing networks. IEEE

2020, International Conference on Wireless

Communications and Signal Processing

(WCSP).

http://dx.doi.org/10.1016/j.future.2022.02.018

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
55

http://dx.doi.org/10.1109/WCSP49889.2020.9

299850

Lin, B., Guo, W., Xiong, N., G. Chen, G., Vasilakos,

A.V., & Zhang, H. (2016). A pretreatment

workflow scheduling approach for big data

applications in multicloud environments, IEEE

Trans. Netw. Serv. Manag., 13(3), 581–594.

http://dx.doi.org/10.1109/TNSM.2016.255414

3

Liu, X.F., Zhan, Z.H., Deng, J.D., Li, Y., Gu, T., &

Zhang, J. (2016). An energy efficient ant

colony system for virtual machine placement

in cloud computing, IEEE Trans. Evol.

Comput., 22(1), 113–128.

 http://dx.doi.org/10.1109/TEVC.2016.2623803

Medishetti, S. K., & Karri, G. (2023). An Improved

Dingo Optimization for Resource Aware

Scheduling in Cloud Fog Computing

Environment. Majlesi Journal of Electrical

Engineering, 17(3),

 http://dx.doi.org/10.30486/MJEE.2023.1989335.1165

Medara, R., Singh, R. S., & Amit. (2021). Energy-

aware workflow task scheduling in clouds with

virtual machine consolidation using discrete

water wave optimization. Simulation

Modelling Practice and Theory, 110, 102323.

http://dx.doi.org/10.1016/j.simpat.2021.10232

3

Mohammadzadeh, A., Masdari, M., &

Gharehchopogh, F. S. (2021). Energy and

cost-aware workflow scheduling in cloud

computing data centers using a multi-objective

optimization algorithm. Journal of Network

and Systems Management, 29(3), 1-34.

https://link.springer.com/article/10.1007/s1092

2-021-09599-4

Najafizadeh, A., Salajegheh, A., Rahmani, A.M., &

Sahafi, A. (2022). Multi-objective Task

Scheduling in cloud-fog computing using goal

programming approach. Cluster Computing,

25(1), 141-165.

 https://doi.org/10.1007/s10586-021-03371-8

Nguyen, B.M., Binh, H.T.T., Anh, T.T., & Son, D.B.

(2019). Evolutionary algorithms to optimize

task scheduling problem for the IoT based bag-

of-tasks application in cloud-fog computing

environment, Appl. Sci., 9(9), 1730.

https://doi.org/10.3390/app9091730

Saif, F.A., Latip, R., Hanapi, Z.M., Shafinah, K.

(2023). Multi-objective grey wolf optimizer

algorithm for task scheduling in cloud-fog

computing. IEEE Access, 11, 20635-20646.

http://dx.doi.org/10.1109/ACCESS.2023.3241

240

Subramoney, D., & Nyirenda, C.N. (2020). A

comparative evaluation of population-based

optimization algorithms for workflow

scheduling in cloud-fog environments. 2020

IEEE Symposium Series on Computational

Intelligence (SSCI),

 http://dx.doi.org/10.1109/SSCI47803.2020.9308549

Subramoney, D., & Nyirenda, C.N. (2022). Multi-

Swarm PSO Algorithm for Static Workflow

Scheduling in Cloud-Fog Environments. IEEE

Access, 10, 117199-117214.

 https://doi.org/10.1109/ACCESS.2022.3220239

Thekkepurayil, J.K.V., Suseelan, D.P., &

Keerikkattil, P.M. (2022). Multi-objective

Scheduling Policy for Workflow Applications

in Cloud Using Hybrid Particle Search and

Rescue Algorithm. Service Oriented

Computing and Applications, 16(1), 45-65.

https://doi.org/10.1007/s11761-021-00330-4

Vijayalakshmi, R., Vasudevan, V., Kadry, S., &

Lakshmana Kumar, R. (2020). Optimization

of makespan and resource utilization in the fog

computing environment through task

scheduling algorithm, Intl. J. Wavelets

Multiresolut. Inform. Process., 18(01),

1941025.

http://dx.doi.org/10.1142/S021969131941025

X

Wang, S., Zhao, T., & Pang, S. (2020). Task

scheduling algorithm based on improved

firework algorithm in fog computing, IEEE

Access, 8, 32385–32394.

http://dx.doi.org/10.1109/ACCESS.2020.2973

758

Wang, Y., Guo, C., & Yu, J. (2018). Immune

scheduling network-based method for task

scheduling in decentralized fog computing,

Wirel. Commun. Mobile Comput., 33(16),

e4583. http://dx.doi.org/10.1002/dac.4583

Int. J. Exp. Res. Rev., Vol. 33: 41-56 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v33spl.005
56

Yang, M., Ma, H., Wei, S., Zeng, Y., Chen, Y., &

Hu, Y. (2020). A multi-objective task

scheduling method for fog computing in

cyber-physical-social services, IEEE Access, 8,

65085–65095.

http://dx.doi.org/10.1109/ACCESS.2020.2983

742

Yin, Z., Xu, F., Li, Y., Fan, C., Zhang, F., Han, G.,

Bi, Y. (2022). A Multi-Objective Task

Scheduling Strategy for Intelligent Production

Line Based on Cloud-Fog Computing.

Sensors, 22(4), 1555.

 https://doi.org/10.3390/s22041555

Zhang, X., Kang, Q., Cheng, J., & Wang, X. (2018).

A novel hybrid algorithm based on

biogeography-based optimization and grey

wolf optimizer. Applied Soft Computing 67,

197-214.

https://doi.org/10.1016/j.asoc.2018.02.049

Zuo, L., Shu, L., Dong, S., Zhu, C., & Hara, T.

(2015). A multi-objective optimization

scheduling method based on the ant colony

algorithm in cloud computing, IEEE Access, 3,

2687–2699.

http://dx.doi.org/10.1109/ACCESS.2015.2508

940.

How to cite this Article:

M. Santhosh Kumar & Ganesh Reddy Karri (2023). AGWO: Cost Aware Task Scheduling in Cloud Fog Environment Using Hybrid

Metaheuristic Algorithm. International Journal of Experimental Research and Review. 33, 41-56.

DOI: https://doi.org/10.52756/ ijerr.2023.v33spl.005

https://creativecommons.org/licenses/by-nc-nd/4.0/

