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Introduction 

Internet-of-Things (IoT), Fog Computing, and Cloud 

Computing have become indistinguishable components 

of every human's personal, social, and corporate sphere. 

IoT Analytics envisages that roughly 27 billion IoT 

devices will be available globally by 2025 and generate 

vast amounts of data (IoT Analytics, 2022). Gartner 

indicates that worldwide end-user expenditures on public 

cloud services will be increased by 20.7% to $591.8 

billion in 2023 from $490.3 billion in 2022 (Gartner, 

2021). Cloud computing allows IoT devices to manage, 

view, and store data remotely via the Internet instead of 

storing and managing locally on servers or hard drives. 

Due to rapid growth in cloud adoption and many issues 

like insecure APIs, data security, and hacker intervention, 

user data security and privacy have become significant 

concerns. Data security and confidentiality defend data 

from illicit access, disclosure, use, destruction, 

alteration, or disruption. It is important because data is a 

critical asset for businesses and individuals. It can be 

precious to attackers seeking to commit fraud, identity 

theft, corporate espionage, or other malicious activities 

(Tabrizchi et al., 2020; Alouffi et al., 2021). Thus, it is 

necessary to employ highly secure cryptographic 

algorithms for the encryption and decryption of data. 

Cryptographic algorithms provide a way to protect 

sensitive data by transforming it into an unreadable form 

without the proper decryption key. It guarantees that 

even if cyber criminals gain access to the data, they can 

decipher or utilize it without the appropriate 

authorization. Researchers and academicians have 

developed and implemented dozens of cryptographic 

algorithms yearly to provide data security. Each 

cryptographic algorithm uses a cryptographic key which 
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Abstract: Cryptographic keys are long strings of random bits generated using specialized 

algorithms and help secure data by making it unpredictable to any adversary. Cryptographic 

keys are used in various cryptographic algorithms in many domains, i.e., Cloud computing, 

Internet-of-Things (IoT), Fog computing, and others. The key generation algorithms are 

essential in cryptographic data encryption and decryption algorithms. This work proposed a 

cryptographic key generation algorithm based on Shannon entropy and the Salp Swarm 

algorithm (SSA) for generating randomized keys. The proposed Cryptographic Key 

Generation algorithm utilizes the dynamic movement of salps to create high-quality, robust, 

and randomized keys against attacks. The transfer function and quantization method 

convert a salp into a cryptographic key. The proposed Cryptographic Key Generation 

algorithm has been evaluated on four transfer functions against three state-of-the-art swarm 

intelligence metaheuristics, i.e., particle swarm optimization, BAT, and grey wolf 

optimization algorithms. The keys of eight different bit lengths, i.e., 512, 256, 192, 128, 96, 

80, 64, were generated and evaluated due to their applications in the different encryption 

algorithms, i.e., AES, DES, PRESENT, SIMON, SPECK, and 3DES. The simulation study 

confirms that the proposed key generation algorithm effectively produces secure 

cryptographic keys. 
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must be randomized and un-predicable. The 

cryptographic key ensures data confidentiality, integrity, 

authenticity, and access control. 

Without keys, cryptographic algorithms could not 

protect sensitive information effectively (Alouffi et al., 

2021; Jawed and Sajid, 2022). Key generation is 

essential to cryptography, as the system's security 

depends on the keys' secrecy. Figure 1 depicts the 

expansion of scholarly study on the key generation, a 

research problem of interest for academics and 

scientists. The nature of the cryptographic key needs to 

be very random, devoid of patterns, and complicated in 

its makeup. The key's length is another factor that 

influences the encryption's efficacy. The challenge of 

decrypting data gets more intricate as key size increases. 

The generation of such cryptographic keys is classified 

as an NP-hard problem (Tahir et al., 2021; Jawed and 

Sajid, 2022). 

Exact and metaheuristic algorithms are two 

approaches that can be utilized to deal with NP-Hard 

problems. By leveraging the power of metaheuristic 

algorithms, a category of computational intelligence, it 

is possible to solve NP-Hard problems within a 

reasonable timeframe. Metaheuristics algorithms are 

often population-based, i.e., they operate on a 

population of candidate solutions that are evolved and 

improved over time. The population is updated 

iteratively; with each iteration, the population changes 

and improves. Metaheuristic methods have been 

established to effectively resolve numerous optimization 

problems across various domains. In cloud security, 

innumerable metaheuristic algorithms have successfully 

addressed various security challenges, such as intrusion 

detection, access control, key management, data 

breaches, network security, and more. Additionally, 

these algorithms have been utilized to optimize cloud 

workload scheduling, resource allocation, substitution 

boxes, pseudo-number generation, and other related 

areas (Osaba et al., 2021; Dokeroglu et al., 2019; Ahsan 

et al., 2020; Cook et al., 2018). Salp Swarm Algorithm 

(SSA) is one of the population-based metaheuristic 

algorithms used extensively for various research 

problems (Mirjalili et al., 2017). 

The significant contribution of this study is reported 

here. The Salp Swarm algorithm (SSA) and Shannon 

entropy are the foundations of the approach for 

generating randomized keys proposed in this study. It 

utilizes the dynamic movement of salps to create high-

quality, robust, and randomized keys against attacks. 

The proposed algorithm employs a transfer function and 

quantization method to convert a salp into a 

cryptographic key. For the performance assessment, 

four transfer functions and three state-of-the-art swarm 

intelligence metaheuristics, i.e., grey wolf optimization 

(GWO) (Mirjalili et al., 2014), particle swarm 

optimization (PSO) (Kennedy and Eberhart, 1995), and 

BAT (Yang, 2010) algorithms, have been considered. 

The keys of eight different bit lengths, i.e., 512, 256, 

192, 128, 96, 80, 64, were generated and evaluated due 

to their applications in the different advanced encryption 

algorithms, i.e., DES, PRESENT, SIMON, SPECK, 3-

DES, and AES (Osaba et al., 2021; Dokeroglu et al., 

2019). 

The paper's content is structured as follows: Section 

2 outlines the research gap in the literature and 

summarizes some recent pertinent studies. Section 3 

defines the mathematical formulation of the key 

generation problem, followed by a review of considered 

metaheuristic algorithms in Section 4. Section 5 has 

provided an illustrated description of the proposed 

algorithm. Section 6 discussed the findings of the 

simulation study based on numerous experiments. The 
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concluding remark and potential impending research 

recommendations are provided in Section 7. 

Related Work 

It summarizes some of the current and pertinent 

studies and identifies the research gap in the literature. 

Many research surveys have been published on cloud 

computing security issues and challenges (Ali et al., 

2015; Bhardwaj et al., 2016; Sicari et al., 2022; Khalid et 

al., 2021). Hashizume et al. (2013) discussed security 

issues related to cloud computing, which reports that 

essential services are outsourced to third parties leading 

to data security issues, service availability, and 

demonstrating compliance. Moreover, cloud computing's 

influence on various advanced technologies, i.e., 

virtualization, service-oriented architecture (SOA), 

advanced web, Blockchain technology, and others, also 

inherit that particular technology's security issue.  

Tahir et al., 2021 suggested the usage of two levels of 

encryption in the CryptoGA cryptographic scheme. The 

first layer uses the shift cipher to encrypt the plaintext 

into ciphertext. Then, using a discrete genetic algorithm 

employing Shannon's Entropy as an optimization 

objective, the keys are extracted from the incoming 

ciphertext. Finally, an encryption method with 

randomized crossover and mutation operators is utilized 

to get the final ciphertext. Authors also claim that 

CryptoGA provides slower execution time and high 

throughput demanded by encryption and decryption than 

well-known traditional algorithms, i.e., DES and RSA 

cryptosystems. 

Jawed and Sajid (2022) extended the CryptoGA block 

cipher and suggested that 128-bit random keys must be 

generated to increase Shannon's Entropy. Researchers 

analyzed XECryptoGA on CryptoGA and found that 

XECryptoGA generates keys six times faster than 

CryptoGA. In XECryptoGA and CryptoGA, the 

Avalanche effect is respectively close to 50% and less 

than 20%.CryptoGA can be cracked with a brute force 

attack with just 1456(i.e., 8 x 7 x 26) guesses, whereas 

XECryptoGA requires 2
128

. 

Kalsi et al. (2017) presented a novel concept of DNA-

based Deep Learning Cryptography involving the usage 

of DNA sequences and deep learning techniques to 

obscure data. This approach is designed to enhance data 

security by encoding DNA sequences and utilizing deep 

learning algorithms to protect the information from 

unauthorized access. The Genetic Algorithm with 

Needleman-Wunsch (NW) algorithm generates keys, 

which are then employed in the encryption and 

decryption processes along with numerous biological 

procedures, such as DNA sequencing, transcription, and 

translation. 

Gupta et al. (2022) suggested protected key generation 

utilizing improved identity-based encryption for cloud 

systems to conceal the consumer's identity even if the 

attacker decodes the keys or data. According to the 

authors' assertions, the efficient selective-ID secure 

identity-based encryption solution, a competing strategy, 

takes longer to encrypt and decrypt data. According to the 

authors, the suggested method's most important feature is 

that the Lagrange coefficient hides the user's identity. 

Singh and Chatterjee (2017) discussed the features, 

security issues, threats, and solutions of cloud computing 

and compared related works. Ali et al. (2015) surveyed 

the security issues arising from the cloud computing 

paradigm's shared, virtualized, and public nature. 

Bhardwaj et al. (2016) compared different symmetric and 

asymmetric algorithms used in cryptography. It also 

explains how symmetric algorithms are used in cloud-

based applications and services. Thabit et al. (2021) 

proposed a new lightweight cryptographic method that 

draws inspiration from the Feistal and Substitution 

Permutation Architecture, which has been presented to 

ameliorate the data security of cloud systems. Authors 

claim that the new lightweight cryptographic algorithm 

(NLCA) provides high protection and low computational 

cost compared to frequently used algorithms, namely 

HIGHT, AES, DES, and Blowfish. Block size, key 

length, potential key, mathematical operations, cipher 

type, and security power were the six criteria used to 

evaluate NLCA. 

Moreover, three-layer privacy-preserving (Wang et 

al., 2018), evolutionary game-based security mechanism 

(Sun et al., 2018), Session key-based lightweight 

encryption algorithm (Gupta et al., 2021), Elliptic curve 

Diffie Hellman cryptosystem (Subramanian and 

Tamilselvan, 2020), a novel secure fog-based cloud 

storage (Ahsan et al., 2022), and GA-based data security 

algorithm (Thabit et al., 2021) for cloud computing or fog 

computing were developed and tested. 

Some algorithms that do not generate keys separately 

to produce ciphertext have various drawbacks, such as 

lack of confidentiality, limited security, limited use cases, 

lack of scalability, and lack of interoperability. As 

compared to keyless cryptographic algorithms, the key-

utilized algorithms provide substantial protection and 

versatility, making them suitable for a wide range of 

applications that require data confidentiality and 

authentication. Moreover, the key generation algorithms 

have been embedded in the various existing 

cryptographic algorithms instead of separate lightweight 
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key generation algorithms. The Salp Swarm algorithm 

(SSA) and Shannon entropy are the foundations of the 

lightweight key generation approach for generating 

randomized cryptographic keys proposed in this study. It 

utilizes the dynamic movement of salps to create high-

quality, robust, and randomized keys against attacks. 

Problem Formulation 

Shannon developed Shannon's entropy E(X), which 

calculates the mean amount of "uncertainty" included in 

the given random sequence, to evaluate the unpredictable 

nature of any source "X". Shannon's entropy has wide 

applications in various fields, such as digital 

communication, data storage, machine learning and 

artificial intelligence (Tahir et al.,  2021; Jawed and 

Sajid, 2022). 

Suppose      is the cryptographic key of length  -bit 

generated using the SSA-based key generation problem. 

The key generation problem in mathematical form can be 

given as:  

          ( )   ∑ (  )      (  )    ( ) 

Where,  

   *   +                 ( ) 

I=0,1,2,……….,n-1……………………………...(3) 

where  (  ) characterizes the probability of the bit 

  present in the cryptographic key    . 

Metaheuristic Algorithms 

Metaheuristic algorithms are advanced optimization 

techniques that are employed to discover near-optimal 

solutions to intricate optimization problems. These 

algorithms operate at a top-level abstraction to explore a 

diverse range of potential solutions and evaluate them 

based on certain criteria, thereby enabling them to find 

approximate solutions to problems that are typically 

challenging to solve using conventional optimization 

methods. In contrast to exact optimization methods, 

metaheuristic algorithms do not guarantee finding the 

optimal global solution. Instead, they aim to find suitable 

solutions within a reasonable computation time. 

Metaheuristics algorithms are often population-based, 

meaning they operate on a population of candidate 

solutions that have evolved and improved over time. The 

population is updated iteratively and improves with each 

iteration. Metaheuristics have been used in several fields, 

such as operations research, computer science, 

engineering, etc., for solving optimization problems, 

including function optimization, constraint optimization, 

and combinatorial optimizations (scheduling, routing, 

network design, image processing, finance, and many 

more). Metaheuristics are suitable for high-dimensional, 

multi-modal, and non-linear problems, and they are 

widely used in many real-world applications (Crawford et 

al., 2017; Sajid et al., 2022; Sajid and Raza, 2017). 

Salp Swarm Algorithm (SSA) 

Salp Swarm Algorithm is a bio-inspired optimization 

algorithm based on the swimming patterns of salp chains, 

which are planktonic tunicates in the ocean. The 

algorithm represents the optimization problem as a 

population of particles, each representing a candidate 

solution to the problem. Each particle's position is 

updated depending on its current location, personal best 

position, and the population's overall best position. In 

SSA, the particles move in a coordinated way, similar to 

how the individuals in a salp chain move. Each particle 

follows the leader in front of it while at the same time 

maintaining a distance from the leader behind it. It leads 

to the formation of a chain-like structure, where the 

particles move in a coordinated fashion to explore the 

search space. One of the characteristics of SSA is that the 

leader particle changes over time, allowing the whole 

population to examine different regions of the search 

space. SSA has been proficiently applied to unravel 

varied problems in engineering, computer science, and 

finance. It's suitable for optimization problem that has a 

complex landscape and high dimensionality problem 

(Mirjalili et al., 2017). 

Particle Swarm Optimization (PSO) 

PSO is a metaheuristic optimization algorithm based 

on the behavior of a swarm of particles. It is used to 

determine a function's overall best solution. In PSO, each 

particle represents a candidate solution to the 

optimization problem. The position of each particle in the 

search space is updated based on its position, the position 

of the best solution found so far (called the "personal 

best" or "pbest"), and the position of the best solution 

found by the entire population (called the "global best" or 

"gbest"). The position of each particle is updated based 

on the positions of the personal best and global best 

particles, as well as a velocity component that allows the 

particle to move toward the best solutions. The velocity 

component is updated based on the current velocity, the 

cognitive component that guides the particle toward its 

pbest, and the social component that drives it toward the 

gbest. The PSO algorithm uses a random initialization of 

the particles and is sensitive to the initialization values, 

and different initialization values can lead to another 

solution. As the number of iterations increases, the 

particles converge toward the optimal solution, typically 

located near the gbest. PSO is considered a simple yet 

powerful optimization algorithm, and it's been used in 
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various areas such as function optimization, feature 

selection, neural networks, control systems, and many 

more. It's simple because of the minimal parameter 

setting required and easy to understand, yet it can find 

reasonable solutions for complex optimization problems 

(Kennedy and 1995). 

Grey Wolf Optimization (GWO)  

GWO algorithm is a swarm optimization algorithm 

based on the grey wolves hunting behavior. It is used to 

find the global optimum of a given function. The 

algorithm uses a population of "wolves," each 

representing a candidate solution to the optimization 

problem. The position of each wolf in the search space is 

updated based on the current best position, the personal 

best position (the best position a particular wolf has found 

so far), and the global best position (the best position 

located by any wolf in the population). In GWO, 

leadership hierarchy among the wolves is used, similar to 

the real-world behavior of grey wolves in a pack. There 

are three types of wolves: Alpha, Beta, and Delta, each 

with different responsibilities and roles in the 

optimization process. The Alpha wolf is responsible for 

leading the pack and exploring the search space, the Beta 

wolves are responsible for exploiting the search space, 

and the Delta wolves are responsible for maintaining the 

diversity of the population. One of the characteristics of 

GWO is that it uses a simple random walk mechanism, 

similar to other metaheuristic optimization algorithms. It 

allows the algorithm to explore different regions of the 

search space and avoid getting stuck in local optima. 

GWO frequently outperforms other metaheuristic 

optimization algorithms when used for various 

optimization issues, including function optimization, 

feature selection, picture compression, and cluster 

analysis (Mirjalili et al., 2014). 

Bat Algorithm 

Xin-She Yang (2010) introduced a swarm intelligence 

Bat algorithm inspired by the behavior of bats, 

specifically their echolocation abilities and hunting 

behavior. The algorithm is a metaheuristic optimization 

method that can unravel engineering design problems. It 

involves a population of virtual "bats" that search for the 

optimal solution to a given problem. There are several 

possible solutions to the population of bats. It updates its 

location within the search space based on its observations 

and those of the other bats in the colony. The algorithm 

works by adjusting the frequency and loudness of the 

bats' echolocation calls based on their current position 

and the position of the best bat in the population. It 

allows the bats to explore the search space more 

effectively and converge toward the optimal solution. The 

Bat Algorithm solves many optimization problems, 

including engineering design, data mining, and machine 

learning. It is also relatively simple to implement and can 

be adapted for various optimization problems (Yang, 

2010). 

Salp-Swarm-Based Cryptographic Key Generation 

Algorithm 

As shown in Algorithm 1, Salp Swarm Algorithm 

(SSA) based Cryptographic key generation algorithm 

starts with the salps' random population S of size  , the 

dimension of each salp which is the key length  . The 

values of salps are shown in Eq. (4): 

  

[
 
 
 
  
   

    
 

  
 

 
  
 

 

 
 

  
 

 
  
   

    
 ]
 
 
 

           ( )  

The cryptographic key is a binary problem, while the 

SSA is created for a real-valued problem. The transfer 

function followed by the discretization method is used on 

the real-valued salps. To compute the Shannon entropy, 

the transfer function  ( ) scales each salp between 0 and 

1. The general equation is given as follows (Lanza-

Gutierrez et al., 2017 and Beheshti, 2021), 

 (  
 
)    

 
             

 
         ( ) 

Various transfer functions exist, such as S-type, V-

type, and Q-type. It has been proven that V-type transfer 

functions perform well on many problems. Thus, four V-

type transfer functions are considered for this study, and 

their graphical representation is also shown in Figure 2. 

To convert the scaled salp    into the discrete binary 

population   , the standard binarization technique 

(Quantization method) is as follows- 
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                           (   )    
 

                                                      
     ( ) 

Where     (   ) denotes a chance number between 

0 and 1. 

The converted population Y is given as follows- 
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After converting the real-valued salp into a discrete 

binary salp, Shannon entropy E(X) determines each salp 
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fitness value using equation (1). Figure 3 shows the 

conversion process from a salp to a cryptographic key. 

Algorithm 1: SSA-Based Key Generation Algorithm 

Input:  Population Swith size N, dimension n, upper 

bound ub, lower bound lb 

Output: Key (    ) with maximum Shannon entropy 

Begin: 

1. Initialize the salp   (           ) with population 

S, dimension n, upper bound ub, and lower bound lb; 

2. While the end condition is not satisfied, do 

3. Calculate the fitness of each search agent (salp) using 

the Transfer function (Eq. 5), Quantization method ( 

Eq. 6), and Shannon's Entropy (Eq. (1)); 

4. F = the best search agent with maximum Shannon 

entropy; 

5. Do for every salp   : 

If salp    is leader salp: 

Update salp   ’s position using Eq. (8); 

else 

Update salp   ’s position using Eq. (10); 

6. end 

7. end do loop 

8. Adjust all salps dimension values based on the lower 

and upper bounds;   

9. End while 

10. return F as Key (    ) and Shannon entropy 

End: 

 

 

Figure 2. V-Type Transfer Functions 

 

 

 

 

Figure 3. Salp to cryptographic key conversion 

According to step 6 of Algorithm 1, the position of 

salps is updated to generate the new population. The 

position of the leader salp is calculated by equation (8): 

  
  {

      ((       )      )       

     ((       )      )       
   ( ) 

The new position of the leader is shown by    
  and 

food source's position vector in the      dimension is 

shown by   , the upper and lower bounds of the      

dimension is shown by u  and l    respectively,    and    

are random values inside [0, 1], in Eq(9),    is the 

algorithm's primary parameter. 

     
 (   

    
)
 

                ( ) 

     displays the maximum number of iterations, 

whereas t represents the current iteration. This value 

reduces as the iteration count rises. As a result, it can 

draw attention to the tendency towards diversification in 

the early stages of optimization and the tendency towards 

intensification in the latter stages. 

The followers' location is modified by Eq……… (10): 

  
  

  
      

   

 
                (  ) 

Where     and   
  is the location of the     follower 

salp at the    dimension. 
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The above processes keep on repeating until the 

maximum iteration is reached. The fittest salp of the final 

population is considered as the cryptographic key. The 

cryptographic key and its Shannon entropy are returned.  

Simulation Results 

This section depicts and discusses the system 

parameters, obtained results in the form of entropy values 

and execution times of algorithms, and the study's 

observations. 

System Parameters 

The system used for obtaining the simulation results is 

Intel Core i5-8250U, 12 GB RAM, Windows 10 OS, and 

Python v3.11.0. The four algorithms, SSA, BAT, GWO, 

and PSO, have been modified for the cryptographic key 

generation problem for various sizes of the key length. 

Table 1 depicts the parameters and their values 

corresponding to four different meta-heuristics. The keys 

of eight different bit lengths, i.e., 512, 256, 192, 128, 96, 

80, 64, were generated and evaluated due to their 

applications in the different cryptographic algorithms, 

i.e., AES, DES, PRESENT, SIMON, SPECK, and 3DES. 

The simulation tests were run 20 times for each 

cryptographic key length, and mean and standard 

deviation values for entropy and execution durations were 

recorded and presented (Krishna et al., 2018). 

Table 1. System Parameters 

Algorithm Parameter Value 

Standard 

Parameters for 

GWO, BAT, PSO, 

and SSA 

Population Size 50 

Maximum Iteration 100 

Dimension  Key Length 

Lower Bound (lb) -100 

Upper Bound (lb) +100 

Objective Function  Shannon 

Entropy 

GWO Alpha (Initial Score) -inf 

Beta (Initial Score) -inf 

Delta (Initial Score) -inf 

Convergence constant  Linearly 

decreases 

from  

2 to 0 

BAT Loudness 0.5 

Pulse Rate 0.5 

Minimum Frequency  0 

Maximum Frequency  2 

PSO 

 

Inertia [0.2, 0.9] 

Cognition of particle (c1) 2 

Social influence of swarm (c2) 2 

SSA 

 

Initial Speed 0 

Uniformly Generated Random 

Numbers (c2& c3) 

(0, 1) 

Results Obtained 

Table 2 consists of the mean and standard deviation of 

entropy produced by GWO, PSO, BAT, and SSA 

algorithms for key sizes (in bits) 512, 256, 192, 128, 96, 

80, and 64 corresponding to four transfer functions, i.e., 

V1, V2, V3, and V4. Table 2 illustrates that the SSA-based 

cryptographic key generation algorithm offers the best 

mean values of entropy corresponding to the transfer 

function V1 followed by PSO-, GWO- and BAT-based 

cryptographic key generation algorithms. However, the 

SSA-based cryptographic key generation algorithm offers 

the second-best standard deviation values of entropy 

corresponding to the transfer function V1 followed by 

GWO- and BAT-based cryptographic key generation 

algorithms. The PSO-based cryptographic key generation 

algorithm offers the best standard deviation values of 

entropy corresponding to the transfer function V1. For 

transfer functions V2, V3, and V4, the best mean entropy 

values were offered by the SSA-based cryptographic key 

generation algorithm corresponding to the transfer 

function V1 followed by PSO-, GWO-, and BAT-based 

cryptographic key generation algorithms. Regarding 

standard deviation entropy values, the PSO-based 

cryptographic key generation algorithm offers the best 

values, followed by SSA-, GWO-, and BAT-based 

algorithms. 

Figure 4 depicts the different convergence curves 

offered by SSA-, PSO-, GWO- and BAT-based 

cryptographic key generation algorithms corresponding to 

4-transfer functions, i.e., V1, V2, V3, and V4. As can be 

seen from Figure 4, the SSA-based cryptographic key 

generation algorithm offers the best entropy values 

compared to PSO, GWO, and BAT algorithms. 

Generally, the performance order from best to worst is 

SSA, PSO, GWO, and BAT algorithms. However, GWO 

and BAT algorithms are competitive for different 

instances, as seen in Figure 4.  

Table 3 displays the mean and standard deviation of 

execution time consumed over 100 iterations by GWO, 

PSO, BAT, and SSA algorithms for key sizes (bits)512, 

256, 192, 128, 96, 80, and 64 corresponding to four 

transfer functions, i.e., V1, V2, V3, and V4. The SSA and 

BAT-based cryptographic key generation algorithms 

consume minimum and almost equal time corresponding 

to the transfer function V1, V2, V3, and V4, followed by 

PSO-and GWO-based cryptographic key generation 

algorithms.  
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Table 2. Entropy Values for 4-Algorithms Corresponding to Four Transfer Functions 

 Entropy Values for Transfer Function V1 

Key Size (Bits) 

Algorithms  
 64 80 96 128 192 256 512 

GWO 
Mean 0.393 0.396 0.335 0.295 0.276 0.255 0.225 

Stdev 0.057 0.046 0.042 0.033 0.033 0.043 0.059 

PSO 
Mean 0.541 0.509 0.411 0.419 0.369 0.378 0.306 

Stdev 0.047 0.088 0.055 0.064 0.073 0.044 0.023 

BAT 
Mean 0.286 0.270 0.313 0.265 0.220 0.218 0.193 

Stdev 0.091 0.077 0.097 0.072 0.025 0.030 0.025 

SSA 
Mean 0.555 0.563 0.519 0.481 0.410 0.379 0.328 

Stdev 0.084 0.074 0.065 0.054 0.047 0.033 0.027 

 Entropy Values for Transfer Function V2 

Key Size (Bits) 

Algorithms 
 64 80 96 128 192 256 512 

GWO 
Mean 0.458 0.414 0.416 0.326 0.296 0.302 0.278 

Stdev 0.087 0.077 0.078 0.039 0.033 0.067 0.101 

PSO 
Mean 0.579 0.542 0.501 0.470 0.440 0.3947 0.329 

Stdev 0.054 0.073 0.087 0.033 0.051 0.033 0.041 

BAT 
Mean 0.353 0.293 0.307 0.296 0.258 0.237 0.200 

Stdev 0.105 0.069 0.0769 0.058 0.033 0.034 0.033 

SSA 
Mean 0.593 0.586 0.561 0.496 0.478 0.417 0.380 

Stdev 0.071 0.0427 0.055 0.045 0.047 0.037 0.030 

 Entropy Values for Transfer Function V3 

Key Size (Bits) 

Algorithms 
 64 80 96 128 192 256 512 

GWO 
Mean 0.468 0.442 0.475 0.389 0.340 0.333 0.356 

Stdev 0.035 0.050 0.064 0.061 0.041 0.054 0.083 

PSO 
Mean 0.605 0.593 0.519 0.508 0.456 0.457 0.384 

Stdev 0.074 0.068 0.086 0.089 0.055 0.022 0.051 

BAT 
Mean 0.435 0.391 0.358 0.390 0.321 0.310 0.271 

Stdev 0.063 0.092 0.061 0.050 0.037 0.028 0.032 

SSA 
Mean 0.649 0.647 0.630 0.582 0.487 0.509 0.415 

Stdev 0.072 0.044 0.049 0.044 0.035 0.038 0.021 

 Entropy Values for Transfer Function V4 

Key Size (Bits) 

Algorithms 
 64 80 96 128 192 256 512 

GWO 
Mean 0.588 0.560 0.547 0.509 0.482 0.458 0.474 

Stdev 0.039 0.029 0.053 0.053 0.032 0.060 0.086 

PSO 
Mean 0.718 0.691 0.650 0.629 0.582 0.556 0.512 

Stdev 0.056 0.050 0.046 0.047 0.026 0.042 0.025 

BAT 
Mean 0.544 0.559 0.530 0.493 0.466 0.433 0.406 

Stdev 0.067 0.078 0.072 0.056 0.058 0.060 0.037 

SSA 
Mean 0.774 0.730 0.717 0.672 0.644 0.627 0.566 

Stdev 0.047 0.057 0.042 0.041 0.034 0.027 0.023 
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Figure 4. Convergence Curves for GWO, PSO, BAT, and SSA corresponding to 4-Transfer Functions 
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Table 3. Execution Times for 4-Algorithms Corresponding to 4-Transfer Functions 

 Execution Times(seconds) for Transfer Function V1 

Key Size (Bits) 

Algorithms 
 64 80 96 128 192 256 512 

GWO 
Mean 4.781 5.946 7.908 9.906 14.248 18.896 44.681 

Stdev 0.052 0.036 1.94 0.553 0.089 0.118 16.736 

PSO 
Mean 4.561 5.634 7.790 9.180 13.704 18.012 49.348 

Stdev 0.089 0.026 3.087 0.104 0.502 0.102 25.684 

BAT 
Mean 3.859 4.721 6.414 7.749 11.292 14.989 39.401 

Stdev 0.073 0.029 2.313 0.212 0.088 0.115 18.432 

SSA 
Mean 3.827 4.730 6.441 7.598 11.204 15.158 41.061 

Stdev 0.142 0.238 2.456 1.922 0.069 0.216 18.249 

 Execution Times (seconds) for Transfer Function V2 

Key Size (Bits) 

Algorithms 
 64 80 96 128 192 256 512 

GWO 
Mean 5.911 5.987 7.379 9.460 14.212 18.771 37.442 

Stdev 2.154 0.077 0.161 0.049 0.100 0.102 0.376 

PSO 
Mean 6.163 5.667 7.575 8.956 13.567 17.951 35.719 

Stdev 2.930 0.060 1.964 0.065 0.0792 0.129 0.217 

BAT 
Mean 5.157 4.806 5.813 7.432 11.309 14.943 29.704 

Stdev 2.336 0.090 0.044 0.052 0.075 0.100 0.190 

SSA 
Mean 5.236 4.930 5.856 7.520 11.388 15.558 29.987 

Stdev 2.446 0.431 0.0322 0.050 0.069 1.330 0.219 

 Execution Times (seconds) for Transfer Function V3 

Key Size (Bits) 

Algorithms 
 64 80 96 128 192 256 512 

GWO 
Mean 4.820 5.962 8.141 9.706 13.935 19.481 43.732 

Stdev 0.033 0.040 2.046 0.969 0.093 0.293 9.566 

PSO 
Mean 4.567 5.644 9.136 8.923 13.335 18.431 42.595 

Stdev 0.067 0.037 3.791 0.0461 0.105 0.232 10.538 

BAT 
Mean 3.855 4.776 8.258 7.483 11.032 15.758 32.978 

Stdev 0.026 0.033 3.969 0.048 0.071 0.347 4.151 

SSA 
Mean 3.843 4.787 8.297 7.503 11.264 15.733 33.229 

Stdev 0.027 0.059 3.999 0.038 0.379 0.241 4.082 

 Execution Times (seconds) for Transfer Function V4 

Key Size (Bits) 

Algorithms 
 64 80 96 128 192 256 512 

GWO 
Mean 4.817 5.960 7.180 9.409 14.403 19.955 37.307 

Stdev 0.078 0.050 0.049 0.083 0.290 0.161 0.336 

PSO 
Mean 4.549 5.632 7.168 9.088 13.639 19.153 35.541 

Stdev 0.021 0.041 1.118 0.598 0.086 0.197 0.222 

BAT 
Mean 3.840 4.747 5.719 7.405 11.367 15.991 29.669 

Stdev 0.038 0.041 0.041 0.051 0.080 0.133 0.280 

SSA 
Mean 3.871 4.745 5.736 7.491 11.450 16.140 29.978 

Stdev 0.113 0.048 0.047 0.077 0.081 0.138 0.294 



Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023) 

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009 
95 

Observations 

As observed from the results, the SSA-based 

cryptographic key generation algorithm offers the best 

mean values of entropy corresponding to the transfer 

functions compared to PSO, GWO, and BAT algorithms. 

The performance order for the standard deviation entropy 

values is PSO, SSA, GWO, and BAT-based 

cryptographic key generation algorithms. SSA leads can 

also be observed compared to GWO, PSO, and BAT for 

the key size (bits) of 512, 256, 192, 128, 96, 80, and 

64.GWO and BAT algorithms are competitive for 

different instances and PSO remains the second best to 

offer the best entropy values. For 100 iterations, the 

performance order from best to worst for execution time 

consumed by the four algorithms is SSA, BAT, PSO, and 

GWO -based cryptographic key generation algorithms. 

From entropy values and execution times, it can be 

established that the SSA-based cryptographic key 

generation algorithm performs better compared to GWO, 

PSO, and BAT algorithms. Due to low computational 

requirements, the SSA-based cryptographic key 

generation algorithm can be utilized for different 

encryption algorithms, i.e., AES, DES, PRESENT, 

SIMON, SPECK, and 3DES. Moreover, the transfer 

function V1 and V4 with SSA-based key generation 

algorithm performs well for small and large size keys, 

respectively. 

Conclusion 

Cloud computing, IoT, and Fog computing are 

relatively young research areas offering quick and 

effective online services on a pay-as-you-go-payment 

model. Data security, in transit or storage, has always 

been a fundamental obstacle to adopting cloud 

computing, and it demands strong cryptographic 

encryption and key generation algorithms. The Salp 

Swarm algorithm (SSA) and Shannon entropy are the 

foundations of the approach for generating randomized 

cryptographic keys proposed in this study. The proposed 

Cryptographic Key Generation algorithm has been 

evaluated on four transfer functions against three state-of-

the-art swarm intelligence metaheuristics, i.e., grey wolf 

optimization (GWO), particle swarm optimization (PSO) 

and BAT algorithms. The simulation study observed that 

SSA performs better in terms of entropy value and 

execution times than the GWO, PSO, and BAST 

algorithms for the keys of eight different bit lengths, i.e., 

512, 256, 192, 128, 96, 80, and 64. Due to low execution 

time requirement, the SSA-based Cryptographic Key 

Generation algorithm can be used for various encryption 

algorithms, i.e., AES, DES, PRESENT, SIMON, SPECK, 

and 3DES in cloud computing and IoT domain. For 

future research directions, S-type, Q-type, and other 

transfer functions can also generate cryptographic keys. 

The Algebraic and similarity-based meta-heuristics 

algorithms can also be utilized for the cryptographic key 

generation problem. 
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