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Introduction 

According to statistics from the World Health 

Organization, the number of diabetic patients has doubled 

since 2015. In 2019, it was estimated that 9.3% (463 

million people) had diabetes, and its prevalence is 

projected to increase to 10.2% (578 million) and 10.9% 

(700 million) by 2030 and 2045, respectively (Sun et al., 

2022).  In recent years, some glucose monitoring methods 

have been developed. It can be categorized into three 

main categories: invasive, minimally invasive, and 

noninvasive. The most used method of checking blood 

glucose levels is to prick the finger with a conventional 

blood glucose meter via an invasive method (Gusev et al., 

2020). However, no matter how tiny or thin the needle is, 

it causes the patient pain, making the procedure difficult 

to incorporate into their daily lives. Additionally, invasive 

glucometers are not cost-effective (Yeaw et al., 2012) 

because they come with single-use strips that must be 

replaced once used. Alternatively, minimally invasive 

techniques causing little skin damage may be used (Chen 

et al., 2017). This method requires calibration more 

frequently than traditional measurement methods. These 

devices are expensive and have stability and lifespan 

problems (Smith et al., 2015). Therefore, these devices 

are unsuitable for regularly monitoring blood glucose 

levels. Due to these reasons, different researchers have 

developed painless, accurate, and cost-effective 

noninvasive methods of measuring blood glucose (Van 

Enter and Von Hauff, 2018). In this way, regular blood 

glucose monitoring could become a more relaxed and 

comfortable experience for millions of people. 

Some approaches have been proposed for non-

invasive blood glucose detection, including in-vitro and 

in-vivo techniques (Jain et al., 2019). An in vitro 

approach involves studies or tests conducted outside a 

living organism, such as in a laboratory. In the in-vivo 
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Abstract: One of the most common diseases around the world is diabetes. Intrusive 

methods involving blood samples via a finger prick are required to test for diabetes. These 

treatments are uncomfortable and prone to infection. Non-invasive testing is proposed as a 

solution to this concerning problem. To test the glucose levels of subjects, a shortwave 

near-infrared-based optical detection system with a 950 nm wavelength sensor in reflective 

mode is presented. The system collects the measured signal through voltage, transmittance, 

absorbance and reflections to estimate glucose. The relation between voltage and predicted 

glucose is evaluated from the absorbance, reflectance, and voltage for 575 samples. A 

Multiple linear regression (MLR) expression is used in the proposed method to enhance the 

accuracy. The proposed method achieves a coefficient of determination (R2) of 99% and a 

mean absolute derivative of 3.6 mg/dl in real-time data analysis with the sensor. The root 

mean square error (RMSE) is also calculated as 3.46 mg/dl. Three additional machine 

learning classifiers are employed to achieve high accuracy in multi-class classification. 

Adaboosting and Gaussian Naïve Bayes classifiers achieve an accuracy of 97% each. 

Furthermore, the system computes performance metrics such as precision, recall, and F1-

score, and predicts the class on the test sample. 
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method, the test is conducted on a living organism, which 

is more suitable for self-monitoring blood glucose levels. 

In view of the complexity of blood and tissue properties, 

optical technologies are particularly well suited to the 

detection of glucose in vivo. Another advantage of optical 

technologies is that they are less likely to irritate the 

targeted biological tissue. Various optical technologies, 

including visible laser light, Raman spectroscopy, mid-

infrared (MIR), near-infrared (NIR), etc., have been used 

to measure from the user's perspective. The other two 

optical techniques, MIR and NIR, have received more 

research attention in recent years. NIR signal has 

wavelengths between 750 nm and 2500 nm, while a MIR 

signal has wavelengths between 2500 nm and 10000 nm. 

MIR penetrates only a few micrometers into human 

tissue, so it can only be used in the reflection mode 

(Heise, 2021). Therefore, NIR spectrometry is a suitable 

method for estimating blood glucose levels. In contrast to 

MIR, NIR light can penetrate through multiple layers of 

the skin and reach the subcutaneous vessels regardless of 

the pigmentation of the skin. Among these techniques, 

NIR spectroscopy has proven to be a useful method for 

determining glucose levels precisely (Goodarzi et al., 

2015). The NIR spectrum is further divided into two 

methods: the long NIR spectrum and the short NIR 

spectrum. Compared to the long NIR, the short NIR has a 

deeper penetration capability beneath the skin, allowing it 

to detect glucose molecules more accurately. Thus, the 

proposed work focuses on the short-wave NIR reflectance 

spectroscopy technique at 950 nm with improved 

accuracy. The following sections discuss prior research 

and the novelty of the proposed approach.  

In other words, NIR has a deeper penetration into the 

skin than most other infrared wavelengths. The NIR 

spectrum analysis can be categorized into two 

subcategories, which include the analysis of NIR 

spectrometry and the analysis of NIR 

Photoplethysmography (PPG) signals. As for NIR PPG 

signals must be acquired with NIR LEDs, whereas a NIR 

spectrometry signal must be analyzed by measuring 

voltage after absorption and reflection. A review is being 

conducted to summarize these two categories, 

emphasizing the machine learning analysis necessary to 

estimate glucose using NIR PPG signals (Hina and 

Saadeh, 2022). On the other hand, numerous studies in 

the literature have demonstrated that NIR bandwidths and 

characteristic spectra vary with blood glucose levels 

(Jintao  et al., 2017; Yang  et al., 2018; Lee  et al., 2019). 

Further, NIR spectrometry can be divided into two 

regions based on their bandwidths: long-wave NIR and 

Short wave NIR. The NIR waves are partially scattered or 

absorbed during penetration through the skin tissue. The 

scattering and absorption of molecules in a medium occur 

due to the vibrations of their chemical bonds. This 

phenomenon makes it possible to determine the glucose 

concentration bonds that contain the chemical formula 

C6H12O6 (Pigman, 2012). The functional bonds of the 

glucose molecule, which consist of C-H and C-O, can be 

used to measure the absorption and reflectance of NIR 

waves to determine glucose concentration in the blood. 

During light absorption by biological tissue, glucose 

molecules are easier to detect using long-wave NIR. 

However, due to its shallow penetration, long-wave NIR 

will not provide better results for in-vivo tests (Uwadaira 

et al., 2016). On the other hand, short NIR waves are 

weakly absorbed by glucose molecules, but they can be 

used for in vivo testing due to their sharp penetration. A 

study in (Jain et al., 2019), used both shorter regions to 

estimate glucose levels. A total of three sensors have 

been used to operate at 940 nm and 1300 nm, out of 

which two 940 nm sensors operate in absorbance and 

reflectance modes, and one 1300 nm sensor is used in 

absorbance mode. According to these results, short NIR 

regions are more focused and studied to estimate blood 

glucose levels. 

The NIR absorption peaks for glucose isomers such as 

fructose, lactose, and galactose are not coincident with 

glucose absorption at approximately 950 nm (Simeone et 

al., 2017). Hence, these isomers do not adversely affect 

the detection of glucose. Also, a significant glucose 

absorption spike can be seen in the NIR between 930 nm 

and 960 nm (Yadav et al., 2015). They can be used as 

reflection and transmission modes depending on the 

specimen type and human body part selection (Villena et 

al., 2019). In other words, the reflection configuration is 

preferred for thick and dense samples, while the 

transmission configuration is more effective for thin and 

aqueous samples. Moreover, the reflective configuration 

has an advantage from a wider selection of human body 

parts compared to the transmission configuration. In a 

previous study, NIR photodiodes with wavelengths of 

940 nm and 950 nm were used to measure blood glucose 

concentration levels non-invasively (Abidin et al., 2013). 

According to this study, 950 nm was the preferred 

wavelength of light for passing through blood glucose 

concentrations more effectively than 940 nm. Another 

method utilizes a 950 nm reflective sensor and a signal 

conditioning component with a 96% accuracy. This 

method requires 9 volts of power to measure glucose 

(Anupongongarch et al., 2019). 

On the other hand, multiple linear regression (MLR) is 

a statistical technique used to analyze the relationship 
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between multiple independent variables and a dependent 

variable (Montgomery et al., 2021). When the 

relationship between the dependent variable and 

independent variables is not linear but exhibits a 

nonlinear pattern, such as exponential growth or decay, 

the logarithmic form is often considered to transform the 

relationship into a linear form. Therefore, this approach 

could be combined with the short-wave NIR technique to 

enhance glucose monitoring accuracy further. Moreover, 

recently, machine learning (ML) has the potential to 

revolutionize healthcare by improving disease diagnosis 

(Chandrasekhar and Peddakrishna, 2023), the machine 

learning classification of diabetes (Teki et al., 2021) 

using binary classification performed for PID dataset and 

personalized treatment (Rajkomar et al., 2019). Various 

ML techniques have been proposed in six machine 

learning classifications performed for binary class 

(Miriyala et al., 2022) to predict glucose. To extract 

relevant features from measured or predicted data. A real-

time emotion identification system using ECG and 

temperature sensors with machine learning. Random 

forest (RF) has been employed to analyze continuous 

glucose monitoring data to predict the occurrence of 

hypoglycemic events in type 1 diabetes patients (Haak et 

al., 2017). Moreover, KNN algorithms have been used to 

classify glucose data based on their similarity to 

previously observed patterns (Ali et al., 2020). Thus, 

using machine learning techniques in glucose prediction 

and classification has yielded encouraging outcomes and 

this approach holds significant potential for enhancing 

diabetes management.  

This study is to develop a glucose prediction and 

classification approach by utilizing a combination of ML, 

shortwave NIR techniques, and MLR. The data collected 

from the sensor is utilized in MLR, which accurately 

predicts glucose levels. It explores the correlation 

between glucose concentration and signal 

absorbance/transmittance, using MLR to achieve high 

accuracy. Furthermore, ML algorithms are utilized to 

categorize glucose levels into multi classes, such as 

normal, hyperglycemic, and hypoglycemic, using the 

spectral data obtained from the non-invasive short-wave 

NIR technique, which measures glucose levels. This 

combined approach allows for the development of a 

reliable and accurate glucose monitoring system that can 

be employed for diabetes management. In order to 

improve the accuracy of the previous work, a continuous 

glucose monitoring system using NIR spectroscopy is 

presented. This system employs a 950 nm reflective 

sensor that is capable of measuring an accuracy of 99%. 

This accuracy is achieved by using an MLR. To 

determine the accuracy of the proposed method, 184 

subject samples are considered. Additionally, the present 

work discussed the relationship between glucose 

concentration and signal absorbance and transmittance. 

The following section discusses the proposed method and 

its implementation.  

Design and Implementation 

The reflective glucose sensor at a wavelength of 950 

nm is used to examine the variations in the sample's 

optical properties. Reflective sensor mode measures the 

quantity of light reflected from a finger with the aid of 

TCR1000. However, these methods may produce varying 

baseline values due to differences in the optical properties 

path. Therefore, it is critical to determine the appropriate 

baseline values for the sensor and calibrate it accordingly 

to guarantee accurate and precise measurements. To 

implement this system, an optical sensor TCRT1000, a 

precise ADC converter, and a microcontroller 

computation unit are needed, as shown in Fig. 1. When an 

IR-emitting LED comes into contact with a finger from 

TCRT1000. The reflected light can be used to detect 

glucose-induced energy absorption in TCRT1000. A 

current-limiting resistor (R1 = 340 Ω) must be added in 

series to protect the IR LED. The circuit design must 

include a resistor (R
2
=47 kΩ) in series with the collector 

for the light receiver. This will limit the current going 

through the phototransistor to prevent its destruction. The 

signal produced from the sensors is fed to an ADS1115 

connected to single-ended inputs to A0 of the sensor 

output reflective sensor respectively. Here it is calibrated 

with a gain of two third and interfaced with the 

microcontroller using the I2C bus protocol. 

The signal received is converted into millivolts to 

predict blood glucose. This is computed by the 

microcontroller using an Algorithm, as in Table 1, which 

extracts the necessary data, such as voltage (x1), 

transmittance (x2), absorbance (x3), and reflectance (x4), 

to predict glucose concentration for the 950 nm sensor. 

The obtained transmittance, absorbance, reflectance, 

voltage values, and baseline calibrated value with 

reference device were analyzed. In order to calculate the 

optical density (OD) or Absorbance of the human finger 

medium, it is necessary to measure the transmittance of 

the light (T), which is the ratio of transmittance voltage 

(Vt) from the medium to the incident voltage (Vi) from 

the LED source. This can be represented by Equation (1). 

Vt
T

Vi


 ………………………………..(1) 

The optical density (OD), also known as absorbance of 

human finger medium, can be represented in Equation 

(2). 
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10log ( )OD T 
…………………….(2) 

Total infrared signal emitted by the sensor is equal to 

the sum of absorbance, transmittance and reflections is 

given by Equation (3), 

Absorbance + Transmittance + Reflections=1……(3)  

The relationship between voltage, transmittance, 

absorbance, and reflections of the infrared signals or loss 

from the finger and sensors are evaluated. Figure 2 and 

Figure 3 show the relationship between measured voltage 

and predicted glucose from the reflective sensor with a  

Table 1. Algorithm for computation of features 

Algorithm  

Input: adc0 

Output: X1, X2, X3 X4- Input features for Prediction of glucose 

Step 1: Read the sensor value from finger to adc0 ADS1115         

 Step 2: initialize mv0, R4.08(offset value) 

 Step 3: convert sensor value into millivolts. 

           mv  (adc0*0.1875)/100 

Step 4: Get 10 sample values from the sensor to smooth the value. 

          a[i]mv 

Step 5: sort the data from small to large. 

          ba[i] 

          a[i] c[j] 

          c[j] b 

Step 6: take the average value of 6 center samples. 

          d+a[i] 

          ed/6 

Step 7: To get the voltage value in V from the averaged samples. 

          x1e 

Step 8: Calculate the Transmittance of the signal. 

           x2x1/R 

Step 9: Calculate the Absorbance of the signal. 

           x3 -log(x2) 

Step 10: Calculate the Reflectance of the signal. 

           x41-x2-x3 

Figure 1. Block diagram of the proposed method 
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950 nm wavelength. In Figure 2, light transmittance 

increases proportionally as the voltage increases, 

depending on the glucose concentration in the subject's 

finger. As the voltage decreases, absorbance increases, 

depending on the glucose concentration present in the 

subject's finger, respectively. The minimum and 

maximum voltage values obtained were 1.79V and 

3.78V, respectively. The minimum and maximum 

absorbance values were 0.443 and 0.120, respectively. 

Similarly, the minimum and maximum transmittance 

values were 0.359 and 0.757, respectively, while the 

minimum and maximum reflection values were 0.196 and 

0.126, respectively. Similarly, From Figure 3, the 

predicted glucose ranges minimum and maximum 

concerning their absorbance, transmittance, and 

reflections of the sensor. Here, as the predicted glucose 

increases, the absorbance of the signal also rises, whereas 

the transmittance of the signal decreases with decaying 

behavior. Reflection of the signal shows lossy behavior to 

the transmitted signal. 

Glucose Prediction Using MLR Method 

The multiple linear regression (MLR) method is 

utilized in this study to predict the glucose concentration 

value by creating a linear combination of input variables 

such as the measured voltages, transmittance, reflectance, 

and absorbance for 950 nm (represented by x1, x2, x3 and 

x4, respectively). The output value is the predicted 

glucose concentration (y) based on the reference Dr trust 

glucometer measurement. The MLR model involves 

fitting a linear equation to the data, with the NIR 

measurements at 950nm as independent variables and the 

glucose value as the dependent variable. The ordinary 

least squares method is commonly used to find optimal 

parameter values that minimize the error. The MLR 

model is considered appropriate for accurate glucose 

concentration prediction. To minimize the error between 

the actual glucose concentration values and the predicted 

values, the MLR model undergoes iterative optimization, 

searching for the optimal coefficient values. The ordinary 

least squares (OLS) method is frequently used to 

determine the optimal parameter values. The iterative 

optimization process entails performing the MLR 

modeling process multiple times until the optimal 

coefficient values are achieved. In this study, MLR is 

applied to four independent predictors to find the 

prediction (ln y) in natural logarithmic form because the 

input predictors demonstrate an exponential increase and 

decay with respect to voltage, as shown in equation (4). 

 
Figure 3. Shows predicted glucose and measured 

features concerning the reflective sensor 

1 2 3 4ln( ) 4.105 6.33ln 3.475ln 9.005ln 5.587lny x x x x    

------- (4) 

1 3 4ln( ) 1.501 9.73ln 9.005ln 5.587lny x x x    

     ------- (5) 

 

 

Figure 2. Illustrate the relation between voltage and measured features 
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The product and power rules with exponential were 

applied to find y and fit the model, with reference to the ỳ 

given in equation (6). This further improved the R 

squared value, which is now 99%.  

^ 9.737 9.005 5.587

1 3 40.223y x x x
……………………(6) 

A scatter plot was created for the output versus each 

input variable, and linearity was assessed with reference 

to the device, as shown in Fig. 4. The correlation 

determination coefficient between the input variables and 

the target variable was calculated at 99% and the root 

mean square error (RMSE) is 3.4. 

 
Figure 4. Depicted the reference (Dr. Trust) and 

predicated values are linear 

The technique characterizes the relationship between 

voltages from the sensor and predicts blood glucose 

concentration with respect to the reference glucose device 

(Dr. Trust's glucometer). The detector input features 

result is an independent variable related to the expected 

glucose response of the 950 nm sensor. The proposed 

model was developed with 575 samples, 289 subjects 

aged 19-69, collected randomly in blood glucose test 

mode. Precision was evaluated based on the mean 

absolute relative difference (mARD), mean absolute 

deviation (MAD), RMSE, and average error. With the 

proposed method minimizing overall error. Performance 

is evaluated using equations (7), (8), and (9). 

Re Pr

1 Re

1
100

n
f e

i f

BG BG
MARD

n BG


  ………….(7) 

Re Pr

1

1 n

f e

i

MAD BG BG
n 

   ………………..(8) 

2

Re Pr

1

1 n

f e

i

RMSE BG BG
n 

   ………..(9) 

 

BGPre and BGRef represent the predicted and 

reference blood glucose concentration values, 

respectively. With n = 575 samples, the MARD is 3.6%, 

MAD is 2.91 mg/dl, and RMSE is 3.46 mg/dl, indicating 

high precision.  

 
1

1
100

n
md m

i md

V V
AvgErr

n V


  …………(10) 

The minimum deviated value Vmd and the measured 

value Vm is used to calculate the AvgErr using equation 

(10), which is found to be 3.73 %.  The coefficient of 

determination (R
2
) is also calculated and found to be 

0.99. To assess the clinical accuracy of the proposed 

system, a Clarke error grid (CEG) analysis is performed, 

and the glucose values are shown in Figure 5. The 

measured glucose values fall within the clinically 

accepted zone, known as Zone A.  

 
Figure 5. CEG for train data with respect to reference 

and predicted glucose 

Table 2 presents a comparison of the proposed method 

with existing literature. Jain et al. (2019) use three 

different NIR sensors, while (Anupongongarch et al., 

2019) employs only one sensor. Larin et al. (2002) 

utilized OCT technology, but most parameters were not 

measured. Song et al. (2015), despite using two different 

technologies, the average error rate was still at 19%. 

Photoacoustic technology was employed with CEGs of 

93% and 100%, respectively (Pai et al., 2017a & 2017b), 

but it is known to be very expensive. Visible laser light 

technology was used (Ali et al., 2017), and the average 

reported error rate was between 8% and 10%. In light of 

these findings, the proposed approach is deemed superior 

to the above technologies with a high R
2
 value. 
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Figure 6. Measured glucose for reference and 

predicted sensor for the number of samples 

Further, Figure 6 compares the measured glucose 

range of the reference and sensor results for the number 

of samples which was 575. In addition, Figure 7 

demonstrates that both methods exhibit a glucose range 

of 60mg/dl to 430 mg/dl, indicating the ability of the 

proposed device to perform accurate measurements. 

 
Figure 7. Measured glucose range for reference and 

predicted sensor 

Glucose Multiclass Level Prediction Using Ml 

Methods 

An ML classifier is utilized to categorize glucose 

levels into different categories based on predicted values. 

Multiclass classification data obtained from a 950 nm 

wavelength sensor is categorized into three classes within 

the glucose concentration range of 60 mg/dL to 430 

mg/dL. The three classes are classified as follows: 

glucose concentrations less than 80 mg/dL 

(hypoglycemic range) as class 0, greater than 180 mg/dL 

(hyperglycemic range) as class 2, and concentrations 

between these values (normal range) as Class 1. The 

input for the machine learning classification algorithms 

comprises the data points (x1, x2, x3 and x4 ), and the 

classification models are trained to predict the class 

labels of new cases accurately. The multi-class 

classification was performed using three classification 

algorithms: AdaBoosting (AB), Decision Tree (DT), and 

Gaussian Naive Bayes (GNB). To achieve the best 

performance of classification algorithms, fine-tuning the 

model is crucial. The hyperparameter tuning values are 

set using the gridsearch CV before the training process 

begins. Repeated looping through predefined 

hyperparameters helps to fit the model to the training set. 

Table 3 lists the best-tuning hyperparameter values for 

the three algorithms. 

GNB classifier  

The GNB classifier is a probabilistic ML model that is 

commonly used for classification tasks. The algorithm is 

based on Bayes’ theorem and initially estimates the mean 

and variance of each feature for each class label based on 

the training data. The algorithm calculates the conditional 

probability of each class label given the observed features 

by utilizing the previously estimated mean and variance 

values and applying Bayes’ theorem when presented with 

new data. In this study, a 10-fold approach was used to 

evaluate the algorithm’s performance. The obtained 

Table 2. Comparison of performance parameters with previous work 

 

Proposed 

Method 

Jain et al., 

2019 

Anupongon

garch et al., 

2019 

Larin et 

al., 2002 

Song et al., 

2015 

Pai et al., 

2017a 

Pai et al., 

2017b 

Ali et al., 

2017 

R
2
 value 0.99 0.908 0.96 0.95 - - - - 

mARD (%) 3.60 3.25 - - 8.30 8.84 7.01 - 

AvgErr (%) 3.73 3.77 - - 19 - - 8-10 

MAD (mg/dl) 2.91 3.87 - - - 32.8 5.23 - 

RMSE 3.46 5.61 11 - - 43.64 7.64 - 

CEG(A&B %) 100 100 - - 100 93 100 98 

Technology NIR NIR NIR OCT 
Impedance 

and NIR 

Photoacoust

ic 

Photoacou

stic 

Visible 

laser light 

System cost Cheaper Cheaper Cheaper Costly Cheaper Costly Costly Cheaper 
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results are presented in Fig. 8. The model’s accuracy was 

evaluated for each fold resulting in the following 

accuracies: (1, 1, 0.977, 1, 0.977, 1, 1, 1, 0.977, 1), with a 

mean accuracy of 0.993. The accuracy loss for each fold 

was (0, 0, 0.02325581, 0, 0.02325581, 0, 0, 0, 

0.02325581, 0). The overall accuracy of the Gaussian 

Naive Bayes test was 96.53%. During testing, one of the 

data points was predicted to belong to class 2, which 

matched the original class. 

 
Figure 8. Accuracy, loss for each fold, and model GNB 

classifier 

 
Figure 9. Accuracy and loss for each fold for AB 

classifier 

AB classifier 

The AB algorithm is a widely used ensemble learning 

approach for classification tasks. Its working principle 

involves iteratively training a series of weak classifiers. 

The one that performs the best on the weighted data is 

selected and added to the ensemble. The final classifier is 

a weighted combination of the weak classifiers, where the 

weight of each weak classifier is proportional to its 

performance on the training data. One of the advantages 

of AB is that it is less prone to overfitting than a single, 

more complex classifier. The accuracy, along with the 

accuracy loss for 10-fold with good cross-validation 

model performance, is presented in Figure 9. The 

accuracy of the trained model was evaluated for each 

fold, resulting in accuracies of (0.955, 1, 1, 1, 0.977, 

0.953, 1, 0.977, 0.977, 1), with a mean accuracy of 0.984. 

The accuracy loss for each fold was (0.04545455, 0, 0, 0, 

0.02325581, 0.04651163, 0, 0.02325581, 0.02325581, 0). 

The overall test accuracy for Ada Boosting was 97.22%. 

During testing, one of the data points was predicted to 

belong to class 0, which matched the original class. 

DT classifier 

Thirdly, the DT classifier algorithm is used for 

classification tasks. It creates a model that predicts the 

target variable's value by learning simple decision rules 

inferred from the data features. The model takes the form 

of a tree-like structure where each internal node 

represents a test on an attribute, each branch represents 

the outcome of the test, and each leaf node represents a 

class label. To make predictions on new data, the 

algorithm traverses the tree from the root node to a leaf 

node that corresponds to a class label, and the prediction 

is based on the majority class of the training that reaches 

that leaf node. The accuracy, loss, and model 

performance for 10-fold cross-validation are calculated 

and presented in Figure 10. The accuracy of the trained 

model was evaluated for each fold, resulting in accuracies 

of (0.977, 0.953, 0.93, 0.93, 0.837, 0.93, 1, 0.814, 0.977, 

0.953), with a mean accuracy of 0.93. The accuracy loss 

for each fold was (0.13636364, 0.13953488, 0.02325581, 

0.09302326, 0.09302326, 0.11627907, 0, 0.09302326, 

0.02325581, 0.02325581). The overall test accuracy for 

DT was 95.14%. During testing, one of the data points 

was predicted to belong to class 2, which matched the 

original class. 

To compare the performance of three machine 

learning classifier models for the multiclass problem with 

the three classes (0, 1, and 2) of predicting the glucose 

range in diabetic patients, the performance of the three 

models was evaluated by measuring precision, recall, and 

F1-score. The results of these evaluations are presented in 

Figures 11 to 13. 

Table 3. Hypermeter best-tuning parameters values. 

Classifier Gridsearch CV hypermeter tuning values 

GNB var_smoothing=0.0004328761281083057 

AB Learning_rate:0.1, n_estimators:10 

DT 
max_leaf_nodes': list(range(2, 100)), 'min_samples_split': [2, 3, 4], Cv=10, 

verbose=1) 
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Figure 10. Accuracy and loss for each fold for the DT 

classifier 

After evaluating the performance of the three models, 

it was found that the AB model achieved an overall 

accuracy of 97%, the GNB model achieved an overall 

accuracy of 96.53%, and the DT model achieved an 

overall accuracy of 95.14%. These accuracy values 

indicate that all three models could accurately predict the 

glucose range for diabetes patients across the three 

classes, with the AB model having the highest overall 

accuracy. These results demonstrate the potential of ML 

models in accurately predicting the glucose range for 

diabetes patients, which can aid in disease management 

and treatment. 

 
Figure 11. Comparison of three ML classifiers for 

Class 0 

 
Figure 12. Comparison of three ML classifiers for 

Class 1 

 
Figure 13. Comparison of three ML classifiers for 

Class 2 

Discussion 

The proposed approach for detecting blood glucose 

levels utilizes wavelength near-infrared (NIR) technology 

at 950 nm. This approach outperforms other technologies 

with high accuracy (R
2
). This study measured the blood 

glucose history of 282 T2D and 7 T1D patients under 

medical supervision at the VIT-AP University health 

center. All participants provided informed consent under 

the Helsinki guidelines. Blood glucose levels were 

measured for 5 minutes using a proposed sensor glucose 

monitoring system and a reference device, the Dr. Trust 

fingerpick device. Data from 289 subjects, including 

males and females aged 19-69 years with hypo, normal, 

and hyperglycemia, were analyzed, resulting in a total of 

575 blood glucose level samples obtained through a 

glucometer (ranging from 62 to 400 mg/dL). The study 

identified hypoglycemic (BG level <80 mg/dL), normal 

(79>BG level <182 mg/dL), and hyperglycemic (BG 

level >180 mg/dL) levels. The reference device, Dr. 

Trust, uses glucose dehydrogenase (GDH) flavin adenine 

dinucleotide (FAD) enzyme (FAD-GAD) with a 

measuring range of 30-600 mg/dL and requires 0.5 µl 

blood. This device was validated using HbA1C lab tests, 

with the results showing 99% accuracy compared to the 

reference device. The lab test HbA1C values were 

converted from mmol/L to mg/dL using the validation of 

the reference device (Dr. Trust). 

Conclusions 

This proposed system with a 950 nm wavelength was 

used in this study to determine subjects' glucose levels 

without invasive methods. Measured non-invasive 

glucose values are compared with invasive glucose 

measurements from a gold standard Dr. Trust glucose 

meter.   A total of 575 real-time samples are collected 

from 289 subjects’ random glucose measurements.    

Regression expression is utilized in the suggested strategy 
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to increase accuracy based on real-time data analysis. In 

real-time data analysis with the proposed method for the 

sensor, the R
2
 and MAD increase to 0.99 and 3.6 mg/dl, 

respectively. Additionally, it is obtained the RMSE is 

3.46 mg/dl.  The three ML classification methods were 

used to predict multiclass, the 2-classifiers given 97% and 

the 1- classifier given 95%. Based on these parameters, 

the proposed method appears to be more efficient than the 

existing literature. In the present work, the limitation is in 

the form of a system that can be further enhanced as a 

portable device. From the statistical point of view, more 

subjects should be tested on Type-I diabetes to analyze 

time series responses in future work. 
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