

*Corresponding Author: krishna.samineni@gmail.com

46

DOI: https://doi.org/10.52756/ijerr.2024.v38.005 Int. J. Exp. Res. Rev., Vol. 38: 46-60(2024)

 Performance Evaluation of YOLOv5-based Custom Object Detection Model for Campus-Specific

Scenario

 Dontabhaktuni Jayakumar and Samineni Peddakrishna*

School of Electronics Engineering, VIT-AP University, Amaravati-522241, Andhra Pradesh, India
E-mail/Orcid Id:

DJ, jayajkd@gmail.com, https://orcid.org/0000-0003-3779-9904;

SP, krishna.samineni@gmail.com, https://orcid.org/0000-0002-5925-8124

Introduction

The autonomous vehicle technology industry has

experienced significant advancements in recent years due

to the increasing need for reliable and precise object

detection systems. Object detection is a fundamental task

in computer vision and has recently undergone significant

developments. (Amjoud et al., 2023; Diwan et al., 2023;

Srivastava and Tripathi, 2023). Recent advancements in

deep learning and computer vision have greatly enhanced

object detection performance, making it a vital

technology widely utilized across various industries.

There are different techniques for object detection, which

can be categorized into two primary groups. The first

group consists of algorithms based on classifications,

while the second group relies on regression methods.

Object localization is utilized within the first group to

precisely locate objects within images, particularly in

real-time systems requiring rapid detection of multiple

objects. This approach involves the use of Convolutional

Neural Networks (CNN) and Recurrent Neural Networks

(RNN) to identify regions of interest in the image and

categorize them (Dhruv et al., 2020). However, this

method has limitations, especially in real-time systems

where speed is paramount. The computational expense of

running predictions for each selected region can slow

down the object detection process, rendering it less

suitable for real-time applications.

On the other hand, algorithms based on regression,

such as You Only Look Once (YOLO), are widely used

in object detection. YOLO treats object detection as a

regression problem, predicting bounding boxes and class

probabilities in a single forward pass through the neural

Article History:

Received: 04th Jun., 2023

Accepted: 10th March, 2024

Published: 30th Apr., 2024

Abstract: This study evaluates the performance of a custom object detection model

based on the YOLOv5 architecture, specifically tailored for autonomous electric

vehicles. The model undergoes pre-processing using the Roboflow computer vision

platform, which offers a wide range of tools for data pre-processing and model training.

The experiments were conducted on a diverse dataset comprising various objects

encountered in campus-specific driving scenarios, such as pedestrians, vehicles,

buildings, and obstacles. The performance of the custom object detection model is

assessed using standard metrics, including precision, recall, mean average precision

(mAP), and intersection-over-union (IoU) at different thresholds. The training process

was conducted in a controlled environment, resulting in a Precision of 0.851, a Recall of

0.831, and a mAP of 0.843. These metrics were analyzed to evaluate the YOLOv5-

based custom object detection model's ability to detect and categorize objects

accurately, its precision in predicting bounding boxes, and its capability to handle

various object categories. We also examined the effects of different hyperparameters

and data augmentation techniques on the model's performance, including variations in

learning rate, batch size, and optimizer algorithms to determine their impact on accuracy

and convergence. This analysis provided valuable insights into the model's strengths and

weaknesses, highlighting areas for improvement and optimization. These findings are

instrumental in developing and deploying advanced object detection systems to enhance

the safety and reliability of autonomous electric vehicles.

Keywords:

Autonomous electric

vehicles, computer vision,

custom data, object

detection, YOLO

How to cite this Article:

Dontabhaktuni Jayakumar and Samineni

Peddakrishna (2024). Performance

Evaluation of YOLOv5-based Custom

Object Detection Model for Campus-

Specific Scenario. International Journal of

Experimental Research and Review, 38,

46-60.

DOI:

https://doi.org/10.52756/ijerr.2024.v38.005

https://doi.org/10.52756/ijerr.2024.v38.005
https://crossmark.crossref.org/dialog/?doi=10.52756/ijerr.2024.v38.005&domain=iaph.in

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
47

network. This approach is more computationally efficient

than classification-based methods, as it eliminates the

need to run predictions for each region individually.

Instead, it simultaneously detects objects in the entire

image, making it ideal for real-time applications. Over

time, the YOLO algorithm has gone through various

iterations and improvements to enhance its performance

in object detection tasks. These different versions of

YOLO have led to advancements in accuracy, efficiency

and model architecture.

YOLOv2, the second version of YOLO, introduced

several key improvements compared to its predecessor. It

incorporated the concept of anchor boxes, which allowed

the model to predict objects of different sizes and aspect

ratios more accurately. This improvement led to better

localization and increased detection performance

(Redmon et al., 2017; Banerjee et al., 2023). Expanding

upon the advances of YOLOv2, YOLOv3 introduced

enhancements in the field of object detection. It

implemented a multi-scale prediction approach utilizing

feature maps at varying resolutions. Additionally,

YOLOv3 incorporated the "darknet-53" technique, which

employs a more intricate neural network architecture for

enhanced feature extraction (Redmon et al., 2018). These

architectural upgrades resulted in improved accuracy in

object detection.

With the introduction of YOLOv4, performance was

further enhanced through the adoption of innovative

techniques such as the CSPDarknet53 backbone

architecture, PANet (Path Aggregation Network) neck,

and the Mish activation function (Bochkovskiy et al.,

2020). These advancements significantly improved the

model's detection accuracy and made it more efficient for

real-time applications. The latest version, YOLOv5,

brought further improvements in object detection

performance. It incorporated the EfficientDet

architecture, which combined the benefits of EfficientNet

and EfficientDet models (Wang et al., 2021). EfficientDet

is known for its state-of-the-art performance in object

detection tasks. By leveraging the EfficientDet

architecture, YOLOv5 achieved better accuracy and

generalization compared to its predecessors. In addition

to architectural improvements, each version of YOLO has

also introduced enhancements to the loss functions and

training strategies. For instance, YOLOv4 introduced the

complete intersection over union (CIoU) loss function,

which specifically addressed the challenge of imbalanced

datasets and further improved the model's performance.

Considering the advancements and success of the

YOLO series, the decision to implement the YOLOv5

deep neural network has proven to be beneficial in our

work. By utilizing this robust and dependable detection

method, the research combines established techniques

(YOLOv5) with a unique dataset and AEVs application

in a campus environment to tackle a specific challenge

within the autonomous vehicle industry. This study

involves:

• Developing and categorising a new image dataset

that focuses on objects typically encountered on a

college campus. This data is more pertinent to our

intended application than more general datasets.

• The utilization of the YOLOv5 model for AEV

object detection within a campus environment is a

unique and valuable contribution. Our research

investigates the effects of different hyperparameters

and data augmentation techniques on the model's

performance to improve accuracy and model

convergence.

The remainder of this paper will explore the relevant

object detection research. Section 2, related literature will

first explore classical machine learning techniques used

and then provide a detailed examination of deep learning-

based object detectors. Section 3, object detection

methodology and evaluation, will then detail the

proposed object detection approach and its evaluation

strategy. Here, we will describe the specific pre-

processing steps to prepare the data for training with the

YOLOv5 model architecture. Following this, Section 4,

results and discussion will present the experimental

results and their evaluation using various metrics. We

will then provide a thorough discussion of these results,

explaining their significance and any potential

limitations. Finally, the concluding section will

summarize this study's key findings and contributions.

Here, we will emphasize the effectiveness of the

YOLOv5 model for object detection in a campus

environment. We will also discuss potential avenues for

future research to improve object detection capabilities

further.

Related Literature

Before the advent of deep learning in 2013, object

detection predominantly utilized classical machine

learning techniques. Some common methods included the

Viola-Jones object detection technique (Viol et al., 2001),

scale-invariant feature transforms (SIFT) (Lowe et al.,

2004), and histogram of oriented gradients (HOG) (Dalal

et al., 2005). These methods relied on handcrafted

features and traditional algorithms tailored to identify

objects in images based on specific characteristics and

patterns. Although these classical techniques were

effective for certain applications and constrained

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
48

scenarios, these classical techniques had limitations in

addressing complex and varied object detection tasks.

The Viola-Jones technique, designed for real-time face

detection, was particularly successful in scenarios

focused on detecting faces in images or video streams,

especially in well-lit and controlled environments (Viola

et al., 2001). On the other hand, SIFT was well-suited for

scenarios necessitating matching key points between

images finding applications in tasks like image

alignment, panorama stitching, and object recognition

(Yan Ke et al., 2004). HOG gained popularity for

pedestrian detection, performing well in situations with

simple backgrounds and upright pedestrians. The

challenge with these methods was creating features that

could accurately represent objects despite variations in

appearance, scale, and orientation in real-world images.

However, the design of handcrafted features posed a

challenge in classical object detection methods. Crafting

features that could effectively represent objects across

various appearances, scales, and orientations was difficult

(Viola et al., 2001). Real-world images presented a wide

range of variations, such as changes in lighting

conditions, viewpoints, poses, and object sizes.

Handcrafted features struggled to adapt to these

variations, leading to the need for feature representations

that could adjust to changing object appearances and

environmental conditions (Girshick et al., 2014). This

need led to the development of deep learning-based

approaches, which have significantly advanced object

detection by automatically learning and adapting feature

representations from raw image data (LeCun et al., 2015).

This advancement has revolutionized object detection,

improving accuracy, robustness, and adaptability.

The introduction of deep learning, particularly the

potential of Deep Convolutional Neural Networks

(DCNN) for object detection, has significantly impacted

the research community. This transformation followed

the influential work of Krizhevsky et al. (2017), Alex

Krizhevsky et al. (2012), Sermanet et al. (2013) and

Pierre Sermanet et al. (2013) on the challenging

ImageNet dataset. Krizhevsky et al. (2017) demonstrated

the capabilities of DCNN for object localization and

detection tasks, showcasing the effectiveness of

identifying object locations within images. Sermanet et

al. further expanded on this by illustrating how DCNNs

could be used to locate and detect instances of objects,

emphasizing the advantages of combining classification,

localization, and detection tasks. The integration of these

tasks within the DCNN framework led to improved

performance across all tasks, highlighting the potential

for a unified approach to object detection challenges.

These contributions have underscored the effectiveness

and versatility of DCNNs in handling complex detection

tasks, leading to the widespread adoption of deep

learning-based approaches in object detection

(Krizhevsky et al., 2017; Sermanet et al., 2013). As a

result of these developments, significant advancements

have been made in creating highly accurate and efficient

object detection systems for a variety of applications.

Building on this progress, Girshick et al. introduced a

Region-based Convolutional Neural Network (R-CNN)

(Girshick et al., 2015). They utilized the AlexNet

architecture and achieved significant improvements in

detection performance. However, R-CNN had limitations.

It was computationally expensive and slow to train,

taking days even for small datasets (Girshick et al.,

2015). This led to further research and the development

of faster, more efficient object detection models, such as

Fast R-CNN (Girshick et al., 2015). Fast R-CNN

addressed processing speed issues by sharing

convolutional feature computations across region

proposals, though challenges remained with region

proposal generation speed.

To address this issue, the faster R-CNN model,

introduced in the same year by improving the region

proposal process with the Region Proposal Network

(RPN) (Shaoqing Ren et al., 2015), (J. Long et al., 2014).

Integrating RPN directly within the network eliminated

the need for separate regional proposal methods,

enhancing overall efficiency and streamlining the

architecture. Another notable advancement came with the

introduction of the Region-based Fully Convolutional

Network (R-FCN) (Dai et al., 2016). This innovative

approach shared computations within the network and

employed position-sensitive score maps to address

translation invariance. By combining Faster R-CNN and

FCN, R-FCN achieved faster and more precise object

detection, albeit with modest gains in accuracy. These

developments significantly propelled the field of

computer vision, facilitating the creation of quicker and

more accurate detection systems. Most notably, Mask R-

CNN extended the capabilities of Faster R-CNN with a

parallel branch for pixel-level object instance

segmentation (He et al., 2018). Subsequent to the

advancements of Mask R-CNN, the domain of object

detection continued to witness considerable progress with

the introduction of the Single Shot MultiBox Detector

(SSD) (Liu et al., 2016) and YOLO series (Joseph

Redmon et al., 2016), which revolutionized real-time

object detection capabilities. SSD combined the benefits

of one-stage object detectors with multi-scale feature

maps, allowing for real-time object detection on various

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
49

objects across different scales. On the other hand, YOLO

adopted a one-stage approach that allowed it to

simultaneously predict object locations and class

probabilities in a single pass, resulting in real-time object

detection capabilities. More sophisticated models have

emerged from this research advancements in object

detection, such as YOLOv2, YOLOv3 and YOLOv4,

each building upon the strengths of its predecessors to

achieve even higher levels of accuracy and efficiency.

While previous studies using datasets like PASCAL

VOC and COCO achieved promising results with

methods like Faster R-CNN and YOLOv2, their accuracy

ranged from 19.7% to 83.6%. This indicates a need for

further advancements in object detection, particularly for

custom datasets. The authors’ addresses this gap by

employing the latest YOLOv5 model on a custom

dataset. This approach has the potential to surpass

existing accuracy rates by achieving 84.3% and improve

object detection capabilities for specific use cases not

covered by the standard datasets.

The advancements in the YOLO series, particularly

compared to two-stage detectors like Faster R-CNN and

R-FCN, strongly motivated the use of YOLOv5 in the

significant challenges for object detection in campus

environment, especially considering the application in

AEVs for robust object detection systems for enhanced

safety and reliability. The main contributions of this

research include assembling and labelling an image

dataset, training YOLOv5 with a custom dataset for

object detection, and implementing the YOLOv5s model

to achieve high accuracy through test inference in real-

world scenarios.

Object Detection Methodology and Evaluation

The implementation process begins by collecting a

comprehensive dataset of 5246 images taken from

various locations on campus. A block diagram illustrating

the proposed implementation process is shown in Figure

1. The first step involves annotating each image by

outlining regions containing different objects with

bounding boxes and assigning accurate labels for

subsequent stages. Following annotation, data

augmentation is applied to create varied versions of the

original images in the dataset.

The YOLOv5 model is chosen as the foundational

architecture for data training due to its effectiveness and

precision in object detection tasks. The training involves

cycling through the augmented training dataset. The

YOLOv5 model takes in an image at each cycle,

generates predicted bounding boxes, and calculates class

probabilities. The model's performance is assessed by

comparing these predictions with the actual annotations

and calculating the loss.

The final trained model is tested on a separate test set

upon completion of the training phase. The test set

comprises images that the model has not previously

encountered and is used to evaluate the model's

performance on unfamiliar data. If the model's

performance on the test set is unsatisfactory, adjustments

can be made through fine-tuning. Fine-tuning involves

modifying the model's parameters to enhance its

performance on the specific task at hand. Finally, the

deployed YOLOv5 model is utilized for real-time object

detection in the campus environment.

Data Annotation

Effective data preparation is a crucial initial step in

developing accurate deep-learning models. Image

annotation is a key component of this process, involving

precisely identifying and labelling objects within images.

This typically entails creating bounding boxes around

objects and assigning appropriate labels. Such

annotations provide essential information for machine

learning models to learn object identification and

classification. We utilized the LabelImg tool, known for

its user-friendly interface tailored for deep learning

projects. The tool's simplicity facilitates efficient and

accurate object labelling, supporting various output

formats like PASCAL VOC, Txt and YOLO. Figure 2

illustrates the labelling process using LabelImg, which

Figure 1. Block diagram of the proposed model.

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
50

involves drawing boxes around objects for machine

recognition and assigning corresponding labels. In our

specific environment, we have identified a set of 53

labels corresponding to specific locations or items within

our campus, creating a direct association between labels

and campus areas.

Data Augmentation

With the annotated data in hand, the next step in the

workflow involves curating and preprocessing the dataset

to ready it for training. Data augmentation is a critical

component of this process, as it helps enhance the

diversity of the dataset. The steps for data curation and

preparation are outlined in Figure 3. Data augmentation

includes techniques like rotation, flipping, scaling, and

brightness adjustments, which generate various versions

of the original images. The model is exposed to a wide

range of visual patterns and configurations by

augmenting the data, as shown in Figure 4. This exposure

improves the model's ability to generalize its learning,

enhancing object recognition in different conditions.

Furthermore, the model becomes more resilient and adept

at handling real-world situations, regardless of object

orientation, size, or brightness changes.

Data Splitting

After performing data augmentation, the dataset was

expanded to include 5264 samples spanning 53 classes.

This enhancement incorporates a variety of variations,

thereby enhancing the model's capacity to generalize and

enhance object detection accuracy. The subsequent

important step involves partitioning this augmented

dataset into three distinct subsets: training, validation,

and testing sets, maintaining a distribution ratio of 7:2:1.

To guarantee an equal distribution of samples across all

classes and prevent any potential biases that may affect

the model's performance during training and evaluation,

the entire dataset of 5264 samples is initially randomized.

The dataset is divided according to the specified ratio

following the random shuffling. While random shuffling

guarantees sample distribution across classes,

maintaining class balance within each subset is equally

important. Stratified sampling techniques are employed

to achieve this balance. Stratified sampling is a statistical

method commonly used to ensure that the distribution of

samples in the subsets mirrors the proportions of different

classes in the original dataset. In the proposed work,

stratified sampling upholds class balance within the

training, validation, and testing sets even after data

augmentation. This strategy enables the model to

generalize effectively and provide accurate predictions

across all classes, including those with limited samples.

The combination of stratified sampling and data

augmentation results in a well-balanced and diverse

dataset, optimizing the deep learning model's potential

for accurate detection in the campus environment,

regardless of class imbalances.

Once the dataset is divided, the training set is utilized

to train the deep learning model, the validation set assists

Figure 2. Image annotation process.

Figure 3. Preprocessing the dataset to prepare for training.

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
51

in monitoring the model's performance and adjusting

hyperparameters, and the testing set is used for independ-

ent evaluation to assess the model's generalization on

unseen data.

Proposed architecture of Yolov5 model

YOLOv5 is a state-of-the-art object detection model

that can be trained on custom datasets. It offers a balance

between performance and speed. The architecture of

Yolov5 is shown in Figure 5. The YOLOv5 consists of

two main components, the backbone and the head. The

backbone of YOLOv5 comprises various modules that

work together to extract features from the input image.

As shown in Figure5, it starts with the Focus module, a

lightweight convolutional layer that efficiently processes

the image by focusing on relevant regions. The Focus

module is used to increase the receptive field of the

network without increasing the number of parameters.

This is done by combining the features from different

layers of the network. The Conv module follows,

consisting of standard convolutional layers that learn

basic features like edges, shapes, and textures. Next, the

backbone employs the C3 module, which stands for

CSPNet bottleneck with three convolutions. The C3

module incorporates cross-stage connections, promoting

efficient feature fusion and enhancing information flow

throughout the network. This results in improved gradient

flow during backpropagation, leading to stable and

efficient training.

The CSPDarknet53 architecture, consisting of 53

layers, hierarchically uses these modules. Each layer in

the hierarchy builds upon the features learned by the

previous layers, allowing for the extraction of

increasingly complex and abstract features from the input

image. The final layer of the CSPDarknet53 architecture

produces a feature map that is used by the neck and head

modules to predict the bounding boxes and class labels of

the objects in the image. Additionally, YOLOv5 includes

the Spatial Pyramid Pooling (SPP) module in its

backbone. The SPP module captures information at

multiple scales by pooling features at different levels,

enabling the model to detect objects of various sizes and

scales in the input image. The final layer of

CSPDarknet53 produces a feature map, which the head

modules utilise for object detection. The head of the

YOLOv5 architecture is responsible for making

predictions based on the features extracted from the

previous stages. It predicts bounding boxes, class

probabilities, and objectness scores for different anchor

boxes. In the head, up sample employs the nearest

neighbour interpolation method. In the nearest-neighbour

method, the value of a new pixel is determined by the

value of the nearest pixel in the original feature map. This

method is computationally efficient and preserves the

pixel values. The concat operation integrates features

from diverse layers effectively. Finally, the detect module

employs anchor boxes to predict object location and class

in the image. During training, the smart optimizer

initializes the parameters like learning rate and

momentum to tune the hyperparameters. The model is

stabilizing by averaging model weights.

Hyper Parameters Tuning

Following the initialization of specific parameters into

training, the subsequent steps involve tuning

hyperparameters to optimize the model's performance.

Among various hyperparameters, the learning rate plays a

key role in determining the step size during gradient

descent, influencing the model's convergence rate and

Figure 4. Data augmentation: cropping and horizontal flipping techniques

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
52

overall training stability. A learning rate that is too high

might lead to overshooting and unstable training, while a

rate that is too low could slow down convergence. This

hyperparameter is finely tuned to strike a balance

between swift convergence and stability, ensuring

efficient training progress.

Another critical parameter is the batch size, which

governs the number of samples used in each iteration of

training. A larger batch size might accelerate training but

could consume excessive memory and hinder

convergence. Conversely, a smaller batch size might

offer better generalization, particularly with limited data,

but could lead to longer training times. The optimal batch

size is determined through experimentation, considering

computational constraints and desired convergence

behaviour. Additionally, the choice of optimizer which is

used here is Stochastic Gradient Descent (SGD) plays a

key role in shaping the optimization process. The

optimizer's adaptive learning rate adjustments impact

how quickly the model learns and navigates the loss

landscape. Here, the learning rate was set to 0.01.

Regularization techniques like weight decay (set to

0.0005) and dropout are also fine-tuned to prevent

overfitting, enhancing the model's ability to generalize

from the training data to unseen examples. By carefully

configuring these hyperparameters based on validation

performance, the deep learning model can be fine-tuned

to achieve its highest potential accuracy.

A Grid Search tuning method was utilized with a

batch size of 12, 16, and 32, SGD optimizer, 0.01

learning rate, 0.0005 weight decay to find the optimal

configuration of these hyperparameters. This exploration

allows us to identify the combination that yields the best

performance on the validation dataset. The impact of

these choices, particularly the effect of batch size on

mAP, will be visualized and discussed in the results and

discussion section.

Results and Discussion

This section discusses the findings of the YOLOv5

object detection model trained on the campus

environment dataset. We analysed the model's

performance using a variety of evaluation metrics

commonly employed in object detection tasks. These

metrics include precision, recall, mean Average Precision

(mAP), and Intersection over Union (IoU) at different

thresholds. Precision reflects the proportion of correctly

identified objects among the predicted ones. Recall, on

the other hand, indicates the percentage of actual objects

that the model successfully detected. mAP provides a

more comprehensive view of the model's performance by

summarizing the average precision (AP) across all object

Figure 5. Yolo model architecture.

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
53

categories at various IoU thresholds. IoU, measured

between the predicted and ground truth bounding boxes,

signifies the degree of overlap between them, indicating

the accuracy of object localization. By examining these

metrics, we can assess the effectiveness of the YOLOv5

model in accurately detecting and classifying objects

within the campus environment.

Evaluation Metrics and Performance Analysis

Choosing appropriate metrics for evaluating object

detection systems is key to assessing their effectiveness.

As precise bounding boxes must be delineated around

identified objects in an image, object detection poses a

formidable challenge. Object detection accuracy is

commonly measured using Equations (1) through (4).

True Posit

)

ive(

True

TP)
Precision=

TPositive(False Posit+ ive) (P FP

(1)

True Positive(

True Po)

TP)
R

sitive(Fa+
l

lse N
e

ega
a

tiP v) e
c =

T (
l

FN

(2)
i=1

iN
mAP= AP

(3)

IoU=
True Positive(TP)

True Positive(TP)+False Negative(FN)+False Positive(FP)

(4)

True positive (TP) are accurate detections of objects

that are actually present in the photograph. An error in

detection is known as a false positive (FP), which occurs

when the network detects an object that does not exist in

the picture. False negatives (FN) occur when the network

does not detect an object in the picture that actually

exists. If the network detects an object correctly in an

image, it is a TP. If the network detects an object

incorrectly, it will mark it as an FP, which means it will

not determine whether or not it is present in the image. In

FN, objects exist in an image but are not detected by the

network. The detection of a TN occurs when the image

does not contain an object.

Further, the detection is classified as correct or

incorrect by comparing the IoU with a given threshold. It

is necessary to specify the AP metric for each IoU

threshold value. A person's average accuracy rate is

determined by the integral of the P index and the R index,

which is the area under the P–R curve; an average

accuracy of a mean is determined by summing the AP

values of all categories and then dividing them by each

category, i.e., by the average.

Precision, Recall and mAP

Figure 6 presents accuracy curves for precision, recall,

and mAP scores. These metrics are plotted for both the

training and validation sets, allowing us to observe the

model's improvement during the training process. The

model achieves higher precision and recall values on the

training set compared to the validation set. However, the

validation set performance indicates the model's ability to

generalize to unseen data, which is crucial for real-world

applications.

To explore the effect of batch size on training

performance, we evaluated the model with three different

batch sizes (12, 16, and 32). The training duration was

adjusted accordingly, with 50 epochs for a batch size of

12, 100 epochs for 16, and 100 epochs for 32. The

observations from this experiment are presented in Table

1 and visualized in Figure 7. As shown in Table 1, a

batch size of 32 generally yielded the best performance in

terms of precision (0.862), although recall (0.761) was

slightly lower compared to a batch size of 16 (0.775). The

mAP values followed a similar trend, with the highest

mAP50 (0.843) achieved with a batch size 16. However,

it's important to consider the trade-off between

performance and training time. A larger batch size (32)

might lead to faster training convergence, while a smaller

batch size (12) might require less memory but could take

longer to train.

Further, we evaluated the model's performance on a

set of 5264 images containing a total of 11335 instances.

This evaluation was conducted using various IoU

thresholds. Table 2 displays the corresponding precision,

recall, and mAP50 scores for each IoU threshold. The

model achieves higher precision and recall values at

lower IoU thresholds (indicating less strict bounding box

overlap requirements). For instance, at an IoU of 0.25,

the model obtains a precision of 0.677, a recall of 0.519,

and a mAP50 of 0.556. These scores decrease as the IoU

threshold increases (becoming more strict), indicating a

trade-off between the number of detections and their

Table 1. Metrics with varying batch size and epoch.

Batch size epoch Precision Recall mAP 50 mAP 50-95

12 50 0.81 0.705 0.732 0.446

16 100 0.826 0.775 0.843 0.521

32 100 0.862 0.761 0.821 0.504

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
54

localization accuracy. By analyzing these results, we gain

valuable insights into the effectiveness of the YOLOv5

model for object detection in a campus environment. The

model demonstrates a good balance between precision

and recall, and its performance adapts based on the

chosen IoU threshold. The exploration of different batch

sizes further highlights the importance of hyperparameter

tuning for optimal model performance.

Loss function

The training process also involves calculating a loss

function to assess the model's performance on each

iteration. This loss is then used to update the model's

weights through an optimizer like Stochastic Gradient

0
.8

1

0
.8

2
6

0
.8

6
2

0
.7

0
5 0
.7

7
5

0
.7

6
1

0
.7

3
2 0

.8
3

2

0
.8

2
1

0
.4

4
6 0
.5

2
1

0
.5

0
4

B A T C H S I Z E 1 2 B A T C H S I Z E 1 6 B A T C H S I Z E 3 2

C O M P A R A T I V E M A T R I C S V A R I N G B A T C H S I Z E

Precision Recall mAP 50 mAP 50-95

Figure 6. Precision, recall, mAP (0.5) parameters, and class object loss for training epochs.

Figure 7. Performance metrics for different batch sizes.

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
55

Descent (SGD) mentioned earlier. The goal is to

minimize the loss function over the training iterations,

leading to improved object detection accuracy. Validation

and testing are performed with the weights that achieve

the minimum loss during training. These weights

represent the best-performing model on the training data.

Finally, the model with these optimal weights is used to

predict objects in unseen test data.

Table 2. Performance of P, R, mAP for various

values of IoU.

IoU Precision Recall mAP50

0.25 0.677 0.519 0.556

0.5 0.672 0.525 0.57

0.75 0.659 0.5 0.547

The total loss function in YOLOv5 is a combination

of three individual loss components: the one responsible

for finding the bounding-box coordinates (coord loss), the

bounding-box score prediction (objectness loss), and the

class-score prediction (class loss). Each of these

components is weighted and combined to form the total

loss. The architecture aims to minimize this loss during

training to improve object detection accuracy.

Coord loss is accurate in relation to the ground truth

bounding box coordinates. The loss is calculated using

mean squared error (MSE) between the predicted

coordinates and the ground truth coordinates as shown in

equation (5)

𝐶𝑜𝑜𝑟𝑑_𝐿𝑜𝑠𝑠 = 𝜆𝑐𝑜𝑜𝑟𝑑 × ∑[𝑖, 𝑗, 𝑘] ((𝑥𝑝𝑟𝑒𝑑 − 𝑥𝑔𝑡)2 +

(𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑔𝑡)2 + (√𝑤𝑝𝑟𝑒𝑑 − √𝑤𝑔𝑡)2 + (√ℎ𝑝𝑟𝑒𝑑

− √ℎ𝑔𝑡)2) (5)

Here, (xpred, ypred) are the predicted bounding box

center coordinates, (wpred, hpred) are the predicted width

and height of the bounding box, and (xgt, ygt, wgt, hgt) are

the corresponding ground truth values. The summation is

performed over the grid cells (i, j) and anchor boxes (k).

Objectness loss encourages the model to predict high

scores for grid cells containing objects and low scores for

cells without objects. It utilizes the Mean Squared Error

(MSE) between the predicted objectness score and the

ground truth objectness score as shown in equation (6).

  ()()2_ , , _ _objObj Loss i j k obj pred obj gt=  −

 (6)

Here, obj_pred is the predicted objectness score, and

obj_gt is the ground truth objectness score for the

corresponding grid cell and anchor box. Class loss

ensures that the predicted class probabilities align well

with the actual class labels. It's calculated using the Mean

Squared Error (MSE) between the predicted class scores

and the ground truth class scores as shown in equation (7)

𝐶𝑙𝑎𝑠𝑠_𝐿𝑜𝑠𝑠 = 𝜆𝑐𝑙𝑠 × ∑[𝑖, 𝑗, 𝑘, 𝑐]((𝑐𝑙𝑎𝑠𝑠_𝑝𝑟𝑒𝑑

− 𝑐𝑙𝑎𝑠𝑠_𝑔𝑡)2) (7)

Here, class_pred is the predicted class score for class

c, and class_gt is the ground truth class score for the same

class. The summation is performed over grid cells (i,j),

anchor boxes (k), and classes (c). The total loss is a linear

combination of the three components, each multiplied by

a corresponding scalar parameter (λ_coord, λ_obj,

λ_class). These scalar parameters control the relative

importance of each component in the loss function. The

total loss can be summations of above three loses and it

can be expressed in equation (8).

𝑇𝑜𝑡𝑎𝑙_𝐿𝑜𝑠𝑠 = 𝐶𝑜𝑜𝑟𝑑_𝐿𝑜𝑠𝑠 + 𝑂𝑏𝑗_𝐿𝑜𝑠𝑠 +

 𝐶𝑙𝑎𝑠𝑠_𝐿𝑜𝑠𝑠 (8)

Additionally, an IoU factor is further incorporated to

modulate the contributions of these loss components.

This factor adjusts the loss based on the accuracy of the

predicted bounding boxes compared to the ground truth.

Higher IoU (better overlap) leads to lower loss, guiding

the model towards more precise object localization.

YOLOv5 uses these loss components and IoU

modulation to guide the training process towards accurate

object detection. The model learns to minimize this

combined loss by adjusting its parameters during training,

as shown in Figure 8. The loss curves consistently display

a descending trajectory, signifying the successful

minimization of training and validation losses throughout

the training process. Simultaneously, the metrics curves

exhibit a consistent upward trend, indicating progressive

model enhancement over successive training iterations. A

YOLOv5 model that is the smallest and fastest was

selected for the proposed system (YOLOv5s).

Table 3 summarizes entire validation set the

performance of the YOLOv5s model. It shows the model

achieved a precision of 0.851, recall of 0.831, and

mAP50 of 0.843 across all classes and instances in the

validation set. The mAP50-95, which considers a broader

IoU threshold range (0.5 to 0.95), is 0.534. These results

indicate that the YOLOv5 model, trained with the

combined loss function and IoU modulation, achieved

good performance in object detection for the specific

campus environment dataset.

These results on the custom dataset are further

demonstrated to existing object detection techniques, as

shown in Table 4. The proposed approach achieves mAP

of 84.3%. This method has shown improvement over

Table 3. Performance of the model YOLOv5s for

custom data validation.

Class Precision Recall mAP50 mAP50-95

All 0.851 0.831 0.843 0.534

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
56

previously established methods such as YOLO9000

(19.7% mAP), earlier versions of Faster R-CNN (53.3%

mAP in 2014 and 35.9% mAP in 2015). It also

demonstrates improvement over recent works such as

SSD (74.3% mAP) and Faster R-CNN (70.9% mAP in

2015) on similar datasets (PASCAL VOC and COCO).

Our approach outperforms CNN-based methods like

CNN-MS COCO (65.7% mAP), highlighting the

effectiveness of deep learning architectures like YOLOv5

for object detection tasks. In 2023, Jifeng Dai et al.

demonstrated strong performance (83.6% mAP) utilizing

the PASCAL VOC dataset, which is comparable to

proposed metric. it's important to consider potential

differences in the datasets and task complexities. Our

custom dataset might pose unique challenges compared

to the publicly available datasets used in other works.

Due to its customizability, the proposed YOLOv5-based

approach demonstrates promising results, achieving high

mAP and potentially offering advantages in specific

application domains.

Prediction of objects in image

After training the models and evaluating them on a

separate testing set, we validated their performance on

entirely new images unseen during training. These unseen

images are crucial for assessing how well the models

generalize to real-world scenarios. Figure 9(a) visually

depicts the model's object detection results. Bounding

boxes are identified around the objects identified in the

image. A summary of a label identifying the detected

object that appears within each bounding box for all

classes present in the dataset is shown in Fig.9(b). This

visualization demonstrates the model's ability to detect

objects in new images, along with the assigned class

labels and potential confidence scores (percentages)

indicating the model's certainty in its detections.

Discussion

The dataset contains images from various

environments, divided into 70% for training, 20% for

testing, and 10% for validation purposes. The architecture

begins with a series of convolutional layers to extract

features from input images. These layers have different

filter sizes and strides to extract hierarchical features

gradually. Multiple convolutional layers enhance feature

representation, and the SPPF module captures context

information across scales to identify objects of varying

sizes. Inspired by YOLO, the detect layer handles the

final object detection using anchor boxes. The model has

214 layers and 7,181,449 parameters, indicating its

capacity to learn complex features. The number of

Table 4. Comparison of Object Detection Methods with existing literature

Author and

Year Method and Dataset Limitations mAP

Jifeng Dai et

al., 2023 PASCAL -VOC

datasets

The R-FCN system presented in the paper was

intentionally kept simple, potentially limiting the

exploration of more complex extensions or

improvements

83.60%

Alexey

Bochkovskiy

et al., 2020

CNN- MS COCO

dataset

Does not extensively discuss the potential

limitations or drawbacks of the YOLOv4 model.
65.70%

Joseph

Redmon et

al., 2017

YOLO9000 - COCO

dataset

Down sampling factor of 32 results in an output

feature map of 13 x 13, which may affect the

detection of objects occupying the center of the

image.

19.70%

Wei Liu et al.,

2016 SSD-VOC2007 dataset

SSD faces challenges in classifying small objects

without a follow-up feature resampling step,

impacting performance

74.30%

Ross Girshick

et al., 2015
PASCAL – COCO

dataset

SPPnet has limitations in updating convolutional

layers, which may affect the accuracy of very deep

networks

35.90%

Jifeng Dai et

al., 2015 PASCAL –VOC 2012

trainval

Lack of significant improvement in accuracy with

feature sharing, absence of exploration into post-

processing techniques such as CRF for refining

instance mask boundaries

70.90%

Ross Girshick

et al., 2014 PASCAL- VOC dataset
The method relies on labelled training data, which

can be scarce, impacting its generalizability
53.3%.

Present work YoloV5-Custom dataset 84.30%

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
57

gradients matches the parameters, emphasizing the

training complexity. The model described with 214 layers

and 7 million parameters suggests a high level of

complexity. While this can be beneficial for capturing

intricate features, it also leads to increased training time

(as shown in Table 5) and potentially higher

computational demands for running the model on new

images. Exploring techniques for model compression or

knowledge distillation could be beneficial for reducing

complexity while maintaining good performance.

 Figure 10 (a) provides a comprehensive analysis of

the bounding box distribution within the dataset. It shows

a bar chart, where each bar represents a class in the

dataset. The height of each bar corresponds to the number

of annotations associated with that particular class. This

visualization helps identify potential class imbalances in

the dataset, where some classes might have significantly

fewer or more annotations compared to others. Based on

the location and size of each bounding box in the dataset,

Figure 10(b) illustrates the distribution of bounding boxes

in the dataset. To ensure that the model recognizes

objects properly, there should be enough variation in the

position and size of the bounding boxes in the dataset.

The figures in Figure 10 (c) and (d) illustrate how the

bounding boxes are distributed across the dataset on the

basis of their position and size. Using this graph, it is

possible to determine whether the bounding boxes are

evenly distributed throughout the dataset or whether there

are areas that are heavier than others. Due to the

variability in size and position of objects in the image, it

Figure 8. Box loss, objectness loss, classification loss, precision, recall and mAP over the training

and validation set's training epochs.

Figure 9. a) Output of object detection and classification in real-time b) Class distribution of the

detected objects.

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
58

is essential that the model will be able to detect them

correctly.

Moreover, the analysis of bounding box distribution

(Figure 10) helps identify potential biases in the dataset.

If the bounding boxes are concentrated in specific image

regions or exhibit limited size variations, the model might

struggle with objects located differently or having

different sizes during deployment. Addressing this could

involve collecting additional data to achieve a more

diverse distribution.

The training process utilized both the training and

validation sets to optimize the YOLOv5 model. Various

loss functions were computed during training to measure

the model's performance. Throughout the training, the

combined loss function value exhibited a decreasing

trend. This suggests SGD optimizer effectively adjusted

the network's weights and parameters, leading to

improved performance. As reflected in the decrease in

loss, the model likely achieved significant gains in

accuracy, recall rate, and average accuracy.

Table 5 summarizes the training times observed for

different training epochs using the YOLOv5s model. As

the number of epochs increases, the training time also

increases. This is because each epoch involves processing

the entire training dataset. The table presents training

times for different epoch values: 1.377 hours for 50

epochs, 2.568 hours for 100 epochs, and 3.738 hours for

150 epochs. This highlights the growing computational

cost associated with more extensive training iterations.

Conclusion

This paper proposes an object detection algorithm

building upon YOLOv5. We evaluated our custom model

using standard metrics like precision, recall, mAP, and

IoU at various thresholds. These metrics assessed the

model's ability to detect and classify objects accurately,

predict bounding boxes precisely, and handle diverse

object categories. While achieving a good precision of

0.851, the significant improvement lies in the high recall

of 0.831 and mAP of 0.843. The high recall signifies the

model's success in identifying custom objects in the test

Figure 10. A visual representation of the dataset. (a) An indication of the number of

annotations per class, (b) visualization of the bounding box location and size, (c) statistics

about the bounding box position, and (d) Size of bounding boxes statistically distributed.

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
59

data, leading to tangible and meaningful results. While

this research utilized the YOLOv5s model, exploring

newer architectures like could potentially enhance

accuracy or efficiency depending on the specific task and

computational resources. Furthermore, investigating

techniques for faster inference through hardware

acceleration or model optimization could be a valuable

future direction for real-time applications.

Conflicts of Interest

The authors declare no conflict of interest.

References

Alexe, B., Deselaers, T., & Ferrari, V. (2012). Measuring

the objectness of image windows. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 34(11), 2189-2202.

 https://doi.org/10.1109/tpami.2012.28

Amjoud, A. B., & Amrouch, M. (2023). Object detection

using deep learning, CNNs and vision transformers:

a review. IEEE Access, 35479-35516.

https://doi.org/10.1109/access.2023.3266093

Banerjee, M., Goyal, R., Gupta, P., & Tripathi, A. (2023).

Real-Time Face Recognition System with Enhanced

Security Features using Deep Learning. Int. J. Exp.

Res. Rev., 32, 131-144.

 https://doi.org/10.52756/ijerr.2023.v32.011

Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020).

Yolov4: Optimal speed and accuracy of object

detection. arXiv preprint arXiv: 2004, 10934, 1-17.

https://doi.org/10.48550/arXiv.2004.10934

Busta, M., Neumann, L., & Matas, J. (2017). Deep

textspotter: An end-to-end trainable scene text

localization and recognition framework.

In Proceedings of the IEEE International

Conference on Computer Vision, 2017, 2204-2212.

https://doi.org/10.1109/iccv.2017.242

Dai, J., He, K., & Sun, J. (2016). Instance-aware semantic

segmentation via multi-task network cascades.

In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016,

3150-3158. https://doi.org/10.1109/CVPR.2016.343

Dai, J., Li, Y., He, K., & Sun, J. (2016). R-fcn: Object

detection via region-based fully convolutional

networks. Advances in Neural Information

Processing Systems, 29.

 https://doi.org/10.48550/arXiv.1605.06409

Dai, J., Li, Y., He, K., & Sun, J. (2016). R-fcn: Object

detection via region-based fully convolutional

networks. Advances in Neural Information

Processing Systems, 29.

 https://doi.org/10.48550/arXiv.1605.06409

Dalal, N., & Triggs, B. (2005). Histograms of oriented

gradients for human detection. In 2005 IEEE

Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR'05), 1, 886-893.

https://doi.org/10.1109/cvpr.2005.177

Dhruv, P., & Naskar, S. (2020). Image classification

using convolutional neural network (CNN) and

recurrent neural network (RNN): A review. Machine

learning and information processing: proceedings of

ICMLIP, 2019, 367-381.

 https://doi.org/10.1007/978-981-15-1884-3_34

Diwan, T., Anirudh, G., & Tembhurne, J. V. (2023).

Object detection using YOLO: Challenges,

architectural successors, datasets and

applications. multimedia Tools and

Applications, 82(6), 9243-9275.

 https://doi.org/10.1007/s11042-022-13644-y

Girshick, R. (2015). Fast r-cnn. In Proceedings of the

IEEE International Conference on Computer Vision,

2015, 1440-1448.

 https://doi.org/10.1109/iccv.2015.169

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014).

Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, 2014, 580-587.

 https://doi.org/10.1109/cvpr.2014.81

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014).

Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern

recognition, 2014, 580-587.

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017).

Mask r-cnn. In Proceedings of the IEEE

International Conference on Computer Vision, 2017,

2961-2969. https://doi.org/10.1109/iccv.2017.322

https://doi.org/10.1109/cvpr.2014.81

Ke, Y., & Sukthankar, R. (2004). PCA-SIFT: A more

distinctive representation for local image descriptors.

In Proceedings of the 2004 IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition, 2004. CVPR 2004. 2, II-II.

https://doi.org/10.1109/cvpr.2004.1315206

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017).

ImageNet classification with deep convolutional

Table 5. Training time vs number of epoch

S.No epoch Training-time in hours mAP %

1 50 1.377 0.741

2 100 2.568 0.843

3 150 3.738 0.852

Int. J. Exp. Res. Rev., Vol. 38: 46-60 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v38.005
60

neural networks. Communications of the

ACM, 60(6), 84-90. https://doi.org/10.1145/3065386

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep

learning. Nature, 521(7553), 436-444.

 https://doi.org/ 10.1038/nature14539

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,

Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot

multibox detector. Springer International Publishing,

In Computer Vision–ECCV 2016: 14th European

Conference, Amsterdam, The Netherlands, October

11–14, 2016, Proceedings, Part I 14, 21-37.

https://doi.org/10.48550/arXiv.1512.02325

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully

convolutional networks for semantic segmentation.

In Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015, 3431-3440.

https://doi.org/10.1109/cvpr.2015.7298965

Naganuma, K., & Ono, S. (2022). A general destriping

framework for remote sensing images using flatness

constraint. IEEE Transactions on Geoscience and

Remote Sensing, 60, 1-16.

 https://doi.org/10.48550/arXiv.2104.02845

Redmon, J., & Farhadi, A. (2017). YOLO9000: better,

faster, stronger. In Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition, 2017, 7263-7271.

 https://doi.org/10.1109/cvpr.2017.690

Redmon, J., & Farhadi, A. (2018). Yolov3: An

incremental improvement. arXiv preprint

arXiv:1804.02767.

https://doi.org/10.48550/arXiv.1804.02767

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster

r-CNN: Towards real-time object detection with

region proposal networks. Advances in Neural

Information Processing systems, 28.

 https://doi.org/10.48550/arXiv.1506.01497

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-

cnn: Towards real-time object detection with region

proposal networks. Advances in neural information

Processing Systems, 28.

 https://doi.org/10.48550/arXiv.1506.01497

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus,

R., & LeCun, Y. (2013). Overfeat: Integrated

recognition, localization and detection using

convolutional networks. arXiv preprint

arXiv:1312.6229.

https://doi.org/10.48550/arXiv.1312.6229

Srivastava, R., & Tripathi, M. (2023). Systematic

Exploration Using Intelligent Computing

Techniques for Clinical Diagnosis of

Gastrointestinal Disorder: A Review. Int. J. Exp.

Res. Rev., 36, 265-284.

 https://doi.org/10.52756/ijerr.2023.v36.026

Viola, P., & Jones, M. (2001). Rapid object detection

using a boosted cascade of simple features.

In Proceedings of the 2001 IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition. CVPR 2001. 1, I-I.

https://doi.org/10.1109/cvpr.2001.990517

Viola, P., & Jones, M. (2001). Rapid object detection

using a boosted cascade of simple features.

In Proceedings of the 2001 IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition. CVPR 2001. 1, I-I.

 https://doi.org/10.1109/cvpr.2001.990517

How to cite this Article:

Dontabhaktuni Jayakumar and Samineni Peddakrishna (2024). Performance Evaluation of YOLOv5-based Custom Object Detection

Model for Campus-Specific Scenario. International Journal of Experimental Research and Review, 38, 46-60.

DOI: https://doi.org/10.52756/ijerr.2024.v38.005

https://creativecommons.org/licenses/by-nc-nd/4.0/

