

*Corresponding Author: sajid.cst@gmail.com

85

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009 Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023)

 Salp Swarm Algorithm to solve Cryptographic Key Generation problem for Cloud computing

 Waseem Kaleem
1
, Mohammad Sajid

1*
 and Ranjit Rajak

2

1
Department of Computer Science, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India;

2
Department of Computer

Science and Applications, Dr. Harisingh Gour Central University, Sagar-470003, Madhya Pradesh, India

E-mail/Orcid Id:

WK, waseemkaleem14@gmail.com, https://orcid.org/0009-0006-1514-6119; MS, sajid.cst@gmail.com, https://orcid.org/0000-0001-8822-5332;

RR, ranjit.jnu@gmail.com, https://orcid.org/0000-0003-2746-3278

Introduction

Internet-of-Things (IoT), Fog Computing, and Cloud

Computing have become indistinguishable components

of every human's personal, social, and corporate sphere.

IoT Analytics envisages that roughly 27 billion IoT

devices will be available globally by 2025 and generate

vast amounts of data (IoT Analytics, 2022). Gartner

indicates that worldwide end-user expenditures on public

cloud services will be increased by 20.7% to $591.8

billion in 2023 from $490.3 billion in 2022 (Gartner,

2021). Cloud computing allows IoT devices to manage,

view, and store data remotely via the Internet instead of

storing and managing locally on servers or hard drives.

Due to rapid growth in cloud adoption and many issues

like insecure APIs, data security, and hacker intervention,

user data security and privacy have become significant

concerns. Data security and confidentiality defend data

from illicit access, disclosure, use, destruction,

alteration, or disruption. It is important because data is a

critical asset for businesses and individuals. It can be

precious to attackers seeking to commit fraud, identity

theft, corporate espionage, or other malicious activities

(Tabrizchi et al., 2020; Alouffi et al., 2021). Thus, it is

necessary to employ highly secure cryptographic

algorithms for the encryption and decryption of data.

Cryptographic algorithms provide a way to protect

sensitive data by transforming it into an unreadable form

without the proper decryption key. It guarantees that

even if cyber criminals gain access to the data, they can

decipher or utilize it without the appropriate

authorization. Researchers and academicians have

developed and implemented dozens of cryptographic

algorithms yearly to provide data security. Each

cryptographic algorithm uses a cryptographic key which

Article History:

Received: 22nd May., 2023

Accepted: 26nd Jun., 2023

Published: 30thJul., 2023

Abstract: Cryptographic keys are long strings of random bits generated using specialized

algorithms and help secure data by making it unpredictable to any adversary. Cryptographic

keys are used in various cryptographic algorithms in many domains, i.e., Cloud computing,

Internet-of-Things (IoT), Fog computing, and others. The key generation algorithms are

essential in cryptographic data encryption and decryption algorithms. This work proposed a

cryptographic key generation algorithm based on Shannon entropy and the Salp Swarm

algorithm (SSA) for generating randomized keys. The proposed Cryptographic Key

Generation algorithm utilizes the dynamic movement of salps to create high-quality, robust,

and randomized keys against attacks. The transfer function and quantization method

convert a salp into a cryptographic key. The proposed Cryptographic Key Generation

algorithm has been evaluated on four transfer functions against three state-of-the-art swarm

intelligence metaheuristics, i.e., particle swarm optimization, BAT, and grey wolf

optimization algorithms. The keys of eight different bit lengths, i.e., 512, 256, 192, 128, 96,

80, 64, were generated and evaluated due to their applications in the different encryption

algorithms, i.e., AES, DES, PRESENT, SIMON, SPECK, and 3DES. The simulation study

confirms that the proposed key generation algorithm effectively produces secure

cryptographic keys.

Keywords:

Cryptography,

randomness, key

generation, Shannon

entropy, transfer

function, Quantization

method

Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023)

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009
86

must be randomized and un-predicable. The

cryptographic key ensures data confidentiality, integrity,

authenticity, and access control.

Without keys, cryptographic algorithms could not

protect sensitive information effectively (Alouffi et al.,

2021; Jawed and Sajid, 2022). Key generation is

essential to cryptography, as the system's security

depends on the keys' secrecy. Figure 1 depicts the

expansion of scholarly study on the key generation, a

research problem of interest for academics and

scientists. The nature of the cryptographic key needs to

be very random, devoid of patterns, and complicated in

its makeup. The key's length is another factor that

influences the encryption's efficacy. The challenge of

decrypting data gets more intricate as key size increases.

The generation of such cryptographic keys is classified

as an NP-hard problem (Tahir et al., 2021; Jawed and

Sajid, 2022).

Exact and metaheuristic algorithms are two

approaches that can be utilized to deal with NP-Hard

problems. By leveraging the power of metaheuristic

algorithms, a category of computational intelligence, it

is possible to solve NP-Hard problems within a

reasonable timeframe. Metaheuristics algorithms are

often population-based, i.e., they operate on a

population of candidate solutions that are evolved and

improved over time. The population is updated

iteratively; with each iteration, the population changes

and improves. Metaheuristic methods have been

established to effectively resolve numerous optimization

problems across various domains. In cloud security,

innumerable metaheuristic algorithms have successfully

addressed various security challenges, such as intrusion

detection, access control, key management, data

breaches, network security, and more. Additionally,

these algorithms have been utilized to optimize cloud

workload scheduling, resource allocation, substitution

boxes, pseudo-number generation, and other related

areas (Osaba et al., 2021; Dokeroglu et al., 2019; Ahsan

et al., 2020; Cook et al., 2018). Salp Swarm Algorithm

(SSA) is one of the population-based metaheuristic

algorithms used extensively for various research

problems (Mirjalili et al., 2017).

The significant contribution of this study is reported

here. The Salp Swarm algorithm (SSA) and Shannon

entropy are the foundations of the approach for

generating randomized keys proposed in this study. It

utilizes the dynamic movement of salps to create high-

quality, robust, and randomized keys against attacks.

The proposed algorithm employs a transfer function and

quantization method to convert a salp into a

cryptographic key. For the performance assessment,

four transfer functions and three state-of-the-art swarm

intelligence metaheuristics, i.e., grey wolf optimization

(GWO) (Mirjalili et al., 2014), particle swarm

optimization (PSO) (Kennedy and Eberhart, 1995), and

BAT (Yang, 2010) algorithms, have been considered.

The keys of eight different bit lengths, i.e., 512, 256,

192, 128, 96, 80, 64, were generated and evaluated due

to their applications in the different advanced encryption

algorithms, i.e., DES, PRESENT, SIMON, SPECK, 3-

DES, and AES (Osaba et al., 2021; Dokeroglu et al.,

2019).

The paper's content is structured as follows: Section

2 outlines the research gap in the literature and

summarizes some recent pertinent studies. Section 3

defines the mathematical formulation of the key

generation problem, followed by a review of considered

metaheuristic algorithms in Section 4. Section 5 has

provided an illustrated description of the proposed

algorithm. Section 6 discussed the findings of the

simulation study based on numerous experiments. The

0

200

400

600

800

1000

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

Sc
h

o
la

rl
y

C
o

n
tr

ib
u

ti
o

n

Year

Scholarly Contribution over 22 years

Key generation for Cryptography

Key generation for Data Security

Key generation for Cloud Security

Figure 1. Growth of scholarly work on the key generation problem from the year 2000 to 2022

Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023)

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009
87

concluding remark and potential impending research

recommendations are provided in Section 7.

Related Work

It summarizes some of the current and pertinent

studies and identifies the research gap in the literature.

Many research surveys have been published on cloud

computing security issues and challenges (Ali et al.,

2015; Bhardwaj et al., 2016; Sicari et al., 2022; Khalid et

al., 2021). Hashizume et al. (2013) discussed security

issues related to cloud computing, which reports that

essential services are outsourced to third parties leading

to data security issues, service availability, and

demonstrating compliance. Moreover, cloud computing's

influence on various advanced technologies, i.e.,

virtualization, service-oriented architecture (SOA),

advanced web, Blockchain technology, and others, also

inherit that particular technology's security issue.

Tahir et al., 2021 suggested the usage of two levels of

encryption in the CryptoGA cryptographic scheme. The

first layer uses the shift cipher to encrypt the plaintext

into ciphertext. Then, using a discrete genetic algorithm

employing Shannon's Entropy as an optimization

objective, the keys are extracted from the incoming

ciphertext. Finally, an encryption method with

randomized crossover and mutation operators is utilized

to get the final ciphertext. Authors also claim that

CryptoGA provides slower execution time and high

throughput demanded by encryption and decryption than

well-known traditional algorithms, i.e., DES and RSA

cryptosystems.

Jawed and Sajid (2022) extended the CryptoGA block

cipher and suggested that 128-bit random keys must be

generated to increase Shannon's Entropy. Researchers

analyzed XECryptoGA on CryptoGA and found that

XECryptoGA generates keys six times faster than

CryptoGA. In XECryptoGA and CryptoGA, the

Avalanche effect is respectively close to 50% and less

than 20%.CryptoGA can be cracked with a brute force

attack with just 1456(i.e., 8 x 7 x 26) guesses, whereas

XECryptoGA requires 2
128

.

Kalsi et al. (2017) presented a novel concept of DNA-

based Deep Learning Cryptography involving the usage

of DNA sequences and deep learning techniques to

obscure data. This approach is designed to enhance data

security by encoding DNA sequences and utilizing deep

learning algorithms to protect the information from

unauthorized access. The Genetic Algorithm with

Needleman-Wunsch (NW) algorithm generates keys,

which are then employed in the encryption and

decryption processes along with numerous biological

procedures, such as DNA sequencing, transcription, and

translation.

Gupta et al. (2022) suggested protected key generation

utilizing improved identity-based encryption for cloud

systems to conceal the consumer's identity even if the

attacker decodes the keys or data. According to the

authors' assertions, the efficient selective-ID secure

identity-based encryption solution, a competing strategy,

takes longer to encrypt and decrypt data. According to the

authors, the suggested method's most important feature is

that the Lagrange coefficient hides the user's identity.

Singh and Chatterjee (2017) discussed the features,

security issues, threats, and solutions of cloud computing

and compared related works. Ali et al. (2015) surveyed

the security issues arising from the cloud computing

paradigm's shared, virtualized, and public nature.

Bhardwaj et al. (2016) compared different symmetric and

asymmetric algorithms used in cryptography. It also

explains how symmetric algorithms are used in cloud-

based applications and services. Thabit et al. (2021)

proposed a new lightweight cryptographic method that

draws inspiration from the Feistal and Substitution

Permutation Architecture, which has been presented to

ameliorate the data security of cloud systems. Authors

claim that the new lightweight cryptographic algorithm

(NLCA) provides high protection and low computational

cost compared to frequently used algorithms, namely

HIGHT, AES, DES, and Blowfish. Block size, key

length, potential key, mathematical operations, cipher

type, and security power were the six criteria used to

evaluate NLCA.

Moreover, three-layer privacy-preserving (Wang et

al., 2018), evolutionary game-based security mechanism

(Sun et al., 2018), Session key-based lightweight

encryption algorithm (Gupta et al., 2021), Elliptic curve

Diffie Hellman cryptosystem (Subramanian and

Tamilselvan, 2020), a novel secure fog-based cloud

storage (Ahsan et al., 2022), and GA-based data security

algorithm (Thabit et al., 2021) for cloud computing or fog

computing were developed and tested.

Some algorithms that do not generate keys separately

to produce ciphertext have various drawbacks, such as

lack of confidentiality, limited security, limited use cases,

lack of scalability, and lack of interoperability. As

compared to keyless cryptographic algorithms, the key-

utilized algorithms provide substantial protection and

versatility, making them suitable for a wide range of

applications that require data confidentiality and

authentication. Moreover, the key generation algorithms

have been embedded in the various existing

cryptographic algorithms instead of separate lightweight

Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023)

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009
88

key generation algorithms. The Salp Swarm algorithm

(SSA) and Shannon entropy are the foundations of the

lightweight key generation approach for generating

randomized cryptographic keys proposed in this study. It

utilizes the dynamic movement of salps to create high-

quality, robust, and randomized keys against attacks.

Problem Formulation

Shannon developed Shannon's entropy E(X), which

calculates the mean amount of "uncertainty" included in

the given random sequence, to evaluate the unpredictable

nature of any source "X". Shannon's entropy has wide

applications in various fields, such as digital

communication, data storage, machine learning and

artificial intelligence (Tahir et al., 2021; Jawed and

Sajid, 2022).

Suppose is the cryptographic key of length -bit

generated using the SSA-based key generation problem.

The key generation problem in mathematical form can be

given as:

 () ∑ () () ()

Where,

 * + ()

I=0,1,2,……….,n-1……………………………...(3)

where () characterizes the probability of the bit

 present in the cryptographic key .

Metaheuristic Algorithms

Metaheuristic algorithms are advanced optimization

techniques that are employed to discover near-optimal

solutions to intricate optimization problems. These

algorithms operate at a top-level abstraction to explore a

diverse range of potential solutions and evaluate them

based on certain criteria, thereby enabling them to find

approximate solutions to problems that are typically

challenging to solve using conventional optimization

methods. In contrast to exact optimization methods,

metaheuristic algorithms do not guarantee finding the

optimal global solution. Instead, they aim to find suitable

solutions within a reasonable computation time.

Metaheuristics algorithms are often population-based,

meaning they operate on a population of candidate

solutions that have evolved and improved over time. The

population is updated iteratively and improves with each

iteration. Metaheuristics have been used in several fields,

such as operations research, computer science,

engineering, etc., for solving optimization problems,

including function optimization, constraint optimization,

and combinatorial optimizations (scheduling, routing,

network design, image processing, finance, and many

more). Metaheuristics are suitable for high-dimensional,

multi-modal, and non-linear problems, and they are

widely used in many real-world applications (Crawford et

al., 2017; Sajid et al., 2022; Sajid and Raza, 2017).

Salp Swarm Algorithm (SSA)

Salp Swarm Algorithm is a bio-inspired optimization

algorithm based on the swimming patterns of salp chains,

which are planktonic tunicates in the ocean. The

algorithm represents the optimization problem as a

population of particles, each representing a candidate

solution to the problem. Each particle's position is

updated depending on its current location, personal best

position, and the population's overall best position. In

SSA, the particles move in a coordinated way, similar to

how the individuals in a salp chain move. Each particle

follows the leader in front of it while at the same time

maintaining a distance from the leader behind it. It leads

to the formation of a chain-like structure, where the

particles move in a coordinated fashion to explore the

search space. One of the characteristics of SSA is that the

leader particle changes over time, allowing the whole

population to examine different regions of the search

space. SSA has been proficiently applied to unravel

varied problems in engineering, computer science, and

finance. It's suitable for optimization problem that has a

complex landscape and high dimensionality problem

(Mirjalili et al., 2017).

Particle Swarm Optimization (PSO)

PSO is a metaheuristic optimization algorithm based

on the behavior of a swarm of particles. It is used to

determine a function's overall best solution. In PSO, each

particle represents a candidate solution to the

optimization problem. The position of each particle in the

search space is updated based on its position, the position

of the best solution found so far (called the "personal

best" or "pbest"), and the position of the best solution

found by the entire population (called the "global best" or

"gbest"). The position of each particle is updated based

on the positions of the personal best and global best

particles, as well as a velocity component that allows the

particle to move toward the best solutions. The velocity

component is updated based on the current velocity, the

cognitive component that guides the particle toward its

pbest, and the social component that drives it toward the

gbest. The PSO algorithm uses a random initialization of

the particles and is sensitive to the initialization values,

and different initialization values can lead to another

solution. As the number of iterations increases, the

particles converge toward the optimal solution, typically

located near the gbest. PSO is considered a simple yet

powerful optimization algorithm, and it's been used in

Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023)

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009
89

various areas such as function optimization, feature

selection, neural networks, control systems, and many

more. It's simple because of the minimal parameter

setting required and easy to understand, yet it can find

reasonable solutions for complex optimization problems

(Kennedy and 1995).

Grey Wolf Optimization (GWO)

GWO algorithm is a swarm optimization algorithm

based on the grey wolves hunting behavior. It is used to

find the global optimum of a given function. The

algorithm uses a population of "wolves," each

representing a candidate solution to the optimization

problem. The position of each wolf in the search space is

updated based on the current best position, the personal

best position (the best position a particular wolf has found

so far), and the global best position (the best position

located by any wolf in the population). In GWO,

leadership hierarchy among the wolves is used, similar to

the real-world behavior of grey wolves in a pack. There

are three types of wolves: Alpha, Beta, and Delta, each

with different responsibilities and roles in the

optimization process. The Alpha wolf is responsible for

leading the pack and exploring the search space, the Beta

wolves are responsible for exploiting the search space,

and the Delta wolves are responsible for maintaining the

diversity of the population. One of the characteristics of

GWO is that it uses a simple random walk mechanism,

similar to other metaheuristic optimization algorithms. It

allows the algorithm to explore different regions of the

search space and avoid getting stuck in local optima.

GWO frequently outperforms other metaheuristic

optimization algorithms when used for various

optimization issues, including function optimization,

feature selection, picture compression, and cluster

analysis (Mirjalili et al., 2014).

Bat Algorithm

Xin-She Yang (2010) introduced a swarm intelligence

Bat algorithm inspired by the behavior of bats,

specifically their echolocation abilities and hunting

behavior. The algorithm is a metaheuristic optimization

method that can unravel engineering design problems. It

involves a population of virtual "bats" that search for the

optimal solution to a given problem. There are several

possible solutions to the population of bats. It updates its

location within the search space based on its observations

and those of the other bats in the colony. The algorithm

works by adjusting the frequency and loudness of the

bats' echolocation calls based on their current position

and the position of the best bat in the population. It

allows the bats to explore the search space more

effectively and converge toward the optimal solution. The

Bat Algorithm solves many optimization problems,

including engineering design, data mining, and machine

learning. It is also relatively simple to implement and can

be adapted for various optimization problems (Yang,

2010).

Salp-Swarm-Based Cryptographic Key Generation

Algorithm

As shown in Algorithm 1, Salp Swarm Algorithm

(SSA) based Cryptographic key generation algorithm

starts with the salps' random population S of size , the

dimension of each salp which is the key length . The

values of salps are shown in Eq. (4):

[

]

 ()

The cryptographic key is a binary problem, while the

SSA is created for a real-valued problem. The transfer

function followed by the discretization method is used on

the real-valued salps. To compute the Shannon entropy,

the transfer function () scales each salp between 0 and

1. The general equation is given as follows (Lanza-

Gutierrez et al., 2017 and Beheshti, 2021),

 (

)

 ()

Various transfer functions exist, such as S-type, V-

type, and Q-type. It has been proven that V-type transfer

functions perform well on many problems. Thus, four V-

type transfer functions are considered for this study, and

their graphical representation is also shown in Figure 2.

To convert the scaled salp into the discrete binary

population , the standard binarization technique

(Quantization method) is as follows-

 {

 ()

 ()

Where () denotes a chance number between

0 and 1.

The converted population Y is given as follows-

[

]

 * + ()

After converting the real-valued salp into a discrete

binary salp, Shannon entropy E(X) determines each salp

Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023)

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009
90

fitness value using equation (1). Figure 3 shows the

conversion process from a salp to a cryptographic key.

Algorithm 1: SSA-Based Key Generation Algorithm

Input: Population Swith size N, dimension n, upper

bound ub, lower bound lb

Output: Key () with maximum Shannon entropy

Begin:

1. Initialize the salp () with population

S, dimension n, upper bound ub, and lower bound lb;

2. While the end condition is not satisfied, do

3. Calculate the fitness of each search agent (salp) using

the Transfer function (Eq. 5), Quantization method (

Eq. 6), and Shannon's Entropy (Eq. (1));

4. F = the best search agent with maximum Shannon

entropy;

5. Do for every salp :

If salp is leader salp:

Update salp ’s position using Eq. (8);

else

Update salp ’s position using Eq. (10);

6. end

7. end do loop

8. Adjust all salps dimension values based on the lower

and upper bounds;

9. End while

10. return F as Key () and Shannon entropy

End:

Figure 2. V-Type Transfer Functions

Figure 3. Salp to cryptographic key conversion

According to step 6 of Algorithm 1, the position of

salps is updated to generate the new population. The

position of the leader salp is calculated by equation (8):

 {

 (())

 (())
 ()

The new position of the leader is shown by
 and

food source's position vector in the dimension is

shown by , the upper and lower bounds of the

dimension is shown by u and l respectively, and

are random values inside [0, 1], in Eq(9), is the

algorithm's primary parameter.

 (

)

 ()

 displays the maximum number of iterations,

whereas t represents the current iteration. This value

reduces as the iteration count rises. As a result, it can

draw attention to the tendency towards diversification in

the early stages of optimization and the tendency towards

intensification in the latter stages.

The followers' location is modified by Eq……… (10):

 ()

Where and
 is the location of the follower

salp at the dimension.

Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023)

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009
91

The above processes keep on repeating until the

maximum iteration is reached. The fittest salp of the final

population is considered as the cryptographic key. The

cryptographic key and its Shannon entropy are returned.

Simulation Results

This section depicts and discusses the system

parameters, obtained results in the form of entropy values

and execution times of algorithms, and the study's

observations.

System Parameters

The system used for obtaining the simulation results is

Intel Core i5-8250U, 12 GB RAM, Windows 10 OS, and

Python v3.11.0. The four algorithms, SSA, BAT, GWO,

and PSO, have been modified for the cryptographic key

generation problem for various sizes of the key length.

Table 1 depicts the parameters and their values

corresponding to four different meta-heuristics. The keys

of eight different bit lengths, i.e., 512, 256, 192, 128, 96,

80, 64, were generated and evaluated due to their

applications in the different cryptographic algorithms,

i.e., AES, DES, PRESENT, SIMON, SPECK, and 3DES.

The simulation tests were run 20 times for each

cryptographic key length, and mean and standard

deviation values for entropy and execution durations were

recorded and presented (Krishna et al., 2018).

Table 1. System Parameters

Algorithm Parameter Value

Standard

Parameters for

GWO, BAT, PSO,

and SSA

Population Size 50

Maximum Iteration 100

Dimension Key Length

Lower Bound (lb) -100

Upper Bound (lb) +100

Objective Function Shannon

Entropy

GWO Alpha (Initial Score) -inf

Beta (Initial Score) -inf

Delta (Initial Score) -inf

Convergence constant Linearly

decreases

from

2 to 0

BAT Loudness 0.5

Pulse Rate 0.5

Minimum Frequency 0

Maximum Frequency 2

PSO

Inertia [0.2, 0.9]

Cognition of particle (c1) 2

Social influence of swarm (c2) 2

SSA

Initial Speed 0

Uniformly Generated Random

Numbers (c2& c3)

(0, 1)

Results Obtained

Table 2 consists of the mean and standard deviation of

entropy produced by GWO, PSO, BAT, and SSA

algorithms for key sizes (in bits) 512, 256, 192, 128, 96,

80, and 64 corresponding to four transfer functions, i.e.,

V1, V2, V3, and V4. Table 2 illustrates that the SSA-based

cryptographic key generation algorithm offers the best

mean values of entropy corresponding to the transfer

function V1 followed by PSO-, GWO- and BAT-based

cryptographic key generation algorithms. However, the

SSA-based cryptographic key generation algorithm offers

the second-best standard deviation values of entropy

corresponding to the transfer function V1 followed by

GWO- and BAT-based cryptographic key generation

algorithms. The PSO-based cryptographic key generation

algorithm offers the best standard deviation values of

entropy corresponding to the transfer function V1. For

transfer functions V2, V3, and V4, the best mean entropy

values were offered by the SSA-based cryptographic key

generation algorithm corresponding to the transfer

function V1 followed by PSO-, GWO-, and BAT-based

cryptographic key generation algorithms. Regarding

standard deviation entropy values, the PSO-based

cryptographic key generation algorithm offers the best

values, followed by SSA-, GWO-, and BAT-based

algorithms.

Figure 4 depicts the different convergence curves

offered by SSA-, PSO-, GWO- and BAT-based

cryptographic key generation algorithms corresponding to

4-transfer functions, i.e., V1, V2, V3, and V4. As can be

seen from Figure 4, the SSA-based cryptographic key

generation algorithm offers the best entropy values

compared to PSO, GWO, and BAT algorithms.

Generally, the performance order from best to worst is

SSA, PSO, GWO, and BAT algorithms. However, GWO

and BAT algorithms are competitive for different

instances, as seen in Figure 4.

Table 3 displays the mean and standard deviation of

execution time consumed over 100 iterations by GWO,

PSO, BAT, and SSA algorithms for key sizes (bits)512,

256, 192, 128, 96, 80, and 64 corresponding to four

transfer functions, i.e., V1, V2, V3, and V4. The SSA and

BAT-based cryptographic key generation algorithms

consume minimum and almost equal time corresponding

to the transfer function V1, V2, V3, and V4, followed by

PSO-and GWO-based cryptographic key generation

algorithms.

Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023)

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009
92

Table 2. Entropy Values for 4-Algorithms Corresponding to Four Transfer Functions

 Entropy Values for Transfer Function V1

Key Size (Bits)

Algorithms
 64 80 96 128 192 256 512

GWO
Mean 0.393 0.396 0.335 0.295 0.276 0.255 0.225

Stdev 0.057 0.046 0.042 0.033 0.033 0.043 0.059

PSO
Mean 0.541 0.509 0.411 0.419 0.369 0.378 0.306

Stdev 0.047 0.088 0.055 0.064 0.073 0.044 0.023

BAT
Mean 0.286 0.270 0.313 0.265 0.220 0.218 0.193

Stdev 0.091 0.077 0.097 0.072 0.025 0.030 0.025

SSA
Mean 0.555 0.563 0.519 0.481 0.410 0.379 0.328

Stdev 0.084 0.074 0.065 0.054 0.047 0.033 0.027

 Entropy Values for Transfer Function V2

Key Size (Bits)

Algorithms
 64 80 96 128 192 256 512

GWO
Mean 0.458 0.414 0.416 0.326 0.296 0.302 0.278

Stdev 0.087 0.077 0.078 0.039 0.033 0.067 0.101

PSO
Mean 0.579 0.542 0.501 0.470 0.440 0.3947 0.329

Stdev 0.054 0.073 0.087 0.033 0.051 0.033 0.041

BAT
Mean 0.353 0.293 0.307 0.296 0.258 0.237 0.200

Stdev 0.105 0.069 0.0769 0.058 0.033 0.034 0.033

SSA
Mean 0.593 0.586 0.561 0.496 0.478 0.417 0.380

Stdev 0.071 0.0427 0.055 0.045 0.047 0.037 0.030

 Entropy Values for Transfer Function V3

Key Size (Bits)

Algorithms
 64 80 96 128 192 256 512

GWO
Mean 0.468 0.442 0.475 0.389 0.340 0.333 0.356

Stdev 0.035 0.050 0.064 0.061 0.041 0.054 0.083

PSO
Mean 0.605 0.593 0.519 0.508 0.456 0.457 0.384

Stdev 0.074 0.068 0.086 0.089 0.055 0.022 0.051

BAT
Mean 0.435 0.391 0.358 0.390 0.321 0.310 0.271

Stdev 0.063 0.092 0.061 0.050 0.037 0.028 0.032

SSA
Mean 0.649 0.647 0.630 0.582 0.487 0.509 0.415

Stdev 0.072 0.044 0.049 0.044 0.035 0.038 0.021

 Entropy Values for Transfer Function V4

Key Size (Bits)

Algorithms
 64 80 96 128 192 256 512

GWO
Mean 0.588 0.560 0.547 0.509 0.482 0.458 0.474

Stdev 0.039 0.029 0.053 0.053 0.032 0.060 0.086

PSO
Mean 0.718 0.691 0.650 0.629 0.582 0.556 0.512

Stdev 0.056 0.050 0.046 0.047 0.026 0.042 0.025

BAT
Mean 0.544 0.559 0.530 0.493 0.466 0.433 0.406

Stdev 0.067 0.078 0.072 0.056 0.058 0.060 0.037

SSA
Mean 0.774 0.730 0.717 0.672 0.644 0.627 0.566

Stdev 0.047 0.057 0.042 0.041 0.034 0.027 0.023

Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023)

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009
93

T
ra

n
sf

er
 F

u
n

ct
io

n
s

K
ey

 S
iz

e
(B

it
s)

 V1 V2 V3 V4

6
4

8
0

9
6

1
2
8

1
9
2

2
5
6

5
1

2

Figure 4. Convergence Curves for GWO, PSO, BAT, and SSA corresponding to 4-Transfer Functions

Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023)

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009
94

Table 3. Execution Times for 4-Algorithms Corresponding to 4-Transfer Functions

 Execution Times(seconds) for Transfer Function V1

Key Size (Bits)

Algorithms
 64 80 96 128 192 256 512

GWO
Mean 4.781 5.946 7.908 9.906 14.248 18.896 44.681

Stdev 0.052 0.036 1.94 0.553 0.089 0.118 16.736

PSO
Mean 4.561 5.634 7.790 9.180 13.704 18.012 49.348

Stdev 0.089 0.026 3.087 0.104 0.502 0.102 25.684

BAT
Mean 3.859 4.721 6.414 7.749 11.292 14.989 39.401

Stdev 0.073 0.029 2.313 0.212 0.088 0.115 18.432

SSA
Mean 3.827 4.730 6.441 7.598 11.204 15.158 41.061

Stdev 0.142 0.238 2.456 1.922 0.069 0.216 18.249

 Execution Times (seconds) for Transfer Function V2

Key Size (Bits)

Algorithms
 64 80 96 128 192 256 512

GWO
Mean 5.911 5.987 7.379 9.460 14.212 18.771 37.442

Stdev 2.154 0.077 0.161 0.049 0.100 0.102 0.376

PSO
Mean 6.163 5.667 7.575 8.956 13.567 17.951 35.719

Stdev 2.930 0.060 1.964 0.065 0.0792 0.129 0.217

BAT
Mean 5.157 4.806 5.813 7.432 11.309 14.943 29.704

Stdev 2.336 0.090 0.044 0.052 0.075 0.100 0.190

SSA
Mean 5.236 4.930 5.856 7.520 11.388 15.558 29.987

Stdev 2.446 0.431 0.0322 0.050 0.069 1.330 0.219

 Execution Times (seconds) for Transfer Function V3

Key Size (Bits)

Algorithms
 64 80 96 128 192 256 512

GWO
Mean 4.820 5.962 8.141 9.706 13.935 19.481 43.732

Stdev 0.033 0.040 2.046 0.969 0.093 0.293 9.566

PSO
Mean 4.567 5.644 9.136 8.923 13.335 18.431 42.595

Stdev 0.067 0.037 3.791 0.0461 0.105 0.232 10.538

BAT
Mean 3.855 4.776 8.258 7.483 11.032 15.758 32.978

Stdev 0.026 0.033 3.969 0.048 0.071 0.347 4.151

SSA
Mean 3.843 4.787 8.297 7.503 11.264 15.733 33.229

Stdev 0.027 0.059 3.999 0.038 0.379 0.241 4.082

 Execution Times (seconds) for Transfer Function V4

Key Size (Bits)

Algorithms
 64 80 96 128 192 256 512

GWO
Mean 4.817 5.960 7.180 9.409 14.403 19.955 37.307

Stdev 0.078 0.050 0.049 0.083 0.290 0.161 0.336

PSO
Mean 4.549 5.632 7.168 9.088 13.639 19.153 35.541

Stdev 0.021 0.041 1.118 0.598 0.086 0.197 0.222

BAT
Mean 3.840 4.747 5.719 7.405 11.367 15.991 29.669

Stdev 0.038 0.041 0.041 0.051 0.080 0.133 0.280

SSA
Mean 3.871 4.745 5.736 7.491 11.450 16.140 29.978

Stdev 0.113 0.048 0.047 0.077 0.081 0.138 0.294

Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023)

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009
95

Observations

As observed from the results, the SSA-based

cryptographic key generation algorithm offers the best

mean values of entropy corresponding to the transfer

functions compared to PSO, GWO, and BAT algorithms.

The performance order for the standard deviation entropy

values is PSO, SSA, GWO, and BAT-based

cryptographic key generation algorithms. SSA leads can

also be observed compared to GWO, PSO, and BAT for

the key size (bits) of 512, 256, 192, 128, 96, 80, and

64.GWO and BAT algorithms are competitive for

different instances and PSO remains the second best to

offer the best entropy values. For 100 iterations, the

performance order from best to worst for execution time

consumed by the four algorithms is SSA, BAT, PSO, and

GWO -based cryptographic key generation algorithms.

From entropy values and execution times, it can be

established that the SSA-based cryptographic key

generation algorithm performs better compared to GWO,

PSO, and BAT algorithms. Due to low computational

requirements, the SSA-based cryptographic key

generation algorithm can be utilized for different

encryption algorithms, i.e., AES, DES, PRESENT,

SIMON, SPECK, and 3DES. Moreover, the transfer

function V1 and V4 with SSA-based key generation

algorithm performs well for small and large size keys,

respectively.

Conclusion

Cloud computing, IoT, and Fog computing are

relatively young research areas offering quick and

effective online services on a pay-as-you-go-payment

model. Data security, in transit or storage, has always

been a fundamental obstacle to adopting cloud

computing, and it demands strong cryptographic

encryption and key generation algorithms. The Salp

Swarm algorithm (SSA) and Shannon entropy are the

foundations of the approach for generating randomized

cryptographic keys proposed in this study. The proposed

Cryptographic Key Generation algorithm has been

evaluated on four transfer functions against three state-of-

the-art swarm intelligence metaheuristics, i.e., grey wolf

optimization (GWO), particle swarm optimization (PSO)

and BAT algorithms. The simulation study observed that

SSA performs better in terms of entropy value and

execution times than the GWO, PSO, and BAST

algorithms for the keys of eight different bit lengths, i.e.,

512, 256, 192, 128, 96, 80, and 64. Due to low execution

time requirement, the SSA-based Cryptographic Key

Generation algorithm can be used for various encryption

algorithms, i.e., AES, DES, PRESENT, SIMON, SPECK,

and 3DES in cloud computing and IoT domain. For

future research directions, S-type, Q-type, and other

transfer functions can also generate cryptographic keys.

The Algebraic and similarity-based meta-heuristics

algorithms can also be utilized for the cryptographic key

generation problem.

Conflict of interest

None

References

Ahsan, M. M., Gupta, K. D., Nag, A. K., Poudyal,

S., Kouzani, A. Z., & Mahmud, M. A. P.

(2020). Applications and evaluations of bio-

inspired approaches in cloud security: A

review. IEEE Access, 8, 180799-180814.

https://doi.org/10.1109/ACCESS.2020.3027841

Alouffi, B., Hasnain, M., Alharbi, A., Alosaimi, W.,

Alyami, H., & Ayaz, M. (2021). A systematic

literature review on cloud computing security:

threats and mitigation strategies. IEEE Access,

9, 57792-57807.

 https://doi.org/10.1109/ACCESS.2021.3073203.

Ali, M., Khan, S. U., & Vasilakos, A. V. (2015).

Security in cloud computing: Opportunities

and challenges. Information Sciences, 305,

357–383.

https://doi.org/10.1016/j.ins.2015.01.025.

Beheshti, Z. (2021). UTF: Upgrade transfer function

for binary meta-heuristic algorithms. Applied

Soft Computing, 106, 107346.

 https://doi.org/10.1016/j.asoc.2021.107346

Bhardwaj, A., Subrahmanyam, G., Avasthi, V., &

Sastry, H. (2016). Security Algorithms for

Cloud Computing. Procedia Computer

Science, 85, 535–542.

 https://doi.org/10.1016/j.procs.2016.05.215.

Cook, A., Robinson, M., Ferrag, M., Leandros, H.,

& Ying, J. (2018). Internet of Cloud: Security

and Privacy Issues. IEEE Internet Computing,

15(1), 73-76.

Crawford, B., Soto, R., Astorga, G., García, J.,

Castro, C., & Paredes, F. (2017). Putting

continuous metaheuristics to work in binary

search spaces. Complexity, 8404231.

Del Ser, J., Osaba, E., Dondo, J., López-Guede, J.

M., & Molina, D. (2018). Bio-Inspired

Computation: Where We Stand and What's

Next. Complexity, 2018, 1-16.

Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023)

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009
96

 https://doi.org/10.1155/2018/9343095.

Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., &

Cosar, A. (2019). A survey on new generation

metaheuristic algorithms. Computers &

Industrial Engineering, 137, 106040.

Gartner. (2021). Forecast: IT Services for IoT,

Worldwide, 2019-2025. [Online]. Available:

https://www.gartner.com/en/documents/40047

41

Gupta, M., Gupta, K. K., & Shukla, P. K. (2021).

Session key-based fast, secure, and lightweight

image encryption algorithm. Multimedia Tools

and Applications, 80(7), 10391–10416.

https://doi.org/10.1007/s11042-020-10116-z.

Gupta, R. K., Almuzaini, K. K., Pateriya, R. K.,

Shah, K., Shukla, P. K., & Akwafo, R. (2022).

An improved secure key generation using

enhanced identity-based encryption for cloud

computing in large-scale 5G. Wireless

Communications and Mobile Computing,

2022, 7291250.

 https://doi.org/10.1155/2022/7291250.

Hashizume, K., Rosado, D. G., Fernández-Medina,

E., & Fernández, E. B. (2013). An analysis of

security issues for cloud computing. Journal of

Internet Services and Applications, 4, 5.

Jawed, M. S., & Sajid, M. (2022). A comprehensive

survey on cloud computing: architecture, tools,

technologies, and open issues. International

Journal of Cloud Applications and Computing,

12(1), 1–33.

 https://doi.org/10.4018/IJCAC.308277.

Jawed, M.S., & Sajid, M. (2022). XECryptoGA: A

Metaheuristic algorithm-based Block Cipher to

Enhance the Security Goals. Evolutionary

Systems. https://doi.org/10.1007/s12530-022-

09462-0.

Kalsi, S., Kaur, H., & Chang, V. (2017). DNA

cryptography and deep learning using genetic

algorithm with NW algorithm for key

generation. Journal of Medical Systems, 42(1).

https://doi.org/10.1007/s10916-017-0851-z.

Kennedy, J., & Eberhart, R. (1995). Particle Swarm

Optimization. Proceedings of IEEE

International Conference on Neural Networks,

IV, 1942–1948.

 https://doi.org/10.1109/ICNN.1995.488968.

Kennedy, J., & Eberhart, R. C. (1997). A discrete

binary version of the particle swarm algorithm.

In Proceedings of the 1997 IEEE International

Conference on Systems, Man, and

Cybernetics. Computational Cybernetics and

Simulation, Orlando, FL, USA, 5, 4104–4108.

Khalid, T., Abbasi, M.A.K., Zuraiz, M., Khan, A.N.,

Ali, M., Ahmad, R.W., Rodrigues, J.J.P.C.,

Aslam, M. (2021). A survey on privacy and

access control schemes in fog computing.

International Journal of Communication

Systems, 34(2), e4181.

 https://doi.org/10.1002/dac.4181.

Krishna, G. J., Ravi, V., & Bhattu, S. N. (2018). Key

generation for plain text in stream cipher via

bi-objective evolutionary computing. Applied

Soft Computing, 70, 301–317.

 https://doi.org/10.1016/j.asoc.2018.05.025.

Lanza-Gutierrez, J. M., Crawford, B., Soto, R.,

Berrios, N., Gomez-Pulido, J. A., & Paredes,

F. (2017). Analyzing the effects of binarization

techniques when solving the set covering

problem through swarm optimization. Expert

Systems with Applications, 70, 67–82.

https://doi.org/10.1016/j.eswa.2016.10.054

Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z.,

Saremi, S., Faris, H., & Mirjalili, S. M. (2017).

Salp Swarm Algorithm: A bio-inspired

optimizer for engineering design problems.

Advances in Engineering Software, 114, 163-

191. https://doi.org/10.1016/j.advengsoft.2017.07.002

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014).

Grey Wolf Optimizer. Advances in

Engineering Software, 69, 46-61.

https://doi.org/10.1016/j.advengsoft.2013.12.0

07

Osaba, E., Villar-Rodriguez, E., Del Ser, J., Nebro,

A. J., Molina, D., LaTorre, A., Suganthan, P.

N., Coello-Coello, C. A., & Herrera, F. (2021).

A tutorial on the design, experimentation, and

application of metaheuristic algorithms to real-

world optimization problems. Swarm and

Evolutionary Computation, 64, 100888.

https://doi.org/10.1016/j.swevo.2021.100888

Sicari, A. S., Rizzardi, A., & Coen-Porisini, A.

(2022). Insights into security and privacy

towards fog computing evolution. Computers

https://doi.org/10.1007/s12530-022-09462-0
https://doi.org/10.1007/s12530-022-09462-0

Int. J. Exp. Res. Rev., Special Vol. 31: 85-97 (2023)

DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009
97

& Security, 120, 102822.

https://doi.org/10.1016/j.cose.2022.102822.

Singh, A., & Chatterjee, K. (2017). Cloud security

issues and challenges: A survey. Journal of

Network and Computer Applications, 79, 88–

115.

 https://doi.org/10.1016/j.jnca.2016.11.027.

Subramanian, E. K., & Tamilselvan, L. (2020).

Elliptic curve Diffie-Hellman cryptosystem in

big data cloud security. Cluster Computing,

pp.1–11. https://doi.org/10.1007/s10586-020-

03069-3

Sun, Y., Lin, F., & Zhang, N. (2018). A security

mechanism based on evolutionary game in fog

computing. Saudi Journal of Biological

Sciences, 25(2), 237–241.

 https://doi.org/10.1016/j.sjbs.2017.09.010.

Tabrizchi, H., & Kuchaki Rafsanjani, M. (2020). A

survey on security challenges in cloud

computing: issues, threats, and solutions.

Journal of Supercomputing, 76, 9493–9532.

https://doi.org/10.1007/s11227-020-03213-1

Tahir, M., Sardaraz, M., Mehmood, Z., &

Muhammad, S. (2021). CryptoGA: a

cryptosystem based on genetic algorithm for

cloud data security. Cluster Computing, 24(2),

739–752. https://doi.org/10.1007/s10586-020-

03157-4.

Thabit, F., Alhomdy, S., & Jagtap, S. (2021). A new

data security algorithm for cloud computing

based on genetics techniques and logical-

mathematical functions. International Journal

of Intelligent Networks, 2, 18–33.

https://doi.org/10.1016/j.ijin.2021.03.001

Thabit, F., Alhomdy, S., Al-ahdal A.H.A., Jagtap, S.

(2021), A new lightweight cryptographic

algorithm for enhancing data security in cloud

computing. Global Transitions Proceedings,

2(1), 91–99.

 https://doi.org/10.1016/j.gltp.2021.01.013.

Wang, T., Zhou, J., Chen, X., Wang, G., Liu, A., &

Liu, Y. (2018). A three-layer privacy-

preserving cloud storage scheme based on

computational intelligence in fog computing.

IEEE Transactions on Emerging Topics in

Computational Intelligence, 2(1), 3–12.

https://doi.org/10.1109/TETCI.2017.2764109.

Yang, X. S. (2010). A New Metaheuristic Bat-

Inspired Algorithm. In Nature Inspired

Cooperative Strategies for Optimization

(NISCO 2010). Studies in Computational

Intelligence, 284, 65–74.

How to cite this Article:

Waseem Kaleem, Mohammad Sajid and Ranjit Rajak (2023). Salp Swarm Algorithm to solve Cryptographic Key Generation problem for

Cloud computing. International Journal of Experimental Research and Review, 31, 85-97.

DOI : https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.009

https://doi.org/10.1016/j.ijin.2021.03.001

