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Introduction 

Diabetic Retinopathy (DR) is an eye condition that 

can ultimately the vision loss in people with diabetes and 

can be tackled using Machine Learning (ML) and DL 

techniques (National Eye Institute, 2022). In contrast, 

Deep learning (Olowononi et al., 2020) is a field within 

AI that enables computers to learn by emulating human 

behavior, thereby facilitating autonomous decision-

making. In recent years, deep learning algorithms have 

been extensively used to identify and segment medical 

image data, including fundus images, endoscopy images, 

CT/MRI images, ultrasound scans, pathological images, 

etc. The most popular imaging techniques in the medical 

field, such as CT scans, X-Ray are not safe for people to 

take multiple times. Although a CT scan has a high 

resolution, it mostly depends on the doctor’s expertise to 

detect the disease. Moreover, a limited number of doctors 

can perform accurate medical image analysis. Similarly, 

in the case of DR, doctors examine the fundus or the 

retina of a person to determine the existence of DR or 

not. Furthermore, correctly determining the stage of DR 

with the naked eye could be very difficult and may lead 

to wrong stage determination, affecting the proper 

medication for a patient for early detection and recovery. 

To fill this gap, researchers have introduced deep 

learning techniques to detect the disease and accurately 

classify the stages of DR from fundus retinal images. 

Among the deep learning techniques, the CNN model has 

performed very well in medical image analysis. Despite 

the classification task having various applications, from 

recognizing a disease's presence to detecting the disease's 

stage, deep learning outperforms it. Various Deep Neural 
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Abstract: Diabetic Retinopathy (DR) is a prevalent eye condition that occurs as a frequent 

complication among individuals with diabetes, particularly those who have been living with 

the disease for an extended period of time. This study uses fundus images to diagnose DR 

at five stages from early to late with No DR, Mild, Moderate, Severe, and Proliferative DR, 

commonly known as Stage 0 to Stage 4, respectively. This will aid in the timely treatment 

of diabetic patients preventing them from developing DR as early as possible. We used two 

most popular open-source datasets, the DR Detection database, namely APTOS 2019 and 

EyePACS, and combined them to create a larger dataset to trade off the data-centric 

obstacle and shortfall for any Deep Learning-based prediction models. Data augmentation 

and preprocessing techniques are applied to the images before feeding them to the proposed 

model to get a more accurate and efficient one. In the modern age oriented to Artificial 

Intelligence (AI), it is necessary to thoroughly analyze the identification of DR based on the 

existing Deep Learning (DL) models. After learning about the limitations of existing 

models, we have fine-tuned the ResNet50, DenseNet201 and InceptionV3 to enhance the 

model performance of the detection and categorization of DR. We have since proposed 

three Deep Convolutional Neural Networks (DCNN) models with better outcome based on 

accuracy than the existing state-of-the-art (SOTA) models. The fine-tuned DenseNet201 

model, among the other two, performed significantly better with a validation accuracy of 

90.04% and a negligible amount of loss, irrespective of each class, under the best 

configurable test conditions. 
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Networks (DNNs) have been developed to enhance 

performance in medical applications, such as the 

diagnosis of tuberculosis (Munadi et al., 2020), breast 

cancer (Jamil et al., 2020), diabetic retinopathy (Nguyen 

et al., 2020), and skin disease (Glorindal et al., 2021) etc. 

With an estimated 103.12 million adults worldwide 

affected by diabetic retinopathy mentioned in a study of 

2020 (Teo et al., 2021), early detection of the disease is 

crucial. So, it is important to detect DR in an early stage. 

Figure 1 illustrates the use of deep learning for disease 

detection on several medical images. 

 
Figure 1. Various medical images for disease diagnosis 

Recent developments in Deep Learning have the 

potential to greatly expand the availability of DR 

screening and enhance diagnostic accuracy. Various 

Deep Learning networks are widely used to detect DR, 

but the most popular are DCNNs (Carin and Pencina, 

2018; Shin et al., 2016). CNNs are multi-layered neural 

networks with distinctive architectures that are intended 

to extract progressively complicated information from the 

data at each layer to determine the output. Many pre-

trained CNN models are available, trained on ImageNet 

datasets such as ResNet, DenseNet, InceptionNet, 

AlexNet etc. Fine-tuning these pre-trained models can be 

done to achieve better results. 

In this research study, we have proposed fine-tuned 

ResNet50, DenseNet201 and InceptionV3 models for 

deep feature extraction and to train the model for DR 

detection in five stages. Our major contribution is fine-

tuned transfer learning with the applied pre-processing 

techniques before the model deployment.   

The rest sections of the study are formulated as 

follows. Section 2 discusses the architecture of CNN and 

how each layer contributes to extracting the high-level 

features of input images to classify the image accurately. 

The background study and related work for DR detection 

are discussed in Section 3. The material and the 

methodology used are discussed in section 4. Section 5 

discusses the experimental results of the proposed models 

based on different performance measures. Lastly, in 

Section 6, we compared the proposed and SOTA models. 

Section 7 draws the study to a conclusion and highlights 

future studies. 

Deep Convolutional Neural Network 

DL techniques have emerged as powerful tools for 

classifying and segmenting medical images in various 

applications. The CNNs, a DL approach, have proven 

highly effective in medical image analysis. A general 

CNN architecture comprises five basic layers: the 

convolutional, the activation, the pooling, the fully 

connected, and the softmax layer, respectively. Figure 2 

shows the architecture of CNN. 

CNNs are specifically designed with a unique 

architecture to progressively extract intricate features 

from the data at each layer, leading to accurate outputs. 

They are particularly well-suited for handling 

unstructured datasets like images, enabling practitioners 

to extract valuable information from such data. In a CNN, 

layers are arranged stacked, each responsible for 

extracting specific features from the input image. A 

typical CNN architecture comprises five essential layers: 

convolutional, activation, pooling, fully connected, and 

softmax. By using these components, CNNs offer 

remarkable capabilities in medical image analysis while 

ensuring the extraction of meaningful and relevant 

features from the data. Figure 3 illustrates the generic 

architecture of CNN. A brief explanation of the five main 

components of CNN is as follows.  

The Convolutional Layer in a CNN extracts high-level 

features through convolution operations using 

filters/kernels. The kernel traverses the input image 

horizontally with a specific stride, then moves down and 

Figure 2. The CNN architecture 
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repeats until the entire image has been processed. The 

mathematical equation is shown in equation (1), there, I > 

Image of size       and w>2D filter of size        

     ∑ ∑             
   
   

   
    ………………..(1) 

                             (   |
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The Activation layer is usually inserted immediately 

after the convolutional layer. It applies a non-linear 

activation function to the output of each filter. We have 

used the LeakyReLu activation function. It is like the 

standard ReLU activation function but introduces a small 

non-zero slope to the negative region of the function 

instead of setting the slope to 0. The mathematical 

formula of the ReLU is shown in equation (2). 

    ( )     (    ) …………… (2) 

The Pooling layer transforms the feature maps 

generated by the convolutional layer with down 

sampling, preserving important features. It uses Max 

Pooling or Average Pooling to return either the maximum 

or average value from the kernel-covered area of the 

image. Max pooling is the commonly used pooling 

operation. The max pooling layer is defined in Equation 

(3). 

    ( )          (    )………….. (3) 

In the Fully-Connected Layer, in which each node is 

connected to all the outputs of its predecessor layer. It 

maps the flattened output from the pooling layer to the 

output classes. Dense neurons in this layer apply an 

activation function to a weighted sum of input features, 

generating output probabilities.  

Lastly, The Softmax layer at the end of the CNN 

generates output probabilities for each class by 

normalizing the fully connected layer's output using the 

Softmax function with the highest probability selected as 

the prediction. The number of neurons in the softmax 

layer equals the number of classes. The mathematical 

representation of the softmax layer is defined in Equation 

(4). Here, k is the number of class labels.   

       (  )  
   

∑     
   

 …………………… (4) 

Related Works 

There are many research works which are based on 

DCNN applied in DR fundus images that have been 

published in the literature. Pratt et al. (2016) have 

proposed a new CNN-based approach for diagnosing DR 

using fundus images, focusing on accurately classifying 

its severity into five distinct classes. The methodology 

involved employing data augmentation techniques and 

training the network on a powerful GPU using the Kaggle 

dataset. The results showed a sensitivity of 95% and an 

accuracy of 75% when evaluated on a validation set of 

5,000 images from a total dataset of 80,000 images. 

Li et al. (2019) have developed DCNN to accurately 

diagnose DR using digital fundus images. To extract 

more discriminative features, the algorithm includes 

fractional max-pooling layers, and two DCNNs with 

differing layer configurations are trained to categorize 

DR stages into five categories using Kaggle's publicly 

available DR detection database.  An SVM classifier is 

trained to distinguish between distinct classes by 

combining image information and DCNN characteristics. 

The proposed method outperforms earlier reported results 

with a recognition rate of 86.17%. Additionally, the paper 

presents an app called 'Deep Retina' that enables 

immediate DR diagnosis using the algorithm with fundus 

images captured through a handheld ophthalmoscope. 

Sarki et al. (2019) have contributed to detecting mild 

DR using CNNs by exploring the effectiveness of 13 

different CNN architectures through transfer learning. 

Additionally, the study evaluates various optimizers to 

identify the most suitable one and combines and 

augments two datasets to enhance accuracy. The model's 

robustness and adaptability to real-world conditions are 

thoroughly examined. Results indicate that the ResNet50 

model, fine-tuned with RMSProp Optimizer on the 

combined Messidor and Kaggle datasets, achieves a 

maximum accuracy of 86%. Wang et al. (Wang et al., 

2018, July) have employed a Deep Learning approach 

using CNNs to classify the stages of DR. Three CNN 

architectures, namely AlexNet, VGG16, and 

InceptionNet V3, were experimented with, including 

hyperparameter tuning. The study aims to automate the 

analysis of fundoscopic images to differentiate the five 

stages of diabetic retinopathy. The 166 fundoscopic 

images from the publicly available EyePACS dataset on 

Kaggle were utilized. The authors achieved impressive 

accuracy results, with InceptionNet V3 achieving the 

highest accuracy of 63.23%. 

Sayres et al. (2019) have examined the impact of Deep 

Learning algorithms on physician readers in computer-

assisted environments for DR. The findings demonstrate 

improved accuracy and confidence in DR diagnosis. They 

introduced the integrated gradients method, generating 

heatmaps to explain pixel contribution in predicting DR 

severity. The study involved 1796 fundus images from 

1612 diabetic patients, evaluated by ten ophthalmologists 

under unassisted, grades-only, and grades-plus-heatmap 

conditions. Garcia et al. (2017) have presented a 

computer-assisted method that uses a neural network with 

CNN architecture to diagnose diabetic retinopathy 

quickly and precisely. To detect exudates, micro-
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aneurysms, and haemorrhages in retinal images, the 

network is trained using labelled samples from the 

EyePACS dataset. Five models were trained, two were 

developed from scratch, and three were based on the 

VGG-Net architecture (VGG16, VGG16noFC1, and 

VGG16noFC2). During the validation phase, the 

VGG16noFC2 model achieved the greatest accuracy of 

83.68%. 

Qummar et al. (2019) have proposed an ensemble 

model comprising five pre-trained CNN models, 

including Inceptionv3, DenseNet121, Resnet50, Xception 

and DenseNet169, to improve the classification 

performance of different stages of DR detection. The 

authors preprocess the input dataset by resizing the 

images and utilizing up and down sampling techniques 

for dataset balancing. Trained their model on the Kaggle 

dataset achieving an accuracy of 80.8% on the 

imbalanced dataset in 5 class classifications (0-4). 

Moreover, the model demonstrates a recall of 51.5%, 

specificity of 86.72%, precision of 63.85%, and F1-score 

of 53.74%. Islam et al. (2022) have proposed supervised 

contrastive learning (SCL) for detecting DR and its 

severity levels. SCL incorporates CLAHE for image 

enhancement, utilizes a two-stage training approach with 

a contrastive loss function, and employs a pre-trained 

Xception CNN model as the encoder. The SCL model 

achieves impressive results, outperforming typical CNN 

models and state-of-the-art approaches, with 98.36% 

accuracy for binary classification and 84.364% accuracy 

for five-stage grading. 

Lands et al. (2020) have proposed a deep learning 

model for the efficient detection of DR into five classes: 

stages 0-4. They utilized the APTOS 2019 Kaggle 

Competition dataset and appended it with data from the 

APTOS 2015 Kaggle Competition to improve the 

training dataset. Gaussian Blur Subtraction and data 

augmentation techniques were applied to preprocess the 

images. The augmented dataset was balanced before 

implementing the model. Using transfer learning, the 

authors incorporated three pre-trained models, namely 

ResNet50, DenseNet121, and DenseNet169. Their 

experiments demonstrated training accuracies of 89%, 

93%, and 95%, and validation accuracies of 65%, 89%, 

and 90% for ResNet50, DenseNet121, and DenseNet169, 

respectively. Furthermore, they developed a user-friendly 

system to enable real-time detection of DR. 

After reviewing the studies on DR detection, most of 

the research only used transfer learning with a single 

dataset and could not achieve remarkable results in DR 

categorization into five classes. The two most popular 

datasets, EyePACS and APTOS 2019, have noisy data 

that must be preprocessed properly before feeding the 

dataset to the model. Moreover, these datasets are 

imbalanced, so augmentation techniques are also needed 

to apply to make the data set balanced and effective. In 

this study, our significant contributions are summarized 

as follows.   

i. Appended two popular datasets, EyePACS and 

APTOS 2019, for more accurate model prediction, as 

a single dataset is ineffective for training such a 

complex model. 

ii. Applied preprocessing and augmentation techniques 

to get a balanced dataset.  

iii. Deployed three pre-trained DCNN models, including 

ResNet50, DenseNet201 and InceptionV3 transfer 

learning. Incorporating the preprocessing techniques 

and tuning the models tends to boost the model's 

effectiveness. Among these three, DenseNet201, with 

fine-tuned, gives the highest accuracy. 

Materials and Methods 

In this study, we have divided our work into four basic 

steps- Data Acquisition; Data Augmentation and 

Preprocessing; Model Training and Testing; lastly, and 

Model Evaluation. Figure 3 shows the workflow of our 

study. 

 

Figure 3. Workflow of the proposed study 

Dataset Acquisition 

Two publicly available datasets are used, which are 

collected from the Kaggle Diabetic Retinopathy 

Detection database, Kaggle 2015 train dataset (Originally 

EyePACS) (Averagemn, 2019) and APTOS-2019 [Asia 

Pacific Tele-Ophthalmology Society (APTOS, 2019)]. 
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The image samples are very noisy and unbalanced, a 

single dataset was insufficient to train such a complex 

model, so we appended both datasets. Figure 4 shows the 

fundus images present in the dataset, which belong to five 

classes. Table 1 shows the number of images in both 

datasets in tabular form. 

 

Table 1. Number of images in the Kaggle 2015 

(EyePACS) and (APTOS-2019) dataset 

DR 

Stage 
Name No. of images 

0 No DR 5126 1805 

1 Mild 2443 370 

2 Moderate 5292 999 

3 Severe 873 193 

4 Proliferative DR 708 295 

                Total 14,478 3,662 

Figure 5 shows the visualization of several images in 

the combined dataset in graphical form. After appending 

the datasets, the total number of images is 18140, 

consisting of 5 classes. 

 
Figure 5. Number of images in the appended dataset 

Data Preprocessing and Augmentation 

Data augmentation is one of the methods for 

addressing the over fitting issue. By artificially increasing 

the dataset size, data augmentation enhances the 

generalization capacity of models. Deep learning models 

perform better when they are trained on more data.  More 

training data increases the effectiveness of the models. In 

order to make the model generalized and efficient, 

variations of the training dataset are fed to the model so 

that the model not only memorizes the training images 

but learns from them. The Image Data Generator module 

of the Keras deep learning library provides various data 

augmentation. Data augmentation includes flipping, 

rotating, and zooming the images. The data augmentation 

is acquired from existing methods and has already been 

implemented by researchers (Lands et al., 2020).  After 

augmentation, we got a balanced data set of 34836 

images belonging to 5 classes, shown in Figure 6. 

Besides these, brightness and contrast enhancement were 

also applied to the images. We split the entire dataset into 

the ratio of 0.80:0.20, which belongs to the train and test 

sets, respectively. 

 
Figure 6. Balanced dataset after augmentation 

consists of 5 classes 

When it comes to data preprocessing, it is important to 

minimize the heterogeneity of the final images, as the 

fundus images in the dataset were acquired using a range 

of hardware devices under a variety of environmental 

circumstances that introduced noise to the images. The 

preprocessing technique includes the application of 

Gaussian blur subtraction (Lands et al., 2020), cropping 

the black borders of the images to make the center of the 

image clearer and resizing the images into 256×256 

pixels. Figure 7 illustrates the augmentation and pre-

processing applied to the images. 

Figure 4. Dataset Visualization 
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Figure 7. Visualization of images after augmentation 

and preprocessing 

Proposed Model Architecture 

We have used the pre-trained ResNet50, DenseNet201 

and InceptionV3 deep CNN architectures as our base 

models. These models were constructed using the free 

and open-source Keras framework based on Tensor Flow. 

These CNN models are designed to automatically learn 

features from input images, making them ideal for object 

detection, image classification, and face recognition 

tasks. 

The ResNet50 (Lands et al., 2020) CNN model 

comprises 50 layers. Several significant features of the 

ResNet50 architecture contribute to its performance in 

deep learning tasks. One of its key features is 

implementing residual blocks, which introduce skip 

connections that let information bypass specific levels 

and flow directly from early to later layers. This 

contributes to solving the vanishing gradient problem. 

The DenseNet201 (Lahmar and Ali, 2021) CNN 

model comprises 201 layers. The dense connection 

pattern in DenseNet201 architecture, where each layer is 

directly linked to every other layer inside a block, is one 

of its fundamental characteristics. This dense connection 

improves the network's information flow and feature 

reuse, improving gradient propagation and learning. 

Moreover, Transition layers are used in the architectural 

process to minimize the dimension of feature maps, 

allowing for greater computational effectiveness and 

parameter reduction. 

Google researchers developed the InceptionV3 (Wang 

et al., 2018) CNN model. One of its main differences is 

the use of inception modules composed of parallel 

convolutional filters with varying receptive fields that 

allow the model to capture features at various scales and 

resolutions. These modules boost feature variety and 

allow the network to learn a more comprehensive input 

data representation. Table 2 gives a brief overview of 

these three CNN architectures. 

Table 2. Overview of the CNN Architectures 

Model Year Depth Dataset 
Input 

size 

ResNet 2016 152 ImageNet 
244 × 

244 × 3 

DenseNet 2017 201 

CIFAR10, 

CIFAR100, 

ImageNet 

244 × 

244 × 3 

Inception-

V3 
2015 48 ImageNet 

229 × 

229 × 3 

Figure 8 illustrates the proposed methodology 

working principle; we flattened the feature map and 

applied two dense layers of dense (1024 neurons) and 

dense (512 neurons). After that, we applied a dropout of 

0.3 and, at last, fed it to the classification layer, which 

classifies the fundus image into five stages. 

Figure 8. Proposed Methodology 
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Model Training and Testing Evaluation 

During the training phase, the model undergoes a 

procedure to learn how to make accurate predictions. The 

model is fed a labeled training dataset in this step, and its 

parameters are tweaked to minimize loss. As a result, the 

model learns the relevant patterns and correlations in the 

data required to make accurate predictions. The 

Stochastic Gradient Descent (SGD) technique adjusts the 

neural network's weights and biases by minimizing the 

loss function. The training is done in batches of 32, which 

means the model is modified after processing 32 

instances at a time. The learning rate is set to 0.005, 

which sets the step size of weight updates. Moreover, 

a momentum of 0.9 is used to smooth out weight updates 

and accelerate convergence. An early stopping 

mechanism is employed to prevent over-fitting and 

enhance efficiency, which halts the model's training when 

its performance on a validation set stops improving. 

After the completion of training, the model enters the 

testing phase, where it is deployed to make predictions on 

new, unseen data. A distinct set of test data is utilized to 

assess the model's performance on this data. This 

evaluation dataset allows for an objective measurement 

of the model's predictive capabilities and its ability to 

generalize beyond the training data. We evaluated the 

proposed method based on various training and validation 

dataset parameters. 

Results and Discussion 

Among the three fine-tuned CNN proposed models, 

DenseNet201 achieved an exceptional performance with 

a training accuracy of 99.12% and a validation accuracy 

of 90.04%. ResNet50 follows closely with a training 

accuracy of 98.69% and a validation accuracy of 89.21%. 

InceptionV3 achieves a training accuracy of 97.29% and 

a validation accuracy of 88.63%. Notably, DenseNet201 

exhibits the highest validation accuracy among the 

models at 90.04%, shown in Figure 8. On the other hand, 

DenseNet201 showcases the lowest validation loss, 

reaching a value of 0.2892. These findings highlight the 

superior performance of DenseNet201 in terms of 

accuracy and generalization while also showcasing the 

effectiveness of DenseNet201 in minimizing the 

validation loss. The experimental results are represented 

in Table 3. The validation accuracy of the deployed 

models’ experimental outcomes depicted in Figure 9. The 

confusion matrix of the deployed DenseNet201 with fine-

tuned is depicted in Figure 10. 

 

 

Table 3. Performance results of the proposed models 

Model name Accuracy Loss 

 Train Validation Train Validation 

DenseNet201 

with fine-

tuned 

99.12% 90.04% 0.0222 0.2892 

ResNet50 

with fine-

tuned 

98.69% 89.21% 0.0260 0.3855 

InceptionV3 

with fine-

tuned 

97.29% 88.63% 0.0697 0.3866 

 
Figure 9. Validation accuracy of the proposed models 

 
Figure 10. The Confusion Matrix of the fine-tuned  

Comparison with SOTA 

When comparing our proposed method for DR 

detection with recent state-of-the-art approaches, we 

observed significant advantages. Most of the models in 

Table 4 have utilized the EyePACS dataset (Wang et al., 

2018; Garcia et al., 2017; Qummar et al., 2019; Islam et 

al., 2022), resulting in comparatively lower accuracy. 

Furthermore, Lands et al. (2020) employed both the 

EyePACS and APTOS 2019 datasets, like our approach, 

achieving a ResNet50 accuracy of 65%. In contrast, our 

proposed DenseNet201 with fine-tuned model achieves 

the highest accuracy of 90.04%. These results emphasize 

that among the three proposed models, fine-tuned  
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DenseNet201 outperforms state-of-the-art models, 

demonstrating its superiority in DR detection. 

Conclusion 

In today’s world, most people are burdening their 

lifestyles uncontrolled due to modern technological 

enhancement and hectic work schedules. The chances of 

diabetes are highly suspicious at any age group, and it is a 

high chance to tread towards the effect of eye diabetic 

retinopathy. DR can harm the eye conditions, even 

chances of vision loss or blindness at the ultimatum. So, 

these conditions can be prevented to detect an early stage 

of DR, which is crucial for its prevention and curability. 

This research study focuses on the early detection of DR 

through several significant contributions to mitigate these 

effects. Firstly, we combined the two famous open-source 

EyePACS and APTOS 2019 datasets, ensuring a 

comprehensive and diverse dataset for improved accuracy 

to manage the diversity of the openly available dataset. 

To balance the data, we employ a novel preprocessing 

technique based on Gaussian blur subtraction and data 

augmentation techniques. We deployed three pre-trained 

DCNN models, namely ResNet50, DenseNet201, and 

InceptionV3, and then fine-tuned the transfer learning 

models using the customized dense layer. To control and 

minimize the loss of the models by managing the weight 

and bias, used an SDG optimizer. The proposed fine-

tuned DenseNet201 architecture has remarkable training 

and validation accuracies of 99.12% and 90.04%, 

respectively, outperforming the existing SOTA model 

performances. ResNet50 achieves a training and 

validation accuracy of 98.69% and 89.21%, while 

InceptionV3 achieves 97.29% and 88.63%, respectively. 

Each model’s validation loss is very low, and early 

stopping phenomena prevented the over fitting situations.  

Our future study includes further experiments to enhance 

performance and develop an IoT-based framework for 

real-time detection of DR using retinal fundus images. 
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