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Introduction 

The etiological agent responsible for Monkeypox, 

known as the Monkeypox virus, is classified under the P 

family and the orthopoxviral genus. The variola virus is 

known to induce the development of smallpox within 

individuals belonging to the same familial lineage 

Article History: 

Received: 25th Jul., 2023  

Accepted: 17th Sep., 2023 

Published: 30th Sep., 2023 

Abstract: The reemergence of Monkeypox, a communicable illness resulting from the 

Monkeypox virus, has raised apprehensions about a potential swift global pandemic similar 

to the COVID-19 epidemic as COVID-19 infections diminish globally. The prompt 

emphasizes the criticality of prompt action within communities to mitigate the 

development of the phenomenon. The timely identification and accurate categorization of 

Monkeypox cutaneous manifestations are crucial for the successful implementation of 

containment strategies. This paper presents a novel methodology for detecting Monkeypox 

by utilizing a transferrable Convolutional Neural Network (CNN) model that has been 

optimized utilizing hyper-parameter tuning techniques. The proposed methodology 

initiates by improving the quality of the original Monkeypox images, with a specific 

emphasis on boosting edge details to increase visual clarity. Texture qualities are obtained 

through an energy layer, enhancing distinctive traits. Our methodology's cornerstone is 

utilizing the Hyper-parameter-based transferable Convolutional Neural Network (HPT-

TCNN), specifically designed to enhance classification accuracy. 

In contrast to traditional methods, we enhance the architectural design by replacing the 

pooling layer with a configuration comprising three convolutional layers and one energy 

layer. The hyper-parameter tuning procedure is optimized by employing the Optimisation 

Algorithm known as MGS-ROA. In order to enhance the process of model training and 

validation, we have assembled the "Monkeypox Skin Lesion Dataset (MSLD)," which 

consists of a collection of images depicting human skin lesions produced by Monkeypox. 

The dataset in question is vital in evaluating and improving our methodology. In a 

comparison analysis conducted on other deep learning models, the suggested model has 

superior performance compared to other models, obtaining a notable accuracy, sensitivity, 

and specificity, all reaching a value of 93.60%. The outstanding performance shown in this 

study highlights the methodology's effectiveness in adequately classifying skin lesions 

associated with Monkeypox. This approach shows potential for physicians and healthcare 

workers since it facilitates early detection, a crucial factor in preventing the spread of 

Monkeypox. 
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(Samaranayake & Anil, 2022; Zumla et al., 2022). The 

aetiology of bovine smallpox may be attributed to the 

Cowpox virus, whereas the Vaccinia virus is employed in 

developing smallpox vaccines. It is noteworthy that, 

contrary to its nomenclature, the virus responsible for the 

manifestation of Monkeypox has undergone evolutionary 

development in rodent species. The nomenclature 

"Monkeypox" (Adalja & Inglesby, 2022) was used in 

1958 upon the initial discovery of the virus during two 

distinct instances of outbreaks, whereby the exhibited 

symptoms bore a resemblance to those employed in 

scientific investigations. The discovery that the virus may 

infect people was made in 1970 by researchers. 

Following this, the incidence of Monkeypox has been 

relatively infrequent throughout Africa. This 

phenomenon has predominantly been documented in 

West and Central Africa, areas distinguished by vast 

tropical rainforests (Otu et al., 2022; Català et al., 2022). 

Nevertheless, during the past several years, the disease 

has exhibited an increased scope, impacted a more 

heterogeneous demographic and manifested in a broader 

geographic expanse compared to previous occurrences. 

Given the profound ramifications of the pandemic, there 

has been a heightened level of attentiveness in the 

surveillance of Monkeypox occurrences despite the 

absence of an epidemic scale thus far (Zhang et al., 

2021). 

Monkeypox is characterized by a rash that develops 

over 1-5 days. The rash initially appears on the face and 

subsequently spreads to other body regions. Lesions in 

the vaginal region, eyes, and intraoral mucosa have been 

reported in certain patients (Suganyadevi et al., 2022). 

The rashes caused by this condition can seem like those 

caused by chickenpox, leading to misdiagnoses. These 

rashes start out as water-filled blisters but eventually heal 

into crusty areas. Some people get hundreds of blisters all 

over their bodies, whereas others only have a few (Ayca 

et al., 2022). Lesions may join together to form 

widespread rashes on the skin's surface in severe 

situations. In 2–4 weeks, contingent on the harshness of 

the sickness, the rashes subside, and the disease recovers. 

CNNs are widely employed in academic research in 

learning (Li & Du, 2021), which is revealed when we 

look at the most cutting-edge technologies in image 

classification. In most cases, images provide the input 

data for CNN, a deep-learning model. It records the 

results of several processes on the picture in order to 

categorize potential future judgements. LeNet, initially 

proposed by Yann LeCun in 1988 and refined until 1998 

(Savas, 2022), was the first structure for a convolutional 

neural network. Many industries, including NLP and 

biology, make use of CNN algorithms, particularly in the 

realm of picture and sound processing. The best 

consequences have been achieved, particularly in image 

processing. The error rate was decreased to 0.23% using 

CNN on the MNIST dataset.  

The skin sores caused by Monkeypox are the disease's 

most noticeable symptoms. In order to start therapy as 

soon as possible, it is crucial to quickly distinguish skin 

lesions from other lesion diseases (Saanat et al., 2022). 

Mobile devices should be able to tell the difference 

between Monkeypox and other illnesses that cause skin 

lesions, reducing the likelihood of transmission. The end 

user may determine whether or not they have Monkeypox 

by taking a picture with their phone and running it 

through the transfer learning-trained TFLite model (Yue 

et al., 2022). Since Monkeypox has begun to spread 

rapidly worldwide, we hope that our research will help 

scientists swiftly and accurately categorize the impact of 

this virus on skin lesions (Uysal, 2023). 

In modern CAD systems, deep learning methods have 

been integrated to improve the accuracy of skin lesion 

identification and categorization. When it comes to 

diagnosing Monkeypox, computer-aided design (CAD) 

approaches based on image processing are on the rise. 

The following are some of the benefits of our proposed 

method for early identification of Monkeypox: 

• We present an HPT-TCNN for Monkeypox

classification, with hyper-parameter tuning handled by

an MGS-ROA model.

• In the suggested HPT-TCNN architecture, we use the

energy layer (EL). By doing so, we can maintain

textural information and restrict the model's general

capacity for learning.

Here is how the break of the paper is structured: In

Section 2, we describe the relevant literature, and in 

Section 3, we offer a summary of the suggested model. In 

Section 4, the trial analysis and validation are presented, 

and in Section 5, the conclusion is illustrated. 

Related works 

Uysal et al. (2023) have created a hybrid AI system 

that can identify photos of Monkeypox on the skin. 

Images of skin were taken from a publicly available 

picture resource. The chickenpox measles, classes make 

up the multi-class structure of this dataset. The original 

dataset had an uneven distribution of data across classes. 

Many data augmentation and pre-processing methods 

were used to correct this discrepancy. Following these 

steps, state-of-the-art deep learning models, including 

CSPDarkNet, RepVGG, were used to search for signs of 

Monkeypox. By combining the two best-performing 
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models with the (LSTM) model, this study developed a 

novel hybrid deep-learning model with improved 

classification results. The built and suggested hybrid AI 

system for Monkeypox detection achieved an impressive 

87% test accuracy and a Cohen's kappa value of 0.8222. 

Altun et al. (2023) envision using deep learning to 

rapidly and precisely identify monkeypoxes from skin 

lesions during the pandemic. Tools for hyperparameter 

optimisation and transfer learning were made available to 

support deep learning techniques. Through careful tuning 

of the hyperparameters, we created a hybrid function 

learning model for use within the CNN architecture. 

Models, ResNET50, and Xception were used in the 

implementation. In this research, we compared and 

contrasted different methods using loss and F1-score. The 

optimized hybrid MobileNetV3-s model obtained the best 

results, which had an F1-score of 0.98, an average. In this 

research, a bespoke CNN model was constructed using 

convolutional neural networks, hyperparameter 

optimization, and a hybrid function transfer learning 

model, yielding impressive results. Our proposed custom 

CNN model architecture demonstrates the efficiency and 

effectiveness of deep learning techniques for 

classification and discrimination. 

Using computer vision, (Almufareh et al., 2023) 

propose a smarter and more secure alternative to 

conventional ways of diagnosing MPX by analyzing 

photographs of skin lesions. The suggested approach 

utilizes deep learning strategies to identify MPXV 

positivity in skin lesions. We test our approach on two 

datasets, including images and descriptions of 

Monkeypox lesions: the (MSID). Multiple deep learning 

models' performance was measured by their sensitivity to 

change, specificity, and overall accuracy. Results from 

using the suggested approach to identify Monkeypox 

have been very encouraging, showing that it is probable 

to be used on a large scale. This clever and low-cost 

option may be put to good use even in underdeveloped 

regions where there is a need for more laboratory 

facilities. 

To identify the attendance of the Monkeypox virus in 

skin lesion photos, (Pramanik et al., 2023) offer an 

ensemble learning-based system. First, we focus on fine-

tuning the Monkeypox dataset using one of three pre-

trained base Xception, or DenseNet169. We also use the 

deep models to extrapolate probabilities that are fed into 

the ensemble framework. To learn information collected 

from the sum rule-based ensemble, we offer a Beta 

function-based normalization scheme of probabilities to 

combine the results. Using a five-fold cross-validation 

configuration, the framework is extensively tested on a 

publicly accessible Monkeypox skin lesion dataset. The 

average values for the representation's accuracy, 

precision, recall, and F1 are 93.39, 88.91, 96.78, and 

92.35. 

Yasmin et al. (2023) have set out to solve this issue by 

using machine learning and image processing techniques 

to create a model for diagnosing Monkeypox. Data 

augmentation methods have been used to achieve this 

goal and prevent the model from becoming overfit. Six 

distinct Deep Learning (DL) models were then trained 

using the pre-processed dataset using the transfer-

learning approach. We settled on the best one after 

comparing each model's precision, recall, and accuracy 

performance matrices. After doing fine-tuning on the 

best-performing model, a new model named "PoxNet22" 

was suggested. Compared to other approaches, 

PoxNet22's categorization of Monkeypox is superior 

since it achieves perfect results in accuracy. Clinicians 

will find the findings of this study instrumental in the 

classification and diagnosis of Monkeypox disease. 

Ariansyah et al. (2023) presented an image 

classification to differentiate measles. In order to model 

images, researchers employed a deep learning approach 

based on learning. With transfer learning, a model 

learned on one dataset may be applied to another. This 

enabled the model to generalize insights from one data 

set to another. Because deep learning is so effective for 

recognizing patterns in similar photos, researchers have 

proposed using it to forecast fresh data. Consequently, the 

VGG-16 model achieves a respectable 83.333% accuracy 

at epoch = 15. 

Proposed work 

Monkeypox images are fed into a DL model 

optimized using the hybrid rider optimization approach 

for binary classification. 

Dataset 

The fast spread of Monkeypox to more than 65 

countries has caused public health officials to worry. 

Stopping its fast development requires prompt clinical 

identification. However, there needs to be more ready 

access to a large sum of (PCR) tests and other 

biochemical assays (Nolen et al., 2016). Computer vision 

techniques might help in detecting Monkeypox from 

pictures of skin lesions. However, at present, no such data 

is available. Therefore, the “(MSLD)" is created by 

compiling and analyzing images from various online 

resources (such as websites, portals, and public case 

reports). To distinguish Monkeypox patients from similar 

non-Monkeypox instances, the “Lesion Dataset" was 

created. Due to their resemblance to the Monkeypox rash 
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and first-state pustules, we included lesion images of the 

"Chickenpox" category to create a classifier. For 

example, the Monkeypox Skin Lesion Dataset has 228 

images, 102 of which are labelled as "Monkeypox" and 

the residual 126 as "Others," which comprise suitcases of 

non-Monkeypox. Raw data samples are exposed in 

Figure 1. 

Classification using DL network architecture 

We introduce the HPT-TCNN framework for 

classifying cases of Monkeypox. The proposed deep 

CNN considers three critical aspects of the picture: First, 

certain description filters can still discover them if their 

size is the same as the size filter's mask. Second, distinct 

input image regions might use distinct forms or patterns. 

Convolution of the full source picture is another way to 

define such models. Finally, the max-pooling layer relies 

heavily on down-sampled pixels, which do not alter the 

original image's overall form. Figure 2 depicts the 

suggested HPT-TCNN architecture for the categorization 

of Monkeypox. 

In the proposed HPT-TCNN, a third convolution layer 

regulates the EL after two convolution layers and a 

pooling layer. After the softmax layer is added. Elastic 

net (EL) summarises the feature maps generated by the 

output of the corrected activation layer. For each feature 

map, you get a number that stands for the energy 

response of a filter bank. This layout reduces memory 

and computational requirements and increases efficiency 

while learning texture functions, EL speed and processing 

time. The primary motivation for implementing this layer 

is to flow. After the final pooling layer, the output of EL 

is flattened and sent to the layer. Because of this link, a 

new, simplified vector representing the image's contours 

and textures is generated and sent to the fully linked 

layer. Equation (1) delivers a size: 

𝑂𝑢𝑡𝑝𝑢𝑡 =
𝐼𝑎−𝐼𝑏+2𝑆

𝜚+1
 …………….……(1) 

where 𝐼𝑎  and 𝐼𝑏  characterize filter size

correspondingly, S denotes the stuffing, and 𝜚  is the 

stride value. 

After that, 16 and 32 channels are produced by the 

layers, with a kernel scope of 5 5 for the first two layers. 

Using 33 kernel and 64 output channels, the convolution 

layer is analyzed as a potential intermediary layer for 

extracting texture attributes. From the convolution layer, 

we can only parameters, which we do so by solving the 

following equations: 

𝜉𝑣 = 𝜁𝑉 × (𝐼𝑘 × 𝜚 + 1) ………………… (2)

𝜉𝑣 = 𝜁𝑉 + 𝑋𝑘 × 𝜚 × 𝜁𝑉 …………………..(3)

Figure 1. Model dataset 
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Where 𝜉𝑣  symbolizes the CNN parameters, 𝐼𝑘

characterizes the kernel extent, and 𝜁𝑉  denotes the

channel quantity. 

The neuron output linked to the input is intended at 

each convolution layer. The computation is the dot 

product of the object's mass and the width of its smallest 

input field. The result of the layer is a 16-kernel 32-by-

32-by-16 matrix. The output of the neurons in the first is 

calculated using Equation (4): 

𝑆𝜗 = ∑ 𝐶𝜗 × 𝑇𝜗 + 𝑃𝜗𝜗 …………………….(4)

where 𝑆𝜗  characterizes the output feature maps, 𝐶𝜗

epitomizes the maps, and T denotes the weighted map. 

After that, the layer's output is transformed into an energy 

descriptor. After the descriptor. It performs similarly to a 

texture explanation for a cluttered, thick surface. In 

Equation (5), we see the relationship stated as: 

𝐸𝐿(𝜉, 𝜗) = 𝜌[∑ 𝑇𝑖
𝜔𝜗𝑖 + 𝑃

𝑗
𝑖=1 ] …………………(5)

where 𝐸𝐿(𝜉, 𝜗)  characterizes the EL layer, j 

characterizes the input, and T signifies the EL weighted 

vector. The link between the EL and FC layers is 

substantially smaller compared to the parameters. In 

addition, EL remembers the energy state of the previous 

layer and acquires new knowledge as signals travel both 

forward and backwards in time. In addition to enhancing 

the learning capacity and simplifying the projected 

system, EL helps lower the vector scope of the following 

FC layer. To determine which EL parameters may be 

taught, use Equation (6): 

𝜉𝐸𝐿 = 𝜂𝑚 × 𝜂𝑚−1 …………………….. (6)

where 𝜉𝐸𝐿  is the EL learnable limits, 𝜂𝑚 is FC layer

neuron, and 𝜂𝑚−1 is the preceding FC layer neuron.

Between the convolution layer and the rectified linear 

unit (ReLU) layer, a batch normalization and activation 

function is utilized to expedite the shift, which can be 

eliminated by normalization. The deviation can be 

normalized to accomplish this. Mean and Variance are 

strongminded using Equations (7) and (8) used in the 

bulk normalization computation. 

𝜏𝑄 =
1

𝑛
∑ 𝑙𝑖

𝑛
𝑖   ………………………..(7)

𝑣𝑄 =
1

𝑛
× ∑ (𝑙𝑖 − 𝜏𝑄)

2𝑛
𝑖  ………………(8)

where 𝜏𝑄 and 𝑣𝑄 characterize the mean and alteration

correspondingly, 𝑛  is the size of 𝑙𝑖  element of features.

Normalization is intended in Equation (9) as: 

𝜆𝑖 =
𝜗𝑖−𝜏

√𝜈2+𝜙
𝛼 + 𝐴 …………………. (9) 

Where a and A are the two starting parameters of the 

output layers that can be learned. The activation function 

for the ReLU layer can be found in Equation (10) and its 

output can be found in Equation (11), as: 

𝜆𝑖,𝑗,𝑘 = 𝑚𝑎𝑥0, 𝜗𝑖,𝑗,𝑘 ………1…..(10)

𝜆𝑅𝑒𝐿𝑈 = 𝑅𝑒𝐿𝑈(𝐵𝑛𝑜𝑟𝑚(𝐶𝑜𝑛𝑣(𝓌, 𝑥))) …..(11)

Where 𝜆𝑖,𝑗,𝑘  represents the output features and 𝜗𝑖,𝑗,𝑘

symbolizes the feature of the input element. Afterwards, 

The control network is over fit because the pooling layer 

averages out data from the feature maps, weights, and 

computations. The formula is as follows, and it is used to 

determine the maximum pooling layer: 

𝑀𝑝𝑜𝑜𝑙 = 𝑚𝑎𝑥(0, ∑ 𝜗𝑘−1𝑇𝜗𝑄 ) …….......(12)

Where 𝑀𝑝𝑜𝑜𝑙 signifies the production feature maps, 𝜗

designates the maps, Q means the pooling size, and T 

stands for the maximum pooling layer for the kernel 

vector. In this study, we employ a maximum of two 

pooling layers, each having a kernel size of two by two. 

To avert the model from overfitting the training data, 

the layer is utilized during the weighted update phase to 

repeatedly eliminate a sample of accidental parameters. 

To prevent overfitting training data, drop editing is 

performed during the weighted update phase to 

periodically eliminate a subset of random parameters. 

Over-compatibility of training data is especially 

problematic in FC layers since they include the most 

network-wide properties. The dropout layer is the result 

since the FC layer is established later. The softmax layer 

is used as a loss-based classifier. Softmax accepts and 

one, between [0, 1]. In Equation (13), the loss function is 

expressed mathematically as: 

𝑘𝑙 = δ𝑗 + 𝑙𝑜𝑔 ∑ 𝑒𝑥𝑝(𝛿𝑖)𝑖  ……….……….(13)

Where 𝑘𝑙  signifies the entire loss and δ𝑖  consuming

the class d which is i-th course element. The classifier's 

goal is to reduce the likelihood between the true label and 

its projected counterpart, as computed by the function in 

Equation (14): 

Figure 2. The framework of the projected HPT-TCNN for Monkeypox classification 
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𝜆𝑖 =
𝑒𝑥𝑝

𝛿𝑗

∑ 𝑒𝑥𝑝(𝛿𝑗)𝑖
 ……………(14) 

The next step of HPT-TCNN, hyper-parameter 

tweaking, is described below once this phase is complete. 

Input and output dimensions for the proposed network are 

listed in Table 1. 

Hyper-parameter tuning process using MGS-ROA 

The cluster of riders is progressing toward the goal, 

which inspired the algorithm ROA (Binu and Kariyappa, 

2019). Let's pretend many groups of cyclists are headed 

in the same general direction. The cyclists are divided 

into four groups, each including an equal number of 

riders. Bypass riders follows, overtakers and attackers 

make up the four groups of riders. Each faction has its 

unique strategy to reach its goal. The rider attempting to 

pass the leader does so by focusing on the leader's 

position relative to his own and then moving in that 

direction. The assailant arrives quickly and stands in the 

rider's path to the objective. Each rider should follow the 

steps outlined below, which comprise this algorithm. 

Group and rider parameters are set to their default 

values. Riding groups (RG) are first set up with a random 

distribution of riders among four groups. Eq. (15) is a 

representation of the cluster initialization. Here, the 

number of riders (RN) is synonymous with the riders' 

group (RG). The coordinate number (CN) represents the 

number of dimensions. Lit (c, d) also represents the 

location of the cth rider. The total number of riders may 

be determined by adding up the riders in each section, 

and the related equation is given by the symbol Eq. (16). 

𝐿𝑖𝑡 = {𝐿𝑖𝑡(𝑐, 𝑑)}; 1 ≤ 𝑐 ≤ 𝑅𝑁; 1 ≤ 𝑑 ≤ 𝐶𝑁 …..(15)

𝑅𝑁 = 𝐵𝑦𝑅 + 𝐹𝑂𝑙 + 𝑂𝑣𝑟 + 𝐴𝑡𝑡 ……………….(16) 

In Eq. (16), 𝐵𝑦𝑅, 𝐹𝑜𝑙, 𝑂𝑣𝑟,  and 𝐴𝑡𝑡  are the “bypass 

rider, supporter, overtaker and attacker”, 

correspondingly. Furthermore, parameters which are 

cluster loading. The steering angle of the vehicle at a 

period is given in Eq. (17), which 𝑆𝑇𝑐,𝑑
𝑖𝑡  is the angle of cth

rider’s vehicle, and the exact equation is signified in Eq. 

(18). 

𝑆𝑇𝑖𝑡 = {𝑆𝑇𝑐,𝑑
𝑖𝑡 }; 1 ≤ 𝑐 ≤ 𝑅𝑁; 1 ≤ 𝑑 ≤ 𝐶𝑁 ……(17)

𝑆𝑇𝑐,𝑑 =

{

𝜃𝑐;                                                       𝑖𝑓 𝑑 ≠ 1
𝑆𝑇𝑐,𝑑−1 + 𝜑;   𝑖𝑓 𝑑 ≠ 1 𝑎𝑛𝑑 𝑆𝑇𝑐,𝑑−1 + 𝜑 ≤ 360

𝑆𝑇𝑐,𝑑−1 + 𝜑 − 360;                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠ℎ𝑒
 …(18) 

In addition, from Eq. (18), 𝜃𝑐 and 𝜑 is the site angle of

the cth rider’s vehicle. Based on the sum of riders and the 

extreme angle 360°, the site angle of cth rider’s vehicle is 

strongminded, which is given in Eq. (19). In find and it is 

meant in Eq. (20). 

𝜃𝑐 = 𝑐 ∗
360∙

𝑅𝑁
 …………….(19) 

𝜑 =
360∙

𝐶𝑁
 ………………..(20) 

Counting how often something works In Eq. (21), 

where Lota is the target's position, we see that the success 

rate is specified in terms of the distance mid the target 

and the rider's current location. For the rider's success 

rate to increase as a function of distance, the rider must 

shorten the distance. 

𝑠𝑢𝑟𝑐 =
1

‖𝐿𝑐−𝐿𝑜𝑡𝑎‖
 …………(21) 

Finding the top finisher requires heavily considering 

the rider's achievement rate. The rider with the highest 

achievement rate will be considered the leader since he or 

she is more likely to reach the goal. Each time period has 

a different leading rider since the location of the objective 

Table 1. Projected HPT-TCNN structure layers 

Types Input Size Padding 

Kernel Size to Form 

Respectively Feature 

Map 

Stride Output Size 

EL 16×16×64 - - - 128×1 

Dropout 128×1 - - - 128×1 

FC1 128×1 - - - 1024×1 

Dropout 1024×1 - - - 1024×1 

FC2 1024×1 - - - 2×1 

Convolutional Layer 1 64×64×1 [1 1 1 1] 5×5 [1 1] 62×62×16 

Max Pooling Layer 1 62×62×16 [1 1 1 1] 2×2 [2 2] 32×32×16 

Convolutional Layer 2 32×32×16 [1 1 1 1] 5×5 [1 1] 30×30×32 

ReLU 

Max Pooling Layer 2 30×30×32 [1 1 1 1] 2×2 [2 2] 16×16×32 

Convolutional Layer 3 16×16×32 [1 1 1 1] 3×3 [1 1] 16×16×64 

ReLU 

Classification Layer - - - - - 
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moves around. So, it stands to reason that the rider with 

the highest success record will take the reins. Where are 

the riders now? Each time around, the riders' relative 

positions inside their respective clusters are revised to 

determine who has taken the lead and ultimately won the 

race. The following procedures inform the rider's position 

inside each cluster based on the characteristics. Update 

sidestep: Since these riders avoid following the leaders, 

their update process is represented by Eq. (22), which 

indicates that they choose a different route. Here, 0 and 1 

represent two random numbers chosen at random. The 

values and determine which random number between 0 

and RN is selected. The value of is 1 CN. So, the winning 

riders are the ones who regularly update their position. 

𝐿𝑖𝑡+1
𝐵𝑦𝑅

= 𝛿[𝐿𝑖𝑡(𝜂, 𝑑) ∗ 𝛽(𝑑) + 𝐿𝑖𝑡(𝜉, 𝑑) ∗ [1 − 𝛽(𝑑)]]…..(22)

(a) Follower update: The trailing rider may arrive at 

the target in record time by tracking the leader's 

movements and constantly updating its position. The 

update equation for the location is given by Eq. (23), and 

it selects values already present in CN. 

𝐿𝑖𝑡+1
𝐹𝑜𝑙 (𝑐, 𝑐𝑟𝑠) = 𝐿𝐿𝑒𝑟(𝐿𝑒𝑟, 𝑐𝑟𝑠) + [𝑐𝑠𝑜(𝑆𝑇𝑐,𝑐𝑟𝑠

𝑖𝑡 ) ∗

𝐿𝐿𝑒𝑟(𝐿𝑒𝑟, 𝑐𝑟𝑠) ∗ 𝑑𝑠𝑡𝑐
𝑖𝑡] ………………………(23)

In Eq. (23), the site of the rider is given by 𝐿Ler; the

selector is designated by 𝑐𝑟𝑠. The steering angle of the 

cth rider in csth co-ordinate is signified by 𝑆𝑇𝑐,𝑐𝑟𝑠
𝑖𝑡 , and the

distance traveled by the cth rider is given by 𝑑𝑠𝑡𝑐
𝑖𝑡, This

is calculated by multiplying the rider's speed by the off-

time rate, with the matching equation being provided in 

Eq. (24). The maximum amount of time is shown below. 

as 𝑇𝑖𝑜𝑓𝑓 and 𝑣𝑒𝑟𝑐
𝑖𝑡 is the velocity of cth rider.

𝑑𝑠𝑡𝑐
𝑖𝑡 = 𝑣𝑒𝑟𝑐

𝑖𝑡 ∗ (
1

𝑇𝑖𝑜𝑓𝑓
)…………….(24) 

In addition, Eq. (25) represents the velocity equation, 

which is a direct relationship between the vehicle speed 

and the rider characteristics other than the angle. 

𝑣𝑒𝑟𝑐
𝑖𝑡 =

1

3
[𝑔𝑒𝑐

𝑖𝑡 ∗ 𝑠𝑝𝑐
𝑔𝑒

+ 𝑠𝑝𝑚𝑎𝑥
𝑐 ∗ 𝑎𝑐𝑐𝑐

𝑖𝑡 + (1 − 𝑏𝑟𝑐
𝑖𝑡) ∗ 𝑠𝑝𝑚𝑎𝑥

𝑐 ]

…………(25) 

In the overhead equation, 𝑔𝑒𝑐
𝑖𝑡  , 𝑏𝑟𝑐

𝑖𝑡 , and 𝑎𝑐𝑐𝑐
𝑖𝑡  are

the gear, brake, and throttle of the cth rider’s vehicle, 

correspondingly. The speed boundary of the gear of cth 

rider is given by 𝑠𝑝𝑐
𝑔𝑒

 .

(b) The overtaker is updated based on the 

comparative achievement rate, the direction indication, 

and the co-ordinate selector. For the mathematicians out 

there, the formula is Eq. (26), in which the site of cth 

rider in crsth coordinate is given by 𝐿𝑖𝑡(𝑐, 𝑐𝑟𝑠) , the

direction pointer of cth rider at time it is signified by 

𝑑𝑖𝑖𝑡(𝑐). In addition, the rate, which is obtained in Eq.

(27) when Eq. (28) is used, serves as a measure of the 

direction. In this case, we can calculate the relative 

success degree of cth rider at that moment by 

(𝑅𝑒𝑠𝑖𝑡
𝑅𝑠(𝑐)).

𝐿𝑖𝑡+1
𝑂𝑣𝑟 (𝑐, 𝑐𝑟𝑠) = 𝐿𝑖𝑡(𝑐, 𝑐𝑟𝑠) + [𝑑𝑖𝑖𝑡(𝑐) ∗ 𝐿𝐿𝑒𝑟(𝐿𝑒𝑟, 𝑐𝑟𝑠)]… (26)

𝑑𝑖𝑖𝑡(𝑐) = [
2

1−𝑙𝑜𝑓(𝑅𝑒𝑠𝑖𝑡
𝑅𝑠(𝑐))

] − 1……………. (27) 

𝑅𝑒𝑠𝑖𝑡
𝑅𝑠(𝑐) =

𝑠𝑢𝑟𝑖𝑡(𝑐)

𝑚𝑎𝑥𝑐=1
𝑅𝑠  𝑠𝑢𝑟𝑖𝑡(𝑐)

 ………………….. (28) 

(c) Attacker inform: The assailant attempting to take 

the leader’s place will behave just like a follower. The 

attacker’s iterative update procedure is indicated by Eq. 

(29), where the front-runner's position is supplied by 

𝐿𝐿𝑒𝑟(𝐿𝑒𝑟, 𝑑) and the angle of cth rider in dth organize is

denoted as 𝑆𝑇𝑐,𝑑
𝑖𝑡 .

𝐿𝑖𝑡+1
𝐴𝑡𝑡 (𝑐, 𝑑) = 𝐿𝐿𝑒𝑟(𝐿𝑒𝑟, 𝑑) + [cos(𝑆𝑇𝑐,𝑑

𝑖𝑡 ) ∗ 𝐿𝐿𝑒𝑟(𝐿𝑒𝑟, 𝑑)] +

𝑑𝑠𝑡𝑐
𝑖𝑡………(29)

Establishing the Proportion of Success After the 

updating procedure is complete, each rider's success rate 

is calculated to have the best possible chance of finishing 

the race in the position they started in. 

Projected MGS‑ROA 

The traditional ROA relies on the number of riders 

who ultimately reach the goal, a novel approach to 

computing. The ROA strategy entails incremental gains 

relative to the leaders on each time step (Jadhav et al, 

2021). In this example, the attacker takes care of the local 

neighbourhood to avoid local minima, while the pursuer 

takes care of the global neighbourhood to achieve rapid 

convergence. However, this approach needs help when 

solving issues involving discrete optimization, rather than 

general optimization. The suggested MGS-ROA refines 

the revised gear and steering angle pattern for enhanced 

performance. It is calculated using the extreme fitness 

values F_MAX and the current solution's fitness function 

F_C. The maximum gear (19) is used to revise the gear 

ge_cit, and the steering angle is revised using Eq. (30) if 

F_C F_MAX. However, the minimal gear is used to 

update the gear ge_cit, and the angle is revised using Eq. 

(31). 

𝑆𝑇𝑖𝑡+1 = 𝑆𝑇𝑖𝑡 + 𝐷𝑖𝑠𝑡𝑛 ……………….(30)

𝑆𝑇𝑖𝑡+1 = 𝑆𝑇𝑖𝑡 − 𝐷𝑖𝑠𝑡𝑛……………………. (31)

The term 𝐷𝑖𝑠𝑡𝑛 is a role, which is intended by Eq. 

(32),  

𝐷𝑖𝑠𝑡𝑛 =
𝑎𝑏𝑠(𝐿𝑖𝑡+1

∗ −𝐿𝑖𝑡)

max (𝐿𝑖𝑡+1
∗ )

 …………………(32) 

In Eq. (32), 𝐿𝑖𝑡+1
∗ is the best site and 𝐿𝑖𝑡 is the current

site. 

 Results and discussion 

Keras (Chollet, 2018) was used to realize the study's 

recommended architecture. One NVIDIA GeForce GTX 

1070 was used for training, with a batch size of 4. Our 
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tests are conducted on an RTX2060 graphics processing 

unit (GPU) with 6 GB of RAM and an AMD CPU R7-

4800 with 2.9 GHz and 16 GB of RAM. 

Performance metrics 

We utilized the measures to gauge how well our 

model performed. Equation (33) may be used to 

determine the precision: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
…………..(33) 

The four outcomes are a True Positive (TP), True 

Negative (TN), a False Positive (FP), and a False 

Negative (FN). 

The precision is intended by the subsequent Equation 

(34): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 …………….. (34) 

The recall is intended by the subsequent Equation 

(35): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ………………… (35) 

The F1 is designed by the subsequent Equation (36): 

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 ………………(36) 

The AUC curves evaluate the false positive and true 

positive rates at various cut-offs. Precision at each 

threshold is weighted equally in AP's summary of the 

curve's recall. Accuracy and loss of the projected model 

on training and testing data are shown in Figures 3 and 4, 

respectively.  

Figure 3. Accuracy graph investigation of Proposed procedure 

Figure 4. Loss graph investigation of the proposed procedure 
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In the Training Set (70%) of splitting condition, the 

Benign reached an accuracy of 92.10, a precision value of 

92.64, a recall value of 91.39, and a specificity of 92.80 

and the F1-score of 92.01, respectively. Malignant 

reached an accuracy of 92.10, a precision value of 91.58, 

a recall value of 92.80, a specificity of 91.39 and an F1-

score of 92.18, respectively. The average value reached 

an accuracy of 92.10, a precision value of 92.1, a recall 

value of 92.10, and a specificity of 92.10 and the F1-

score of 92.10, respectively. After the Testing Set (30%)  

condition, the Benign reached an accuracy of 93.60, a 

precision value of 93.95, a recall value of 93.33 and a 

specificity of 93.88 and the F1-score 0f 93.64, 

respectively. Malignant reached an accuracy of 93.60, a 

precision value of 93.25, a recall value of 93.88, a 

specificity of 93.33, and an F1-score of 93.56, 

respectively. The average reached an accuracy of 93.60, 

precision value of 93.60, recall value of 93.60, and 

specificity of 93.60, respectively. 

Table 2. Analysis of the proposed model for binary classification 

Class Labels Accuracy Precision Recall Specificity F-Score 

Training Set (70%) 

Benign 92.10 92.64 91.39 92.80 92.01 

Malignant 92.10 91.58 92.80 91.39 92.18 

Average 92.10 92.11 92.10 92.10 92.10 

Testing Set (30%) 

Benign 93.60 93.95 93.33 93.88 93.64 

Malignant 93.60 93.25 93.88 93.33 93.56 

Average 93.60 93.60 93.60 93.60 93.60 

Figure 5. Graphical analysis of a proposed model for training set 
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Table 3. Comparative analysis of various DL models 

Methods Accuracy Sensitivity Specificity 

AE 0.8301 0.8923 0.8242 

DBN 0.8416 0.8631 0.8715 

ELM 0.8722 0.8428 0.9016 

MLP 0.8880 0.9020 0.8676 

CNN 0.8979 0.9293 0.8358 

Proposed 0.9360 0.9360 0.9360 

The comparative analysis of different DL Models is 

shown in Table 3. The AE model analysis's accuracy, 

sensitivity, and specificity were 0.8311, 0.8923, and 

0.8242, respectively. After that, the DBN model attained 

accuracy and sensitivity values of 0.8416 and 0.8631, 

respectively. The ELM model achieved an accuracy of 

0.8722, a sensitivity of 0.8428, and a specificity of 

0.9016. The MLP model then achieved an accuracy of 

0.8880, sensitivity of 0.9020, and specificity of 0.8676, 

respectively. The accuracy, sensitivity, and specificity 

values for the CNN model were then 0.8979, 0.9293, and 

0.8358, respectively. Finally, the suggested model 

Figure 7. Graphical comparison for various DL models 

Figure 6. Analysis of the proposed model for testing set 
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achieved the following results: accuracy of 0.9360, 

sensitivity of 0.9360, and specificity of 0.9360. 

Conclusion 

In order to increase the precision and effectiveness of 

Monkeypox detection, this study presents a unique 

strategy that combines several approaches. The process 

begins by enhancing the original Monkeypox photos by 

enhancing edge detail. Next, texture features are 

extracted using an energy layer. Then, the Hyper-

parameter-based transferable convolutional neural 

network (HPT-TCNN) is introduced to improve 

classification performance even further. Notably, this 

method streamlines the process by substituting just three 

convolutional layers and one energy layer for the 

conventional pooling layer. The model is more 

approachable and effective because of the usage of the 

Optimisation Algorithm (MGS-ROA), which makes 

hyper-parameter adjustment easier. 

Additionally, the "Monkeypox Skin Lesion Dataset 

(MSLD)" was developed by gathering pictures of 

Monkeypox-related skin lesions on people. This database 

is a valuable tool for training and validation. The 

comparison of several deep learning models highlights 

the suggested model's higher performance. It performs 

better than models like AE, DBN, ELM, MLP, and basic 

CNN with accuracy, sensitivity, and specificity, all at 

93.60 percent. The model's exceptional accuracy, well-

balanced sensitivity, and specificity values indicate how 

well it can categorize Monkeypox skin lesions. This 

research reveals a novel method for detecting 

Monkeypox and offers convincing proof of its higher 

efficacy compared to other models. For doctors and other 

healthcare workers, its application offers enormous 

potential since it can speed up early detection and 

eventually help limit Monkeypox outbreaks. 
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