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Introduction 

The autonomous vehicle technology industry has 

experienced significant advancements in recent years due 

to the increasing need for reliable and precise object 

detection systems. Object detection is a fundamental task 

in computer vision and has recently undergone significant 

developments. (Amjoud et al., 2023; Diwan et al., 2023; 

Srivastava and Tripathi, 2023). Recent advancements in 

deep learning and computer vision have greatly enhanced 

object detection performance, making it a vital 

technology widely utilized across various industries. 

There are different techniques for object detection, which 

can be categorized into two primary groups. The first 

group consists of algorithms based on classifications, 

while the second group relies on regression methods. 

Object localization is utilized within the first group to 

precisely locate objects within images, particularly in 

real-time systems requiring rapid detection of multiple 

objects. This approach involves the use of Convolutional 

Neural Networks (CNN) and Recurrent Neural Networks 

(RNN) to identify regions of interest in the image and 

categorize them (Dhruv et al., 2020). However, this 

method has limitations, especially in real-time systems 

where speed is paramount. The computational expense of 

running predictions for each selected region can slow 

down the object detection process, rendering it less 

suitable for real-time applications. 

On the other hand, algorithms based on regression, 

such as You Only Look Once (YOLO), are widely used 

in object detection. YOLO treats object detection as a 

regression problem, predicting bounding boxes and class 

probabilities in a single forward pass through the neural 
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Abstract: This study evaluates the performance of a custom object detection model 

based on the YOLOv5 architecture, specifically tailored for autonomous electric 

vehicles. The model undergoes pre-processing using the Roboflow computer vision 

platform, which offers a wide range of tools for data pre-processing and model training. 

The experiments were conducted on a diverse dataset comprising various objects 

encountered in campus-specific driving scenarios, such as pedestrians, vehicles, 

buildings, and obstacles. The performance of the custom object detection model is 

assessed using standard metrics, including precision, recall, mean average precision 

(mAP), and intersection-over-union (IoU) at different thresholds. The training process 

was conducted in a controlled environment, resulting in a Precision of 0.851, a Recall of 

0.831, and a mAP of 0.843. These metrics were analyzed to evaluate the YOLOv5-

based custom object detection model's ability to detect and categorize objects 

accurately, its precision in predicting bounding boxes, and its capability to handle 

various object categories. We also examined the effects of different hyperparameters 

and data augmentation techniques on the model's performance, including variations in 

learning rate, batch size, and optimizer algorithms to determine their impact on accuracy 

and convergence. This analysis provided valuable insights into the model's strengths and 

weaknesses, highlighting areas for improvement and optimization. These findings are 

instrumental in developing and deploying advanced object detection systems to enhance 

the safety and reliability of autonomous electric vehicles. 
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network. This approach is more computationally efficient 

than classification-based methods, as it eliminates the 

need to run predictions for each region individually. 

Instead, it simultaneously detects objects in the entire 

image, making it ideal for real-time applications. Over 

time, the YOLO algorithm has gone through various 

iterations and improvements to enhance its performance 

in object detection tasks. These different versions of 

YOLO have led to advancements in accuracy, efficiency 

and model architecture. 

YOLOv2, the second version of YOLO, introduced 

several key improvements compared to its predecessor. It 

incorporated the concept of anchor boxes, which allowed 

the model to predict objects of different sizes and aspect 

ratios more accurately. This improvement led to better 

localization and increased detection performance 

(Redmon et al., 2017; Banerjee et al., 2023). Expanding 

upon the advances of YOLOv2, YOLOv3 introduced 

enhancements in the field of object detection. It 

implemented a multi-scale prediction approach utilizing 

feature maps at varying resolutions. Additionally, 

YOLOv3 incorporated the "darknet-53" technique, which 

employs a more intricate neural network architecture for 

enhanced feature extraction (Redmon et al., 2018). These 

architectural upgrades resulted in improved accuracy in 

object detection. 

With the introduction of YOLOv4, performance was 

further enhanced through the adoption of innovative 

techniques such as the CSPDarknet53 backbone 

architecture, PANet (Path Aggregation Network) neck, 

and the Mish activation function (Bochkovskiy et al., 

2020). These advancements significantly improved the 

model's detection accuracy and made it more efficient for 

real-time applications. The latest version, YOLOv5, 

brought further improvements in object detection 

performance. It incorporated the EfficientDet 

architecture, which combined the benefits of EfficientNet 

and EfficientDet models (Wang et al., 2021). EfficientDet 

is known for its state-of-the-art performance in object 

detection tasks. By leveraging the EfficientDet 

architecture, YOLOv5 achieved better accuracy and 

generalization compared to its predecessors. In addition 

to architectural improvements, each version of YOLO has 

also introduced enhancements to the loss functions and 

training strategies. For instance, YOLOv4 introduced the 

complete intersection over union (CIoU) loss function, 

which specifically addressed the challenge of imbalanced 

datasets and further improved the model's performance.  

Considering the advancements and success of the 

YOLO series, the decision to implement the YOLOv5 

deep neural network has proven to be beneficial in our 

work. By utilizing this robust and dependable detection 

method, the research combines established techniques 

(YOLOv5) with a unique dataset and AEVs application 

in a campus environment to tackle a specific challenge 

within the autonomous vehicle industry. This study 

involves:  

• Developing and categorising a new image dataset 

that focuses on objects typically encountered on a 

college campus. This data is more pertinent to our 

intended application than more general datasets. 

• The utilization of the YOLOv5 model for AEV 

object detection within a campus environment is a 

unique and valuable contribution. Our research 

investigates the effects of different hyperparameters 

and data augmentation techniques on the model's 

performance to improve accuracy and model 

convergence. 

The remainder of this paper will explore the relevant 

object detection research. Section 2, related literature will 

first explore classical machine learning techniques used 

and then provide a detailed examination of deep learning-

based object detectors. Section 3, object detection 

methodology and evaluation, will then detail the 

proposed object detection approach and its evaluation 

strategy. Here, we will describe the specific pre-

processing steps to prepare the data for training with the 

YOLOv5 model architecture. Following this, Section 4, 

results and discussion will present the experimental 

results and their evaluation using various metrics. We 

will then provide a thorough discussion of these results, 

explaining their significance and any potential 

limitations. Finally, the concluding section will 

summarize this study's key findings and contributions. 

Here, we will emphasize the effectiveness of the 

YOLOv5 model for object detection in a campus 

environment. We will also discuss potential avenues for 

future research to improve object detection capabilities 

further. 

Related Literature 

Before the advent of deep learning in 2013, object 

detection predominantly utilized classical machine 

learning techniques. Some common methods included the 

Viola-Jones object detection technique (Viol et al., 2001), 

scale-invariant feature transforms (SIFT) (Lowe et al., 

2004), and histogram of oriented gradients (HOG) (Dalal 

et al., 2005). These methods relied on handcrafted 

features and traditional algorithms tailored to identify 

objects in images based on specific characteristics and 

patterns. Although these classical techniques were 

effective for certain applications and constrained 
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scenarios, these classical techniques had limitations in 

addressing complex and varied object detection tasks. 

The Viola-Jones technique, designed for real-time face 

detection, was particularly successful in scenarios 

focused on detecting faces in images or video streams, 

especially in well-lit and controlled environments (Viola 

et al., 2001). On the other hand, SIFT was well-suited for 

scenarios necessitating matching key points between 

images finding applications in tasks like image 

alignment, panorama stitching, and object recognition 

(Yan Ke et al., 2004). HOG gained popularity for 

pedestrian detection, performing well in situations with 

simple backgrounds and upright pedestrians. The 

challenge with these methods was creating features that 

could accurately represent objects despite variations in 

appearance, scale, and orientation in real-world images. 

However, the design of handcrafted features posed a 

challenge in classical object detection methods. Crafting 

features that could effectively represent objects across 

various appearances, scales, and orientations was difficult 

(Viola et al., 2001). Real-world images presented a wide 

range of variations, such as changes in lighting 

conditions, viewpoints, poses, and object sizes. 

Handcrafted features struggled to adapt to these 

variations, leading to the need for feature representations 

that could adjust to changing object appearances and 

environmental conditions (Girshick et al., 2014). This 

need led to the development of deep learning-based 

approaches, which have significantly advanced object 

detection by automatically learning and adapting feature 

representations from raw image data (LeCun et al., 2015). 

This advancement has revolutionized object detection, 

improving accuracy, robustness, and adaptability. 

The introduction of deep learning, particularly the 

potential of Deep Convolutional Neural Networks 

(DCNN) for object detection, has significantly impacted 

the research community. This transformation followed 

the influential work of Krizhevsky et al. (2017), Alex 

Krizhevsky et al. (2012), Sermanet et al. (2013) and 

Pierre Sermanet et al. (2013) on the challenging 

ImageNet dataset. Krizhevsky et al. (2017) demonstrated 

the capabilities of DCNN for object localization and 

detection tasks, showcasing the effectiveness of 

identifying object locations within images. Sermanet et 

al. further expanded on this by illustrating how DCNNs 

could be used to locate and detect instances of objects, 

emphasizing the advantages of combining classification, 

localization, and detection tasks. The integration of these 

tasks within the DCNN framework led to improved 

performance across all tasks, highlighting the potential 

for a unified approach to object detection challenges. 

These contributions have underscored the effectiveness 

and versatility of DCNNs in handling complex detection 

tasks, leading to the widespread adoption of deep 

learning-based approaches in object detection 

(Krizhevsky et al., 2017; Sermanet et al., 2013). As a 

result of these developments, significant advancements 

have been made in creating highly accurate and efficient 

object detection systems for a variety of applications. 

Building on this progress, Girshick et al. introduced a 

Region-based Convolutional Neural Network (R-CNN) 

(Girshick et al., 2015). They utilized the AlexNet 

architecture and achieved significant improvements in 

detection performance. However, R-CNN had limitations. 

It was computationally expensive and slow to train, 

taking days even for small datasets (Girshick et al., 

2015). This led to further research and the development 

of faster, more efficient object detection models, such as 

Fast R-CNN (Girshick et al., 2015). Fast R-CNN 

addressed processing speed issues by sharing 

convolutional feature computations across region 

proposals, though challenges remained with region 

proposal generation speed. 

To address this issue, the faster R-CNN model, 

introduced in the same year by improving the region 

proposal process with the Region Proposal Network 

(RPN) (Shaoqing Ren et al., 2015), ( J. Long et al., 2014). 

Integrating RPN directly within the network eliminated 

the need for separate regional proposal methods, 

enhancing overall efficiency and streamlining the 

architecture. Another notable advancement came with the 

introduction of the Region-based Fully Convolutional 

Network (R-FCN) (Dai et al., 2016). This innovative 

approach shared computations within the network and 

employed position-sensitive score maps to address 

translation invariance. By combining Faster R-CNN and 

FCN, R-FCN achieved faster and more precise object 

detection, albeit with modest gains in accuracy. These 

developments significantly propelled the field of 

computer vision, facilitating the creation of quicker and 

more accurate detection systems. Most notably, Mask R-

CNN extended the capabilities of Faster R-CNN with a 

parallel branch for pixel-level object instance 

segmentation (He et al., 2018). Subsequent to the 

advancements of Mask R-CNN, the domain of object 

detection continued to witness considerable progress with 

the introduction of the Single Shot MultiBox Detector 

(SSD) (Liu et al., 2016) and YOLO series (Joseph 

Redmon et al., 2016), which revolutionized real-time 

object detection capabilities. SSD combined the benefits 

of one-stage object detectors with multi-scale feature 

maps, allowing for real-time object detection on various 
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objects across different scales. On the other hand, YOLO 

adopted a one-stage approach that allowed it to 

simultaneously predict object locations and class 

probabilities in a single pass, resulting in real-time object 

detection capabilities. More sophisticated models have 

emerged from this research advancements in object 

detection, such as YOLOv2, YOLOv3 and YOLOv4, 

each building upon the strengths of its predecessors to 

achieve even higher levels of accuracy and efficiency.  

While previous studies using datasets like PASCAL 

VOC and COCO achieved promising results with 

methods like Faster R-CNN and YOLOv2, their accuracy 

ranged from 19.7% to 83.6%. This indicates a need for 

further advancements in object detection, particularly for 

custom datasets. The authors’ addresses this gap by 

employing the latest YOLOv5 model on a custom 

dataset. This approach has the potential to surpass 

existing accuracy rates by achieving 84.3% and improve 

object detection capabilities for specific use cases not 

covered by the standard datasets. 

The advancements in the YOLO series, particularly 

compared to two-stage detectors like Faster R-CNN and 

R-FCN, strongly motivated the use of YOLOv5 in the 

significant challenges for object detection in campus 

environment, especially considering the application in 

AEVs for robust object detection systems for enhanced 

safety and reliability. The main contributions of this 

research include assembling and labelling an image 

dataset, training YOLOv5 with a custom dataset for 

object detection, and implementing the YOLOv5s model 

to achieve high accuracy through test inference in real-

world scenarios. 

Object Detection Methodology and Evaluation 

The implementation process begins by collecting a 

comprehensive dataset of 5246 images taken from 

various locations on campus. A block diagram illustrating 

the proposed implementation process is shown in Figure 

1. The first step involves annotating each image by 

outlining regions containing different objects with 

bounding boxes and assigning accurate labels for 

subsequent stages. Following annotation, data 

augmentation is applied to create varied versions of the 

original images in the dataset. 

The YOLOv5 model is chosen as the foundational 

architecture for data training due to its effectiveness and 

precision in object detection tasks. The training involves 

cycling through the augmented training dataset. The 

YOLOv5 model takes in an image at each cycle, 

generates predicted bounding boxes, and calculates class 

probabilities. The model's performance is assessed by 

comparing these predictions with the actual annotations 

and calculating the loss.  

The final trained model is tested on a separate test set 

upon completion of the training phase. The test set 

comprises images that the model has not previously 

encountered and is used to evaluate the model's 

performance on unfamiliar data. If the model's 

performance on the test set is unsatisfactory, adjustments 

can be made through fine-tuning. Fine-tuning involves 

modifying the model's parameters to enhance its 

performance on the specific task at hand. Finally, the 

deployed YOLOv5 model is utilized for real-time object 

detection in the campus environment. 

 

Data Annotation  

Effective data preparation is a crucial initial step in 

developing accurate deep-learning models. Image 

annotation is a key component of this process, involving 

precisely identifying and labelling objects within images. 

This typically entails creating bounding boxes around 

objects and assigning appropriate labels. Such 

annotations provide essential information for machine 

learning models to learn object identification and 

classification. We utilized the LabelImg tool, known for 

its user-friendly interface tailored for deep learning 

projects. The tool's simplicity facilitates efficient and 

accurate object labelling, supporting various output 

formats like PASCAL VOC, Txt and YOLO. Figure 2 

illustrates the labelling process using LabelImg, which 

Figure 1. Block diagram of the proposed model. 
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involves drawing boxes around objects for machine 

recognition and assigning corresponding labels. In our 

specific environment, we have identified a set of 53 

labels corresponding to specific locations or items within 

our campus, creating a direct association between labels 

and campus areas.   

Data Augmentation 

With the annotated data in hand, the next step in the 

workflow involves curating and preprocessing the dataset 

to ready it for training. Data augmentation is a critical 

component of this process, as it helps enhance the 

diversity of the dataset. The steps for data curation and 

preparation are outlined in Figure 3. Data augmentation 

includes techniques like rotation, flipping, scaling, and 

brightness adjustments, which generate various versions 

of the original images. The model is exposed to a wide 

range of visual patterns and configurations by 

augmenting the data, as shown in Figure 4. This exposure 

improves the model's ability to generalize its learning, 

enhancing object recognition in different conditions. 

Furthermore, the model becomes more resilient and adept 

at handling real-world situations, regardless of object 

orientation, size, or brightness changes.  

Data Splitting 

After performing data augmentation, the dataset was 

expanded to include 5264 samples spanning 53 classes. 

This enhancement incorporates a variety of variations, 

thereby enhancing the model's capacity to generalize and 

enhance object detection accuracy. The subsequent 

important step involves partitioning this augmented 

dataset into three distinct subsets: training, validation, 

and testing sets, maintaining a distribution ratio of 7:2:1. 

To guarantee an equal distribution of samples across all 

classes and prevent any potential biases that may affect 

the model's performance during training and evaluation, 

the entire dataset of 5264 samples is initially randomized. 

The dataset is divided according to the specified ratio 

following the random shuffling. While random shuffling 

guarantees sample distribution across classes, 

maintaining class balance within each subset is equally 

important. Stratified sampling techniques are employed 

to achieve this balance. Stratified sampling is a statistical 

method commonly used to ensure that the distribution of 

samples in the subsets mirrors the proportions of different 

classes in the original dataset. In the proposed work, 

stratified sampling upholds class balance within the 

training, validation, and testing sets even after data 

augmentation. This strategy enables the model to 

generalize effectively and provide accurate predictions 

across all classes, including those with limited samples. 

The combination of stratified sampling and data 

augmentation results in a well-balanced and diverse 

dataset, optimizing the deep learning model's potential 

for accurate detection in the campus environment, 

regardless of class imbalances. 

Once the dataset is divided, the training set is utilized 

to train the deep learning model, the validation set assists 

Figure 2. Image annotation process. 

Figure 3. Preprocessing the dataset to prepare for training. 
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in monitoring the model's performance and adjusting 

hyperparameters, and the testing set is used for independ- 

ent evaluation to assess the model's generalization on 

unseen data.  

Proposed architecture of Yolov5 model 

YOLOv5 is a state-of-the-art object detection model 

that can be trained on custom datasets. It offers a balance 

between performance and speed. The architecture of 

Yolov5 is shown in Figure 5. The YOLOv5 consists of 

two main components, the backbone and the head. The 

backbone of YOLOv5 comprises various modules that 

work together to extract features from the input image. 

As shown in Figure5, it starts with the Focus module, a 

lightweight convolutional layer that efficiently processes 

the image by focusing on relevant regions. The Focus 

module is used to increase the receptive field of the 

network without increasing the number of parameters. 

This is done by combining the features from different 

layers of the network. The Conv module follows, 

consisting of standard convolutional layers that learn 

basic features like edges, shapes, and textures. Next, the 

backbone employs the C3 module, which stands for 

CSPNet bottleneck with three convolutions. The C3 

module incorporates cross-stage connections, promoting 

efficient feature fusion and enhancing information flow 

throughout the network. This results in improved gradient 

flow during backpropagation, leading to stable and 

efficient training. 

The CSPDarknet53 architecture, consisting of 53 

layers, hierarchically uses these modules. Each layer in 

the hierarchy builds upon the features learned by the 

previous layers, allowing for the extraction of 

increasingly complex and abstract features from the input 

image. The final layer of the CSPDarknet53 architecture 

produces a feature map that is used by the neck and head 

modules to predict the bounding boxes and class labels of 

the objects in the image. Additionally, YOLOv5 includes 

the Spatial Pyramid Pooling (SPP) module in its 

backbone. The SPP module captures information at 

multiple scales by pooling features at different levels, 

enabling the model to detect objects of various sizes and 

scales in the input image. The final layer of 

CSPDarknet53 produces a feature map, which the head 

modules utilise for object detection. The head of the 

YOLOv5 architecture is responsible for making 

predictions based on the features extracted from the 

previous stages. It predicts bounding boxes, class 

probabilities, and objectness scores for different anchor 

boxes. In the head, up sample employs the nearest 

neighbour interpolation method. In the nearest-neighbour 

method, the value of a new pixel is determined by the 

value of the nearest pixel in the original feature map. This 

method is computationally efficient and preserves the 

pixel values. The concat operation integrates features 

from diverse layers effectively. Finally, the detect module 

employs anchor boxes to predict object location and class 

in the image. During training, the smart optimizer 

initializes the parameters like learning rate and 

momentum to tune the hyperparameters. The model is 

stabilizing by averaging model weights. 

Hyper Parameters Tuning 

Following the initialization of specific parameters into 

training, the subsequent steps involve tuning 

hyperparameters to optimize the model's performance. 

Among various hyperparameters, the learning rate plays a 

key role in determining the step size during gradient 

descent, influencing the model's convergence rate and 

Figure 4. Data augmentation: cropping and horizontal flipping techniques 
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overall training stability. A learning rate that is too high 

might lead to overshooting and unstable training, while a 

rate that is too low could slow down convergence. This 

hyperparameter is finely tuned to strike a balance 

between swift convergence and stability, ensuring 

efficient training progress. 

 

Another critical parameter is the batch size, which 

governs the number of samples used in each iteration of 

training. A larger batch size might accelerate training but 

could consume excessive memory and hinder 

convergence. Conversely, a smaller batch size might 

offer better generalization, particularly with limited data, 

but could lead to longer training times. The optimal batch 

size is determined through experimentation, considering 

computational constraints and desired convergence 

behaviour. Additionally, the choice of optimizer which is 

used here is Stochastic Gradient Descent (SGD) plays a 

key role in shaping the optimization process. The 

optimizer's adaptive learning rate adjustments impact 

how quickly the model learns and navigates the loss 

landscape. Here, the learning rate was set to 0.01. 

Regularization techniques like weight decay (set to 

0.0005) and dropout are also fine-tuned to prevent 

overfitting, enhancing the model's ability to generalize 

from the training data to unseen examples. By carefully 

configuring these hyperparameters based on validation 

performance, the deep learning model can be fine-tuned 

to achieve its highest potential accuracy.  

A Grid Search tuning method was utilized with a 

batch size of 12, 16, and 32, SGD optimizer, 0.01 

learning rate, 0.0005 weight decay to find the optimal 

configuration of these hyperparameters. This exploration  

 

allows us to identify the combination that yields the best 

performance on the validation dataset. The impact of 

these choices, particularly the effect of batch size on 

mAP, will be visualized and discussed in the results and 

discussion section. 

Results and Discussion 

This section discusses the findings of the YOLOv5 

object detection model trained on the campus 

environment dataset. We analysed the model's 

performance using a variety of evaluation metrics 

commonly employed in object detection tasks. These 

metrics include precision, recall, mean Average Precision 

(mAP), and Intersection over Union (IoU) at different 

thresholds. Precision reflects the proportion of correctly 

identified objects among the predicted ones. Recall, on 

the other hand, indicates the percentage of actual objects 

that the model successfully detected. mAP provides a 

more comprehensive view of the model's performance by 

summarizing the average precision (AP) across all object 

Figure 5. Yolo model architecture. 
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categories at various IoU thresholds. IoU, measured 

between the predicted and ground truth bounding boxes, 

signifies the degree of overlap between them, indicating 

the accuracy of object localization. By examining these 

metrics, we can assess the effectiveness of the YOLOv5 

model in accurately detecting and classifying objects 

within the campus environment. 

Evaluation Metrics and Performance Analysis 

Choosing appropriate metrics for evaluating object 

detection systems is key to assessing their effectiveness. 

As precise bounding boxes must be delineated around 

identified objects in an image, object detection poses a 

formidable challenge. Object detection accuracy is 

commonly measured using Equations (1) through (4). 
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True positive (TP) are accurate detections of objects 

that are actually present in the photograph. An error in 

detection is known as a false positive (FP), which occurs 

when the network detects an object that does not exist in 

the picture. False negatives (FN) occur when the network 

does not detect an object in the picture that actually 

exists. If the network detects an object correctly in an 

image, it is a TP. If the network detects an object 

incorrectly, it will mark it as an FP, which means it will 

not determine whether or not it is present in the image. In 

FN, objects exist in an image but are not detected by the 

network. The detection of a TN occurs when the image 

does not contain an object. 

Further, the detection is classified as correct or 

incorrect by comparing the IoU with a given threshold. It 

is necessary to specify the AP metric for each IoU 

threshold value. A person's average accuracy rate is 

determined by the integral of the P index and the R index, 

which is the area under the P–R curve; an average 

accuracy of a mean is determined by summing the AP 

values of all categories and then dividing them by each 

category, i.e., by the average. 

Precision, Recall and mAP 

Figure 6 presents accuracy curves for precision, recall, 

and mAP scores. These metrics are plotted for both the 

training and validation sets, allowing us to observe the 

model's improvement during the training process. The 

model achieves higher precision and recall values on the 

training set compared to the validation set. However, the 

validation set performance indicates the model's ability to 

generalize to unseen data, which is crucial for real-world 

applications.  

To explore the effect of batch size on training 

performance, we evaluated the model with three different 

batch sizes (12, 16, and 32). The training duration was 

adjusted accordingly, with 50 epochs for a batch size of 

12, 100 epochs for 16, and 100 epochs for 32. The 

observations from this experiment are presented in Table 

1 and visualized in Figure 7. As shown in Table 1, a 

batch size of 32 generally yielded the best performance in 

terms of precision (0.862), although recall (0.761) was 

slightly lower compared to a batch size of 16 (0.775). The 

mAP values followed a similar trend, with the highest 

mAP50 (0.843) achieved with a batch size 16. However, 

it's important to consider the trade-off between 

performance and training time. A larger batch size (32) 

might lead to faster training convergence, while a smaller 

batch size (12) might require less memory but could take 

longer to train. 

Further, we evaluated the model's performance on a 

set of 5264 images containing a total of 11335 instances. 

This evaluation was conducted using various IoU 

thresholds. Table 2 displays the corresponding precision, 

recall, and mAP50 scores for each IoU threshold. The 

model achieves higher precision and recall values at 

lower IoU thresholds (indicating less strict bounding box 

overlap requirements). For instance, at an IoU of 0.25, 

the model obtains a precision of 0.677, a recall of 0.519, 

and a mAP50 of 0.556. These scores decrease as the IoU 

threshold increases (becoming more strict), indicating a 

trade-off between the number of detections and their 

Table 1. Metrics with varying batch size and epoch. 

Batch size epoch Precision Recall mAP 50 mAP 50-95 

12 50 0.81 0.705 0.732 0.446 

16 100 0.826 0.775 0.843 0.521 

32 100 0.862 0.761 0.821 0.504 
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localization accuracy. By analyzing these results, we gain 

valuable insights into the effectiveness of the YOLOv5 

model for object detection in a campus environment. The 

model demonstrates a good balance between precision 

and recall, and its performance adapts based on the 

chosen IoU threshold. The exploration of different batch 

sizes further highlights the importance of hyperparameter 

tuning for optimal model performance.  

Loss function 

The training process also involves calculating a loss 

function to assess the model's performance on each 

iteration. This loss is then used to update the model's 

weights through an optimizer like Stochastic Gradient 
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Figure 7. Performance metrics for different batch sizes.  



Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v38.005 
55 

Descent (SGD) mentioned earlier. The goal is to 

minimize the loss function over the training iterations, 

leading to improved object detection accuracy. Validation 

and testing are performed with the weights that achieve 

the minimum loss during training. These weights 

represent the best-performing model on the training data. 

Finally, the model with these optimal weights is used to 

predict objects in unseen test data. 

Table 2. Performance of P, R, mAP for various 

values of IoU. 

IoU     Precision          Recall     mAP50   

0.25 0.677 0.519 0.556 

0.5 0.672 0.525 0.57 

0.75 0.659 0.5 0.547 

The total loss function in YOLOv5 is a combination 

of three individual loss components: the one responsible 

for finding the bounding-box coordinates (coord loss), the 

bounding-box score prediction (objectness loss), and the 

class-score prediction (class loss). Each of these 

components is weighted and combined to form the total 

loss. The architecture aims to minimize this loss during 

training to improve object detection accuracy. 

Coord loss is accurate in relation to the ground truth 

bounding box coordinates. The loss is calculated using 

mean squared error (MSE) between the predicted 

coordinates and the ground truth coordinates as shown in 

equation (5) 

𝐶𝑜𝑜𝑟𝑑_𝐿𝑜𝑠𝑠 = 𝜆𝑐𝑜𝑜𝑟𝑑 × ∑[𝑖, 𝑗, 𝑘] ((𝑥𝑝𝑟𝑒𝑑 − 𝑥𝑔𝑡)2 +

(𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑔𝑡)2 + (√𝑤𝑝𝑟𝑒𝑑 − √𝑤𝑔𝑡)2 + (√ℎ𝑝𝑟𝑒𝑑

− √ℎ𝑔𝑡)2)              (5) 

Here, (xpred, ypred) are the predicted bounding box 

center coordinates, (wpred, hpred) are the predicted width 

and height of the bounding box, and (xgt, ygt, wgt, hgt) are 

the corresponding ground truth values. The summation is 

performed over the grid cells (i, j) and anchor boxes (k). 

Objectness loss encourages the model to predict high 

scores for grid cells containing objects and low scores for 

cells without objects. It utilizes the Mean Squared Error 

(MSE) between the predicted objectness score and the 

ground truth objectness score as shown in equation (6). 

  ( )( )2_ , , _ _objObj Loss i j k obj pred obj gt=  −

                                                                           (6) 

Here, obj_pred is the predicted objectness score, and 

obj_gt is the ground truth objectness score for the 

corresponding grid cell and anchor box. Class loss 

ensures that the predicted class probabilities align well 

with the actual class labels. It's calculated using the Mean 

Squared Error (MSE) between the predicted class scores 

and the ground truth class scores as shown in equation (7) 

𝐶𝑙𝑎𝑠𝑠_𝐿𝑜𝑠𝑠 = 𝜆𝑐𝑙𝑠 × ∑[𝑖, 𝑗, 𝑘, 𝑐]((𝑐𝑙𝑎𝑠𝑠_𝑝𝑟𝑒𝑑

− 𝑐𝑙𝑎𝑠𝑠_𝑔𝑡)2)                                                                (7) 

Here, class_pred is the predicted class score for class 

c, and class_gt is the ground truth class score for the same 

class. The summation is performed over grid cells (i,j), 

anchor boxes (k), and classes (c). The total loss is a linear 

combination of the three components, each multiplied by 

a corresponding scalar parameter (λ_coord, λ_obj, 

λ_class). These scalar parameters control the relative 

importance of each component in the loss function. The 

total loss can be summations of above three loses and it 

can be expressed in equation (8). 

𝑇𝑜𝑡𝑎𝑙_𝐿𝑜𝑠𝑠 =  𝐶𝑜𝑜𝑟𝑑_𝐿𝑜𝑠𝑠 +  𝑂𝑏𝑗_𝐿𝑜𝑠𝑠 +

  𝐶𝑙𝑎𝑠𝑠_𝐿𝑜𝑠𝑠                                                                   (8) 

Additionally, an IoU factor is further incorporated to 

modulate the contributions of these loss components. 

This factor adjusts the loss based on the accuracy of the 

predicted bounding boxes compared to the ground truth. 

Higher IoU (better overlap) leads to lower loss, guiding 

the model towards more precise object localization. 

YOLOv5 uses these loss components and IoU 

modulation to guide the training process towards accurate 

object detection. The model learns to minimize this 

combined loss by adjusting its parameters during training, 

as shown in Figure 8. The loss curves consistently display 

a descending trajectory, signifying the successful 

minimization of training and validation losses throughout 

the training process. Simultaneously, the metrics curves 

exhibit a consistent upward trend, indicating progressive 

model enhancement over successive training iterations. A 

YOLOv5 model that is the smallest and fastest was 

selected for the proposed system (YOLOv5s). 

 

Table 3 summarizes entire validation set the 

performance of the YOLOv5s model. It shows the model 

achieved a precision of 0.851, recall of 0.831, and 

mAP50 of 0.843 across all classes and instances in the 

validation set. The mAP50-95, which considers a broader 

IoU threshold range (0.5 to 0.95), is 0.534. These results 

indicate that the YOLOv5 model, trained with the 

combined loss function and IoU modulation, achieved 

good performance in object detection for the specific 

campus environment dataset. 

These results on the custom dataset are further 

demonstrated to existing object detection techniques, as 

shown in Table 4. The proposed approach achieves mAP 

of 84.3%. This method has shown improvement over 

Table 3. Performance of the model YOLOv5s for 

custom data validation. 

Class Precision Recall mAP50 mAP50-95 

All 0.851 0.831 0.843 0.534 
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previously established methods such as YOLO9000 

(19.7% mAP), earlier versions of Faster R-CNN (53.3% 

mAP in 2014 and 35.9% mAP in 2015). It also 

demonstrates improvement over recent works such as 

SSD (74.3% mAP) and Faster R-CNN (70.9% mAP in 

2015) on similar datasets (PASCAL VOC and COCO). 

Our approach outperforms CNN-based methods like 

CNN-MS COCO (65.7% mAP), highlighting the 

effectiveness of deep learning architectures like YOLOv5 

for object detection tasks. In 2023, Jifeng Dai et al. 

demonstrated strong performance (83.6% mAP) utilizing 

the PASCAL VOC dataset, which is comparable to 

proposed metric. it's important to consider potential 

differences in the datasets and task complexities. Our 

custom dataset might pose unique challenges compared 

to the publicly available datasets used in other works. 

Due to its customizability, the proposed YOLOv5-based 

approach demonstrates promising results, achieving high 

mAP and potentially offering advantages in specific 

application domains. 

Prediction of objects in image 

After training the models and evaluating them on a 

separate testing set, we validated their performance on 

entirely new images unseen during training. These unseen 

images are crucial for assessing how well the models 

generalize to real-world scenarios. Figure 9(a) visually 

depicts the model's object detection results. Bounding 

boxes are identified around the objects identified in the 

image. A summary of a label identifying the detected 

object that appears within each bounding box for all 

classes present in the dataset is shown in Fig.9(b). This 

visualization demonstrates the model's ability to detect 

objects in new images, along with the assigned class 

labels and potential confidence scores (percentages) 

indicating the model's certainty in its detections. 

Discussion 

The dataset contains images from various 

environments, divided into 70% for training, 20% for 

testing, and 10% for validation purposes. The architecture 

begins with a series of convolutional layers to extract 

features from input images. These layers have different 

filter sizes and strides to extract hierarchical features 

gradually. Multiple convolutional layers enhance feature 

representation, and the SPPF module captures context 

information across scales to identify objects of varying 

sizes. Inspired by YOLO, the detect layer handles the 

final object detection using anchor boxes. The model has 

214 layers and 7,181,449 parameters, indicating its 

capacity to learn complex features. The number of 

Table 4. Comparison of Object Detection Methods with existing literature 

Author and 

Year Method and Dataset Limitations mAP 

Jifeng Dai et 

al., 2023 PASCAL -VOC 

datasets 

The R-FCN system presented in the paper was 

intentionally kept simple, potentially limiting the 

exploration of more complex extensions or 

improvements 

83.60% 

Alexey 

Bochkovskiy 

et al.,  2020 

CNN-  MS COCO 

dataset 

Does not extensively discuss the potential 

limitations or drawbacks of the YOLOv4 model. 
65.70% 

Joseph 

Redmon  et 

al., 2017 

YOLO9000 - COCO  

dataset 

Down sampling factor of 32 results in an output 

feature map of 13 x 13, which may affect the 

detection of objects occupying the center of the 

image. 

19.70% 

Wei Liu et al., 

2016 SSD-VOC2007  dataset 

SSD faces challenges in classifying small objects 

without a follow-up feature resampling step, 

impacting performance 

74.30% 

Ross Girshick 

et al.,  2015 
PASCAL – COCO 

dataset 

SPPnet has limitations in updating convolutional 

layers, which may affect the accuracy of very deep 

networks 

35.90% 

Jifeng Dai  et 

al., 2015 PASCAL –VOC 2012 

trainval 

Lack of significant improvement in accuracy with 

feature sharing, absence of exploration into post-

processing techniques such as CRF for refining 

instance mask boundaries 

70.90% 

Ross Girshick   

et al., 2014 PASCAL- VOC dataset 
The method relies on labelled training data, which 

can be scarce, impacting its generalizability 
53.3%. 

Present work YoloV5-Custom dataset 84.30% 
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gradients matches the parameters, emphasizing the 

training complexity. The model described with 214 layers 

and 7 million parameters suggests a high level of 

complexity. While this can be beneficial for capturing 

intricate features, it also leads to increased training time 

(as shown in Table 5) and potentially higher 

computational demands for running the model on new 

images. Exploring techniques for model compression or 

knowledge distillation could be beneficial for reducing 

complexity while maintaining good performance.  

 Figure 10 (a) provides a comprehensive analysis of 

the bounding box distribution within the dataset. It shows 

a bar chart, where each bar represents a class in the 

dataset. The height of each bar corresponds to the number 

of annotations associated with that particular class. This 

visualization helps identify potential class imbalances in 

the dataset, where some classes might have significantly 

fewer or more annotations compared to others. Based on 

the location and size of each bounding box in the dataset, 

Figure 10(b) illustrates the distribution of bounding boxes 

in the dataset. To ensure that the model recognizes 

objects properly, there should be enough variation in the 

position and size of the bounding boxes in the dataset. 

The figures in Figure 10 (c) and (d) illustrate how the 

bounding boxes are distributed across the dataset on the 

basis of their position and size. Using this graph, it is 

possible to determine whether the bounding boxes are 

evenly distributed throughout the dataset or whether there 

are areas that are heavier than others. Due to the 

variability in size and position of objects in the image, it 

Figure 8. Box loss, objectness loss, classification loss, precision, recall and mAP over the training 

and validation set's training epochs. 

Figure 9. a) Output of object detection and classification in real-time b) Class distribution of the 

detected objects. 



Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v38.005 
58 

is essential that the model will be able to detect them 

correctly. 

Moreover, the analysis of bounding box distribution 

(Figure 10) helps identify potential biases in the dataset. 

If the bounding boxes are concentrated in specific image 

regions or exhibit limited size variations, the model might 

struggle with objects located differently or having 

different sizes during deployment. Addressing this could 

involve collecting additional data to achieve a more 

diverse distribution.  

The training process utilized both the training and 

validation sets to optimize the YOLOv5 model. Various 

loss functions were computed during training to measure 

the model's performance. Throughout the training, the 

combined loss function value exhibited a decreasing 

trend. This suggests SGD optimizer effectively adjusted 

the network's weights and parameters, leading to 

improved performance. As reflected in the decrease in 

loss, the model likely achieved significant gains in 

accuracy, recall rate, and average accuracy. 

Table 5 summarizes the training times observed for 

different training epochs using the YOLOv5s model. As 

the number of epochs increases, the training time also 

increases. This is because each epoch involves processing 

the entire training dataset. The table presents training 

times for different epoch values: 1.377 hours for 50 

epochs, 2.568 hours for 100 epochs, and 3.738 hours for 

150 epochs. This highlights the growing computational 

cost associated with more extensive training iterations. 

Conclusion 

This paper proposes an object detection algorithm 

building upon YOLOv5. We evaluated our custom model 

using standard metrics like precision, recall, mAP, and 

IoU at various thresholds. These metrics assessed the 

model's ability to detect and classify objects accurately, 

predict bounding boxes precisely, and handle diverse 

object categories. While achieving a good precision of 

0.851, the significant improvement lies in the high recall 

of 0.831 and mAP of 0.843. The high recall signifies the 

model's success in identifying custom objects in the test 

Figure 10. A visual representation of the dataset. (a) An indication of the number of 

annotations per class, (b) visualization of the bounding box location and size, (c) statistics 

about the bounding box position, and (d) Size of bounding boxes statistically distributed. 



Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v38.005 
59 

data, leading to tangible and meaningful results. While 

this research utilized the YOLOv5s model, exploring 

newer architectures like could potentially enhance 

accuracy or efficiency depending on the specific task and  

computational resources. Furthermore, investigating 

techniques for faster inference through hardware 

acceleration or model optimization could be a valuable 

future direction for real-time applications. 
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