

*Corresponding Author: rohitatknit@gmail.com

135

DOI: https://doi.org/10.52756/ijerr.2023.v36.013 Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023)

 Enhancing Software Maintainability Prediction Using Multiple Linear Regression and Predictor

Importance

 Rohit Yadav1* and Raghuraj Singh2

1Department of Computer Science and Engineering, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar

Pradesh, India; 2Department of Computer Science and Engineering, Harcourt Butler Technical University, Kanpur,

Uttar Pradesh, India
E-mail/Orcid Id:

RY, rohitatknit@gmail.com, https://orcid.org/0000-0002-6792-8845; RS, rrsingh@hbtu.ac.in, https://orcid.org/0000-0002-1718-8324

Introduction

The qualities of object-oriented (OO) software are

essential for satisfying explicit and implicit requirements

(Colakoglu et al., 2021). High-quality software is always

a priority because of its extensive effects on many facets

of life and the economy. Software maintenance is the

most expensive stage of development, accounting for

roughly 75% of total costs. Stressing the importance of

investing in maintenance activities is essential because

software bugs jeopardize functionality. According to a

report from the Consortium for Information and Software

Quality (Garomssa et al., 2022), only in the US, poor-

coded software caused a staggering 2.08 trillion dollars in

losses in the year 2020 and 4.4 billion people were

impacted by software flaws in 2016 alone, resulting in a

1.1 trillion-dollar loss to the global economy. The

ISO/IEC 9126 standard has identified efficiency,

functionality, maintainability, portability, reliability, and

usability as characteristics of high-quality software (Jung

et al., 2004). Maintainability has recently gained

significant attention as a crucial quality indicator for

software systems' success. Software maintainability

refers to a system's or component's ability to fix flaws,

enhance performance, or adapt to environmental changes.

Looking more at software maintenance may affect the

overall cost of software development. As a solution,

Article History:

Received: 28th Jun, 2023

Accepted: 11th Dec., 2023

Published: 30th Dec., 2023

Abstract: Accurate maintenance effort and cost estimation are essential for effective

software development. By identifying software modules with poor maintainability,

Software Maintainability Prediction (SMP) plays a crucial role in managing software

maintenance expenses. Previous research efforts have used multiple regression

techniques to predict software maintainability, but the results regarding various

accuracy and performance metrics are inconclusive. As such, developing a methodology

that can recommend regression techniques for software maintainability prediction in the

face of inconsistent performance or accuracy metrics is imperative. This research

addresses the critical issue of software maintainability and presents a novel approach,

the Software Maintainability Model (SMP) utilizing the Predictor Importance (PI)

Method, Multiple Linear Regression (MLR), and five machine learning techniques. The

proposed SMP integrates ten static source code metrics from object-oriented

programming. MLR and PI implement feature selection, and the SMP's performance is

evaluated based on accuracy and the Mean Magnitude of Relative Error (MMRE)

parameters. Our findings are promising: for the User Interface Management System

(UIMS) software, the proposed SMP demonstrates an impressive MMRE of 0.2441 and

an accuracy of 91.91%. Similarly, for the Quality Evaluation System (QUES) software,

an MMRE value of 0.2222 is achieved alongside a maximum accuracy of 80.95%. The

ensemble method, when compared to other Machine Learning (ML) techniques,

exhibits superior performance. These results affirm the effectiveness of our approach,

contributing to the enhancement of software maintainability in object-oriented

programming systems.

Keywords:

Machine learning, Multiple

linear regression, Object-

oriented metric, Predictor

importance, Software

maintainability prediction

How to cite this Article:

Rohit Yadav and Raghuraj Singh (2023).

Enhancing Software Maintainability

Prediction Using Multiple Linear

Regression and Predictor Importance.

International Journal of Experimental

Research and Review, 36, 135-00.

DOI:

https://doi.org/10.52756/ijerr.2023.v36.013

https://doi.org/10.52756/ijerr.2023.v36.013
https://crossmark.crossref.org/dialog/?doi=10.52756/ijerr.2023.v36.013&domain=iaph.in

Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v36.013
136

many researchers have provided various SMP models

(Ahmed and Al-Jamimi, 2014; Al Dallal, 2013; Wang et

al., 2019; Zhang et al., 2015). SMP forecasts the costlier

classes before the maintenance phase; hence, the cost can

be minimized after looking at these classes more. The

SMP model needs independent and dependent metric

values based on historical data of different software

versions. Figure 1 illustrates the standard procedures for

estimating the maintainability of any OO software. The

Unified Modelling Language (UML) class diagram is

used to identify the software's essential classes, and the

CKJM tool (Chidember and Kemerer, 1994) calculates

various OO metrics for each class. Then, using feature

selection techniques, the right feature sets are chosen.

Additionally, the developed SMP model uses these metric

collections as inputs to predict maintainability for each

distinct class of software. In the literature, various OO

metrics (Mahfuz and Shill, 2023; Haner and Ercelebi,

2023; Ouellet and Badri, 2023) are used to develop the

SMP model as predictor variables, whereas change metric

is used as a response variable (Malhotra and Chug, 2014;

Eish et al., 2015; Kumar and Rath, 2016; Kumar et al.,

2017). For training of SMP models, various machine

learning and statistical techniques are provided in the

literature, such as Association rule mining, Bayesian

networks, Clustering, Neural networks, Regression-based

models, and Support Vector Machines, which are some of

the widely used ML methods for maintainability

prediction (Zhang et al., 2015; Kumar et al., 2017;

Malhotra and Lata, 2021).

The SMP model's effectiveness depends on choosing

the right metrics for object-oriented source code. The

feature selection process entails selecting a suitable

subset from various object-oriented programming metrics

offered (Kumar and Rath, 2017; Moradi et al., 2022).

Also, it still needs to be determined to develop an

accurate SMP model that can predict the maintainability

of a class. Keeping these facts, the following goals have

been established for this study:

• To determine the significant relationship between OO

Metrics and change metrics.

• Selection of an appropriate collection of OO metrics for

SMP creation.

• Creation and Comparison of the proposed SMP model

with existing SMPs.

To achieve the objectives mentioned above, two

commercial OO software are collected, and OO metrics

and change metrics are extracted to build the data set.

Further, MLR is applied to investigate the impact of each

OO metric on the Change metric based on hypothesis

testing. Additionally, PI is also used for feature selection.

Three cases are created, and Five different ML

techniques are applied to each case to create an SMP

model. The performance of each SMP model is then

evaluated using parameters such as accuracy and MMRE.

Related Work

This section gives a summary of the body of research

that has been done on the use of software metrics and

their applicability to SMP, as shown in Table 1. From

Table 1, it can be understood that for SMP, the

maintainability can be determined by the Change metric

and used in various studies (Li and Henri, 1993; Koten

and Gray, 2006; Zhou and Leung, 2007, 2013; Al-

Jamimi, 2013) whereas maintainability as maintainability

index (MI) are utilized by Zhou and Xu (2008), Coleman

et al. (1994), and Zhang et al. (2015).

As Table 1 illustrates, the majority of the research that

has already been done is focused on certain methods and

performance indicators. The study of predictor

significance and method integration are noticeably

underemphasized. For instance, even though some

researchers have used various methods, such as Support

Vector Machines and Bayesian networks, none have

specifically addressed the idea of predictor relevance.

Moreover, the novel method that combines Multiple

Linear Regression, Object-Oriented Metrics, and

Predictor Importance is still unexplored.

Research Methodology

In order to create an effective SMP model, the current

study investigates how OO metrics and the change metric

relate to one another. The study focuses on three cases for

feature selection and training using five machine learning

techniques. The current study involves the following

steps:

1. Dataset Formation: The initial dataset comprises ten

OO metrics, considered predictor variables or input

variables, and the change metric, the response variable

representing software maintainability. These metrics

Figure 1. Flow chart for SMP model.

Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v36.013
137

Table 1. An overview of the empirical research on maintainability

Year Author Maintainability Techniques Performance measure

1993 Li & Henry CHANGE Regression

Analysis

R2 and Adjusted R2

1994 Coleman et al. Maintainability = 171

-5.2 x ln(aveVol)

-0.23 x ave V(g')

-16.2 x ln(aveL0C)

+(50 x sin (d2.46 x

perCM))

Regression

Analysis

-

2006 C. van Koten, A.R.

Gray

CHANGE Bayesian network MMRE

2007 Zhou & Leung, CHANGE multivariate

adaptive regression

splines

MMRE

2008 Zhou & Xu Maintainability Index

(MI)= 171−5.2

ln(aveV) −

0.23aveV(g')

− 16.2 ln (aveLOC) +

50 sin (sqrt

(2.4perCM))

Univariate and

Multivariate

Regression

Analysis

Absolute relative error,

magnitude of relative

error, and R squared

2013 Al Dallal, CHANGE Multivariate

logistic regression

analysis

Precision, Recall,

Inverse precision

(denoted IP), Inverse

Recall (denoted IR)

2013 Ahmed & Al-

Jamimi,

CHANGE Mamdani fuzzy

inference engine

NRMSE, MMRE

2014 Malhotra & Chug, CHANGE 1. Group Method

of Data Handling

2. Feed Forward 3-

Layer Back

Propagation

Network

3. General

Regression Neural

Network

magnitude of relative

error (MARE)

2015 Elish et al. CHANGE Ensemble

methods

MMRE

2015 Zhang et al. MI & ME automated tool:

SMPlearner

Spearman’s Rank

Correlation Coefficient

2016 Kumar and Rath CHANGE functional link

artificial neural

network (FLANN)

with genetic

algorithm (GA),

particle swarm

optimization (PSO)

Standard Error of

Mean, MAE, MMRE

Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v36.013
138

 are collected from software projects to create the

foundation for the research analysis.

2. Preprocessing: Before conducting the analyses, the

dataset undergoes preprocessing (missing data,

outlier removal, and normalization).

3. Feature Selection and Case Formation: Three distinct

cases are formed for feature selection, each involving

different methods for selecting relevant features to

build predictive models:

Case 1: As a baseline, in this case, all ten OO metrics are

used as features for both training and testing the software

maintainability prediction model.

Case 2: MLR is employed as a method for hypothesis

testing and feature selection.

Case 3: PI analysis is utilized for feature selection.

Training and Testing: For each of the three feature

selection cases, five different machine learning

techniques i.e., Ensemble (ENS), Classification Tree

(CT), Naïve Bayes (NB), Discriminant Analysis (DA),

and Support Vector Machine (SVM) are employed for

training and testing the predictive model their brief

description are as follows:

• ENS: A prediction model made up of a weighted

mixture of many classification models is called a

classification ensemble. Combining several

classification models often improves prediction

accuracy (Elish et al. et al., 2016).

• CT: also known as decision trees, are used to forecast

data responses. Following the choices made in the tree

through the root (starting) node up to a leaf node to

anticipate a response. The answer is stored in the leaf

node. 'True' or 'false' are examples of nominal replies

provided by classification trees (Alsolai et al., 2020).

• NB: It refers to a group of classification techniques

based on Bayes' Theorem. It's not just one algorithm;

rather, it's a collection of algorithms bound together

by a common premise: the notion that every pair of

characteristics being classed stands alone (Kaur et al.,

2014).

• DA: It makes the assumption that various groups use

different Gaussian distributions to construct their data.

The classifier computes the Gaussian distribution

parameters for every group during training. It chooses

the class with the lowest misclassification expense in

order to forecast fresh data (Yenduri and Gadekallu,

2023).

• SVM: It finds the optimum hyperplane in an N-

dimensional space to efficiently split data points into

different classes (Gupta and Chug, 2020).

1. Performance Evaluation: comparative analysis using

MMRE and accuracy.

The accuracy of the SMP model is calculated using a

confusion matrix. It has four aspects: true positive (TP),

true negative (TN), false positive (FP), and false negative

 and clonal selection

algorithm (CSA)

also rough set

analysis (RSA) and

Principal

Component

Analysis (PCA)

2017 Kumar et al. CHANGE Support Vector

Machine

Precision, Recall,

Specificity, F-Measure,

AUC

2019 Wang et.al. CHANGE Fuzzy Network MMRE

2020 Malhotra &

Lata

change count (CC) AB, C4.5,

BAGG, IRBFNN,

KNN, KS, LR,

MLP-CG, RBFNN

Sensitivity,

Specificity, G-mean,

Balance

2021 Malhotra &

Lata

CM (Class

Maintainability)

28 classification

techniques

g-mean (GM), and

balance (BL)

2023 Kumar & Kaur CHANGE Multi Criteria

Decision Making

with 22 regression

techniques

Eight Performance

measures

2023 Jaya Bharath et

al.

CHANGE Gradient Boost

Classifier

Accuracy

2023 Hu et al. Static Code Deep Neural

Network (DeepM)

Accuracy

Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v36.013
139

(FN). Consider that positive means a high-maintenance

class and negative means a low-maintenance class, in

such situation TP: The predicted value is positive, and the

actual value is also positive. FP: The predicted value is

positive, but the actual value is negative. FN: The

predicted value is negative, but the actual value is

positive. TN: The predicted value is negative, and the

actual value is also negative. Flowchart for the proposed

work is presented in Figure 2.

Figure 2. Flowchart of the proposed SMP model.

Experimental Setup

The SMP's creation, considering various case studies,

is the primary subject of the present section. The data is

normalized to increase accuracy, and both dependent and

independent variables are chosen to create the SMP

model.

Dataset Description

The dataset is obtained using two of the most popular

commercial software systems, i.e., UIMS and QUES,

which were developed using Classic-Ada programming

language, hence providing the OO paradigm. UIMS

contains ten OO metrics and a Change metric with 39

instances, whereas QUES contains 10 OO metrics and a

Change metric with 74 instances. The dataset was

proposed by Li and Henry (Li and Henry,1 993).

Dependent variable: Change metric

Authors have developed different definitions and metrics

for software maintainability (Li and Henry, 1993; Zhou

and Leung, 2007). According to the existing literature,

most researchers use the "MI" and "change metric" to

evaluate the maintainability of software. In the current

study, the change metric is considered to be

maintainability. Maintainability is the amount of

modification added to the code throughout maintenance.

A line change is defined as either the "addition" or

"deletion" of lines of code within a class during the

maintenance phase (Malhotra and Chug, 2014; Li and

Henry, 1993; Zhou and Leung, 2007).

Predictor/Independent Variable: OO metric

The current study focuses on ten static source code

metrics within the OO paradigm. Selected OO metrics for

SMP are shown in Table 2.

Table 2. List of OO Metric used in proposed SMP

model

DIT is the maximum length from the node to the tree's

root. The cohesion and interdependence of methods in a

class are assessed using LCOM in OO programming. It

quantifies how much information or variables are shared

between methods in a class. Indicating that the methods

are less related or lack semantic coherence, a higher

LCOM value suggests weaker cohesion. NOC counts the

immediate subclasses of a parent class. For example, in

Java programming, if classes B and C inherited a class

named A, then the NOC value for class A would be 2.

RFC is a metric for how many methods in a class can be

used to respond to a message. It is assumed that the

higher the value of RFC, the higher the complexity and

the lower the effort and maintainability of the code. For

example, if Class A is inherited by Class B and both have

two methods, then the object of Class B can invoke all

four methods: therefore, RFC (Class B) =4, whereas RFC

(Class A) = 2. WMC is the average of all the

complexities of methods defined in a class. If the WMC

value of a class is high, it means the class is more

complex and vice versa. DAC is the count of abstract

data types defined in a class. DAC generally depicts that

Metric suit Metric
Object Oriented

property

(Chidamber

and Kemerer,

1994)

DIT Inheritance

LCOM Cohesion

NOC Inheritance

RFC Coupling

WMC
Cyclomatic

complexity

(Li and Henry

1993)

DAC
Abstraction and

coupling

MPC Coupling

NOM Encapsulation

SIZE1 Elements of Source

Code SIZE2

Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v36.013
140

a class has too many responsibilities. In other words,

there are many fields with references. For example, if

Class A declares two different objects, then the DAC

(Class A) = 2. The MPC counts how often a class's

methods refer to methods in other classes, indicating how

dependent local methods are on methods implemented by

other classes. It enables analysis of the message

transmission (method calls) between the involved classes'

objects. NOM counts the total number of public methods

defined in a class. For example, if two methods are public

in a class A, one is private, and one is protected, then

NOM (Class A) =2. SIZE1 determines the number of

semicolons used, and SIZE2 determines the addition of

several attributes and methods in a class.

Efficiency of metrics

In the current study, three cases are defined for

selecting different sets of OO metrics, as described in

Table 3. Based on three cases, c1, c2, and c3, SMP is

constructed, and performance is evaluated.

Table 3. Test case description.

Case
Response

variable
Predictor variables

c1 Change

metric

DIT, WMC, RFC, NOC, DAC,

LCOM, MPC, NOM, SIZE2,

SIZE1

c2 Change

metric

Reduced feature attributes using

MLR

c3 Change

metric

Reduced feature attributes using

PI

Feature selection

A crucial step in predicting maintainability is

choosing the appropriate software metric set. This study

uses two different kinds of feature selection methods to

increase the predictability of OO software

maintainability. These methods assist in selecting the

relevant group OO metrics from the more extensive

selection of options.

MLR

Regression analysis estimates how a dependent

variable will change as an independent variable or group

of independent variables changes. In the current study,

MLR (Riaz et al., 2009) is utilized in order to analyze

how strong the relationship is between various OO

metrics and change. MLR can be demonstrated by

Equation (1).

𝑀 = 𝑏0 + 𝑏1 ∗ 𝑋1 + 𝑏2 ∗ 𝑋2 + 𝑏3 ∗ 𝑋3 ……… (1)

In Equation (1), M represents the dependent variable,

X1, X2, and X3 are the independent variables, and b0,

b1, b2, and b3 are the coefficient values. Four different

properties of MLR include Coefficient Estimates (CE),

Standard error (SE), t-statistic(t-stat), and p-value.

Hypothesis testing and feature selection process may be

based on the p-value of the t-statistic. For instance, if the

p-value of X2 in Equation (1) is more significant than

0.05, this term is insignificant at the 5% significance

level given the other terms in the model and vice-versa.

The workflow of MLR is shown in Figure 3.

Figure 3. Feature Selection using MLR.

PI

PI is another method used in the current study to

assess the significance of each predictor of a tree (Xu et

al., 2019). It involves evaluating the impact of splits for

each predictor on node risk and summing up these

changes. The total sum is then divided by the number of

branch nodes. The difference between the risk of the

parent node and the combined risk of its two offspring

nodes signifies the actual change in node risk caused by

the predictor splits. To illustrate, when a tree divides a

parent node (let us say node 1) into two child nodes (for

instance, nodes 2 and 3), the significance of the split

predictor is enhanced according to equation 2 in the PI

method.

𝑆1 = (𝑅1 – 𝑅2– 𝑅3)/𝑁𝑏𝑟𝑎𝑛𝑐ℎ ………………… (2)

Ri represents the node risk of node i, and Nbranch is

the overall count of branch nodes. S1 is the significance of

node 1. A node's risk is determined by its error or

impurity, which is then weighted by the probability

associated with that particular node.

𝑅𝑖 = 𝑃𝑖 ∗ 𝐸𝑖 …………………………………….. (3)

Here, Pi denotes the node probability of node i, and Ei

corresponds to either the node error (in the case of a tree

grown using the towing criterion) or node impurity (for a

tree grown using an impurity criterion like the Gini index

or deviance) for that specific node i.

Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v36.013
141

Performance Evaluation

Since the SMP belongs to the prediction models,

Accuracy and MMRE (Elish et al., 2015; Kumar & Rath,

2016; Wang et al., 2019) are the two parameters used for

the performance evaluation. The formula of the Accuracy

measure is defined in Equation (4). MMRE is used in this

study to compare results with earlier investigations.

MMRE stands for a mean of a measure called the

magnitude of relative error. Because of the linearity of

the mean, any measure that reduces the predicted

magnitude of relative error (MRE) would also reduce the

expected MMRE. Equation (5) can be calculated where

Xi’ represents the predicted outcome, Xi is the actual

outcome, and n is the total number of observations.

Accuracy (ACC) =
TP+TN

TP+FP+TN+FN
 ………………… (4)

𝑀𝑀𝑅𝐸 =
1

𝑛
∑

|𝑋𝑖
′− 𝑋𝑖|

𝑋𝑖

𝑛
𝑖=1 …………………………… (5)

Results and Discussion

This section describes the results obtained by multiple

regression analysis and hypothesis testing, followed by

the performance analysis of SMP for each case. Multiple

linear regression predicts a variable using multiple

predictors. When used for binary classification, it can be

adapted by setting a threshold on predicted values for

categorization. Hypothesis testing assesses each

predictor's significance and their combined impact on the

outcome, often determined using methods like p-values

or F-tests.

Results of Multiple Linear Regression

This section presents the results of a regression

analysis conducted on the UIMS and QUES software

dataset to investigate the impact of various OO metrics

on the Change metric as described in Table 4. The

analysis aimed to discern the impact of different metrics

on SMP performance and provide insights into the

significance and direction of feature selection. Based on

the p-value, the following null and alternate hypotheses

are considered in the present work.

H0: “No significant correlation exists between OO metric

and Change Metric."

Ha: “There is a significant correlation between OO metric

and Change Metric."

When considering UIMS, Table 4 shows that the

intercept term in the regression model was estimated to

be 9.5395 with a standard error of 30.802. The associated

t-value of 0.3097 resulted in a p-value of 0.75908.

However, the intercept's p-value suggests that it is not

statistically significant, indicating that it may not sub-

-stantially influence the change metric. The regression

analysis and NOC metric have a coefficient estimate of

10.705, accompanied by a standard error of 4.2832. The

computed t-value of 2.4993 led to a p-value of 0.018582.

These results suggest that the NOC metric has a

statistically significant positive effect on UIMS

performance, hence rejecting the null hypothesis. The

LCOM metric had a coefficient estimate of 4.4209, and

its standard error was 2.3058. The t-value of 1.9173

resulted in a p-value of 0.065457. This implies that the

LCOM metric has a marginally significant favorable

influence on the change metric, hence rejecting the null

hypothesis. In the WMC metric, the coefficient estimate

was 4.2741, and the standard error was 2.7144. The t-

value of 1.5746 corresponded to a p-value of 0.12658.

This suggests that the WMC metric has a marginally

significant positive effect on UIMS performance, hence

rejecting the null hypothesis. Since the p-values for DIT,

MPC, RFC, DAC, NOM, SIZE1, and SIZE2 metrics are

less than 0.05, these metrics do not significantly impact

change metrics. Therefore, NOC, LCOM, and WMC are

selected as the subset of SMP features for UIMS.

When considering QUES, Table 4 shows that the

intercept term in the regression model was estimated to

be -3.4033 with a standard error of 16.365. The

corresponding t-value of -0.20796 resulted in a p-value of

0.83597. These findings indicate that the intercept term is

not statistically significant, suggesting that it may not

significantly contribute to the variation in the QUES

scores. For LCOM, DAC, and WMC, the p-values are

0.0085661, 0.00094389, and 0.0032928, respectively.

This implies that these metrics have a statistically

significant adverse effect on the Change metric and also

reject the null hypothesis for these metrics. P-values for

SIZE1 and SIZE2 metrics are 1.2129e-08 and 0.095063,

respectively. This reveals that SIZE1 has a highly

significant positive effect on the Change metric, and

SIZE2 has a marginally significant positive effect on the

Change metric, resulting in rejecting the null hypothesis.

Also, the result of regression analysis on QUES suggests

that p-values for DIT, MPC, RFC, and NOM metrics are

more significant than 0.05; therefore, these metrics show

no impact on the change metric. As far as NOC is

concerned, since the value of 0 results in a coefficient

estimate of 0 and a standard error of 0. Since NOC is

constant, its t-value and p-value are Not-a-Number. This

implies that the NOC predictor cannot contribute

meaningfully to the regression analysis due to its constant

nature.

Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v36.013
142

Results of Predictor Importance

Figure 4 shows the importance of each OO metric for

predicting the Change metric. The horizontal axis

represents each OO metric, and the vertical axis

represents the estimated values. It is observed that RFC,

NOC, MPC, DAC, NOM, SIZE1, WMC, DIT, SIZE2,

and LCOM are top-ranked predictor variables in this

order that have a high impact on the Change of OO

software system UIMS, whereas in the case of QUES, the

decreasing order of importance of predictors is SIZE2,

MPC, WMC, SIZE1, DAC, NOM, LCOM, RFC, and

DIT. The selected features for all the cases C1, C2, and

C3 presented in the current study are shown in Table 5.

Figure 4 (a & B). PI estimates for SMP.

Table 5. Selected Features for SMP in all cases.

Case UIMS QUES

C1 DIT, NOC, RFC,

LCOM, WMC, MPC,

DAC, NOM, SIZE1,

SIZE2

DIT, NOC, RFC,

LCOM, WMC, MPC,

DAC, NOM, SIZE1,

SIZE2

C2 NOC, LCOM, WMC LOC, DAC, WMC,

SIZE1, SIZE2

C3 DAC, MPC, NOC,

RFC, SIZE1, SIZE2

and WMC

DAC, MPC, NOM,

WMC, SIZE1, and

SIZE2

Comparative Analysis

This section presents the results of a comprehensive

evaluation of SMP methods for UIMS and QUES in

various cases (C1, C2, and C3). The evaluation is based

on two performance metrics, i.e., MMRE and Accuracy.

The analysis aims to identify the most effective SMP

method for each case. Table 6 shows the results of each

case C1, C2, and C3 for UIMS. It is evident from Table 6

That Case C1 shows that CT, NB, and SVM achieved

comparable MMRE values of 0.2500. CT and NB also

exhibited high accuracy rates of 81.82%. Case C2, CT,

and SVM yielded MMRE values of 0.2441 and high

accuracy rates of 91.91%. This indicates that CT and

SVM outperformed other methods, delivering accurate

and consistent predictions for UIMS analysis in Case C2.

For Case C3, NB and SVM achieved MMRE values of

0.2441, along with accuracy rates of 91.91%. These

results indicate that NB and SVM are well-suited for

UIMS analysis in Case C3, demonstrating accurate

predictions and minimal magnitude of relative error.

Table 4. MLR Statistics for UIMS and QUES.

Metric
UIMS QUES

Estimate SE t-value P-value Estimate SE t-value P-value

(Intercept) 9.5395 30.802 0.3097 0.75908 -3.4033 16.365

-

0.20796 0.83597

DIT -3.5758 11.095 -0.32229 0.74963 5.9466 7.4352 0.79979 0.42699

NOC 10.705 4.2832 2.4993 0.018582 0 0 NaN NaN

MPC 2.7355 6.0698 0.45067 0.6557 -0.68361 0.67612 -1.0111 0.31603

RFC -0.92205 2.5565 -0.36067 0.72105 0.45772 0.32204 1.4213 0.16041

LCOM 4.4209 2.3058 1.9173 0.065457 -3.8794 1.4271 -2.7183 0.0085661

DAC 11.21 15.377 0.729 0.47205 -13.841 3.9786 -3.4789 0.00094389

WMC 4.2741 2.7144 1.5746 0.12658 -1.4923 0.48743 -3.0615 0.0032928

NOM -2.5711 16.751 -0.15349 0.87911 -4.6262 3.6341 -1.273 0.20793

SIZE2 -0.25786 15.971 -0.01615 0.98723 6.1088 3.6018 1.696 0.095063

SIZE1 -0.29626 0.38651 -0.76651 0.44979 0.36601 0.055481 6.597 1.2129e-08

Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v36.013
143

Table 6. MMRE and ACCURACY of each utilized

method for UIMS for each case.

Met

hod

C1 C2 C3

M

MR

E

ACCU

RACY

M

MR

E

ACCU

RACY

M

MR

E

ACCU

RACY

CT 0.25

00

81.82 0.24

41

91.91 0.24

41

91.91

EN

S

0.41

67

54.55 0.35

50

81.82 0.35

50

81.82

DA 0.30

56

81.82 0.41

67

90.91 0.41

67

90.91

NB 0.25

00

81.82 0.25

00

81.82 0.25

00

81.82

SV

M

0.30

56

63.64 0.24

41

91.91 0.24

41

91.91

The evaluation of different classification methods for

assessing the QUES across distinct cases (C1, C2, and

C3) is summarized in Table 7. Across all cases, CT and

ENS methods consistently achieved similar MMRE

values of 0.2778 and demonstrated an accuracy rate of

76.19%. Regardless of the specific case, these methods

showcase stable and reliable performance in QUES

analysis. DA exhibited varying MMRE and accuracy

scores across the cases. Notably, in Case C1, DA yielded

an MMRE of 0.3550 and an accuracy rate of 66.67%.

However, DA's performance deteriorated in Cases C2

and C3, resulting in higher MMRE values and lower

accuracy rates of 0.4861 and 57.14%, respectively. This

suggests that the effectiveness of DA is contingent on the

particular QUES context. NB and SVM consistently

demonstrated moderate to low-performance acrOnB,

yielding the SVM's highest MMRE values of 0.5139 and

accuracy rates of 52.38%. On the other hand, SVM's

performance remained relatively stable, with MMRE

values ranging from 0.3056 to 0.3194 and accuracy rates

of 71.43%.

Table 7. MMRE and ACCURACY of each utilized

method for QUES for each case.

Met

hod

C1 C2 C3

MM

RE

ACCU

RACY

MM

RE

ACCU

RACY

MM

RE

ACCU

RACY

CT 0.27

78

76.19 0.27

78

76.19 0.33

33

71.43

ENS 0.27

78

76.19 0.22

22

80.95 0.22

22

76.19

DA 0.35

50

66.67 0.48

61

57.14 0.48

61

57.38

NB 0.51

39

52.38 0.51

39

52.38 0.51

39

52.38

SV

M

0.31

94

71.43 0.31

94

71.43 0.30

56

71.43

The best SMP models for analyzing UIMS and QUES

are chosen depending on the specific scenario and

preferred performance criteria. It is evident that ENS and

DA consistently produce dependable forecasts for both

UIMS and QUES results. According to the overall trend

of the findings, these figures unequivocally show that

ENS consistently outperforms alternative SMP models in

terms of predictive capability.

Additionally, for comparative analysis with existing

studies (Elish and Elish, 2009; Al-Jamimi, 2012; Chanda,

2012; Aljamaan, 2013; Kumar and Rath, 2016), MMRE

values are compared. The studies selected used the same

dataset and performance measure, i.e., MMRE. It was

found that the combination of CT and PI gives a 0.2441

value of MMRE for UIMS, which outperforms the other,

whereas the combination of ENS and PI outperforms the

others. The Comparison is shown in Figure 5.

(a) Comparison of UIMS.

(b) Comparison of QUES.

Figure 5 (a & b). Error Comparison of the proposed

method with previous studies.

The research findings shown in Tables 6 and 7

highlight the potential for the suggested approaches to

play a significant role in the maintainability of software

systems in practice. A comparison to previous studies in

Figure 5 further supports this. Improved accuracy and

decreased prediction mistakes are key features of these

approaches for practical use, and decision-making for

finding the low-maintenance classes and working on

Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v36.013
144

them will result in improving the overall cost of software

development.

Overall, the computational complexity could be

influenced by the dataset size, the number of features,

and the algorithm's intricacy in each methodology step.

The scalability of these computations could become a

concern when dealing with large-scale datasets or when

applying resource-intensive algorithms.

Conclusion

The popular UIMS and QUES software datasets were

thoroughly examined in this study, largely focused on

improving SMP accuracy and assessing the effects of

several OO metrics on the Change metric. The current

research emphasises building an SMP model integrating

MLR, PI and five ML techniques. MLR and PI are used

for feature selection in the proposed SMP model. Based

on MLR analysis on UIMS, NOC displayed a statistically

meaningful positive effect on UIMS performance among

the metrics, supported by its coefficient estimate of 10.705

and a notably low p-value of 0.018582. Similarly, LCOM

exhibited a subtly significant positive influence, whereas

WMC demonstrated a marginal yet noteworthy positive

impact. For QUES, the outcomes underscored that the

intercept term lacked statistical significance, implying its

limited contribution to the variability in QUES scores.

LCOM, DAC, and WMC significantly showcased

statistically significant adverse effects on the Change

metric. In addition, SIZE1 emerged with a highly

significant positive influence, while SIZE2 registered a

slight but discernible positive impact. In contrast, PI

analysis underscored the substantial influence of metrics

such as DAC, MPC, NOC, RFC, SIZE1, SIZE2, and

WMC for UIMS and DAC, MPC, NOM, WMC, SIZE1,

and SIZE2 for QUES. The comprehensive evaluation of

SMP methods for both UIMS and QUES consistently

revealed the strong performance of CT and ENS methods.

These outcomes showcased their effectiveness across

various scenarios, yielding precise predictions and low

MMRE values. The study's findings demonstrate how

defining important criteria for QUES and UIMS may offer

practical guidance to practitioners in selecting the best

SMP approaches for improved user experience and

software quality. Additionally, showcasing the synergy

between MLR, PI, and several ML techniques in the SMP

model suggests that these methods might be included in

additional software quality evaluation studies. The study's

limitations include its focus on specific datasets, which

may limit generalizability and the fact that statistical

significance does not guarantee practical impact. Future

research might examine longitudinal changes in metrics

and SMP techniques, as well as corroborate findings using

a range of software datasets to enhance the SMP model's

accuracy and usefulness in assessing software quality. In

summary, this research highlighted influential metrics for

UIMS and QUES, offering valuable guidance to

practitioners when selecting SMP methods and conducting

feature selection to enhance software quality and user

experience. Further validation and practical

implementation of these findings in real-world software

contexts are highly recommended.

Acknowledgement

The authors wish to acknowledge Dr. A.P.J. Abdul

Kalam Technical University, Lucknow, Uttar Pradesh

(226021), INDIA, for utilizing the various facilities to

carry out this research.

Conflict of interest

There is no conflict of interest to disclose.

References

Ahmed, M. A., & Al-Jamimi, H. A. (2013). Machine

learning approaches for predicting software

maintainability: a fuzzy‐based transparent model.

IET Software, 7(6), 317-326.

 https://doi.org/10.1049/iet-sen.2013.0046

Al Dallal, J. (2013). OO class maintainability prediction

using internal quality attributes. Information and

Software Technology, 55(11), 2028-2048.

https://doi.org/10.1016/j.infsof.2013.07.005

Aljamaan, H., Elish, M. O., & Ahmad, I. (2013). An

ensemble of computational intelligence models for

software maintenance effort prediction. Springer

Berlin Heidelberg. In Advances in Computational

Intelligence: 12th International Work-Conference

on Artificial Neural Networks, IWANN 2013,

Puerto de la Cruz, Tenerife, Spain, June 12-14,

2013, Proceedings, Part I 12, pp. 592-603.

https://doi.org/10.1007/978-3-642-38679-4_60

Al-Jamimi, H. A., & Ahmed, M. (2012, June). Prediction

of software maintainability using fuzzy logic.

In 2012 IEEE International Conference on

Computer Science and Automation Engineering,

pp. 702–705.

 https://doi.org/10.1109/ICSESS.2012.6269563

Alsolai, H., & Roper, M. (2020). A systematic literature

review of machine learning techniques for software

maintainability prediction. Information and

Software Technology,119, 106214.

 https://doi.org/10.1016/j.infsof.2019.106214

Chandra, D. (2012). Support vector approach using a

radial kernel function to predict software

Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v36.013
145

maintenance effort based on a multivariate

approach. International Journal of Computer

Applications, 51(4). 21–25.

 https://doi.org/10.5120/8029-1302

Chidamber, S. R., & Kemerer, C. F. (1994). A metrics

suite for OO design. IEEE Transactions on

Software Engineering, 20(6), 476-493.

 https://doi.org/10.1109/32.295895

Colakoglu, F. N., Yazici, A., & Mishra, A. (2021).

Software product quality metrics: A systematic

mapping study. IEEE Access, 9, 44647-44670.

https://doi.org/10.1109/ACCESS.2021.3054730

Coleman, D., Ash, D., Lowther, B., & Oman, P. (1994).

Using metrics to evaluate software system

maintainability. Computer, 27(8), 44–49.

 https://doi.org/10.1109/2.303623

Elish, M. O., Aljamaan, H., & Ahmad, I. (2015). Three

empirical studies on predicting software

maintainability using ensemble methods. Soft

Computing, 19, 2511-2524.

 https://doi.org/10.1007/s00500-014-1576-2

Garomssa, S. D., Kannan, R., Chai, I., & Riehle, D.

(2022). How software quality mediates the impact

of intellectual capital on commercial open-source

software company success. IEEE Access, 10,

46490-46503.

https://doi.org/10.1109/ACCESS.2022.3170058

Gupta, S., & Chug, A. (2020). Software maintainability

prediction of open source datasets using least

squares support vector machines. Journal of

Statistics and Management Systems, 23(6), 1011–

1021.

https://doi.org/10.1080/09720510.2020.1799501

Haner Kırğıl, E. N., & Erçelebi Ayyıldız, T. (2023).

Predicting Software Cohesion Metrics with

Machine Learning Techniques. Applied

Sciences, 13(6), 3722.

https://doi.org/10.3390/app13063722

Hu, Y., Jiang, H., & Hu, Z. (2023). Measuring code

maintainability with deep neural

networks. Frontiers of Computer Science, 17(6),

176214.

JayaBharath, M., Choudary, N. L., Pranay, C. S.,

Praveenya, M. D., & Reddy, B. R. (2023, March).

An analysis of Software Maintainability Prediction

Using Ensemble Learning Algorithms. IEEE.

In 2023 3rd International Conference on Artificial

Intelligence and Signal Processing (AISP), pp. 1-5.

Jung, H. W., Kim, S. G., & Chung, C. S. (2004).

Measuring software product quality: A survey of

ISO/IEC 9126. IEEE Software, 21(5), 88-92.

https://doi.org/10.1109/MS.2004.1331309

Kaur, A., Kaur, K., & Pathak, K. (2014, September).

Software maintainability prediction by data mining

of software code metrics. IEEE, In 2014, there was

an International Conference on Data Mining and

Intelligent Computing (ICDMIC), pp. 1-6.

https://doi.org/10.1109/ICDMIC.2014.6954262

Kumar, A., & Kaur, K. (2023). Recommendation of

Regression Techniques for Software

Maintainability Prediction with Multi-Criteria

Decision-Making. International Journal of

Information Technology & Decision Making,

22(03), 1061-1105.

Kumar, L., & Rath, S. K. (2016). Hybrid functional link

artificial neural network approach for predicting

maintainability of OO software. Journal of Systems

and Software, 121, 170–190.

 https://doi.org/10.1016/j.jss.2016.01.003

Kumar, L., & Rath, S.K. (2017). Software maintainability

prediction uses a hybrid neural network and fuzzy

logic approach with a parallel computing concept.

International Journal of System Assurance

Engineering and Management, 8, 1487–1502.

https://doi.org/10.1007/s13198-017-0618-4

Kumar, L., Krishna, A., & Rath, S. K. (2017). The impact

of feature selection on maintainability prediction of

service-oriented applications. Service Oriented

Computing and Applications, 11, 137–161.

https://doi.org/10.1007/s11761-016-0202-9

Kumar, L., Kumar, M., & Rath, S. K. (2017).

Maintainability prediction of web service using

support vector machine with various kernel

methods. International Journal of System

Assurance Engineering and Management, 8, 205-

222. https://doi.org/10.1007/s13198-016-0415-5

Li, W., & Henry, S. (1993). OO metrics that predict

maintainability. Journal of Systems and

Software, 23(2), 111-122.

 https://doi.org/10.1016/0164-1212(93)90077-B

Mahfuz, N., & Shill, P. C. (2023, February). Faulty

Classes Prediction in Object-Oriented

Programming Using Composed Dagging

Technique. IEEE. In 2023 International

Conference on Electrical, Computer and

Communication Engineering ECCE), pp. 1-5.

https://doi.org/10.1109/ECCE57851.2023.10101655

Malhotra, R., & Chug, A. (2014). Application of group

method of data handling model for software

maintainability prediction using object-oriented

systems. International Journal of System

Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v36.013
146

Assurance Engineering and Management, 5, 165-

173.

https://doi.org/10.1007/s13198-014-0227-4

Malhotra, R., & Lata, K. (2020). An empirical study on

predictability of software maintainability using

imbalanced data. Software Quality Journal, 28,

1581-1614. https://doi.org/10.1007/s11219-020-

09525-y

Malhotra, R., & Lata, K. (2021). An empirical study to

investigate the impact of data resampling

techniques on the performance of class

maintainability prediction models.

Neurocomputing, 459, 432-453.

 https://doi.org/10.1016/j.neucom.2020.01.120

Moradi, M., Ahmadi, M., & Nikbazm, R. (2022).

Comparison of machine learning techniques for

VNF resource requirements prediction in

NFV. Journal of Network and Systems

Management, 30, 1-29.

 https://doi.org/10.1007/s10922-021-09629-1

Ouellet, A., & Badri, M. (2023). Combining

object‐oriented metrics and centrality measures to

predict faults in object‐oriented software: An

empirical validation. Journal of Software:

Evolution and Process, e2548.

 https://doi.org/10.1002/smr.2548

Van Koten, C., & Gray, A. R. (2006). An application of

the Bayesian network for predicting OO software

maintainability. Information and Software

Technology, 48(1), 59-67.

 https://doi.org/10.1016/j.infsof.2005.03.002

Wang, X., Gegov, A., Farzad, A., Chen, Y., & Hu, Q.

(2019). Fuzzy network-based framework for

software maintainability prediction. International

Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, 27(05), 841-862.

https://doi.org/10.1142/S0218488519500375

Xu, Y., Lu, L., E, L. N., Lian, W., Yang, H., Schwartz, L.

H., ... & Zhao, B. (2019). Application of radiomics

in predicting the malignancy of pulmonary nodules

in different sizes. American Journal of

Roentgenology, 213(6), 1213-1220.

https://doi.org/10.2214/AJR.19.21490

Yenduri, G., & Gadekallu, T. R. (2023). Xai for

maintainability prediction of software-defined

networks. In Proceedings of the 24th International

Conference on Distributed Computing and

Networking, pp. 402-406.

 https://doi.org/10.1145/3571306.3571443

Zhang, W., Huang, L., Ng, V., & Ge, J. (2015).

SMPLearner: learning to predict software

maintainability. Automated Software Engineering,

22, 111-141.

https://doi.org/10.1007/s10515-014-0161-3

Zhou, Y., & Leung, H. (2007). Predicting OO software

maintainability using multivariate adaptive

regression splines. Journal of Systems and

Software, 80(8), 1349-1361.

 https://doi.org/10.1016/j.jss.2006.10.049

Zhou, Y., & Xu, B. (2008). Predicting the maintainability

of open source software using design metrics.

Wuhan University Journal of Natural Sciences,

13(1), 14-20. https://doi.org/10.1007/s11859-008-

0104-6

How to cite this Article:

Rohit Yadav and Raghuraj Singh (2023). Enhancing Software Maintainability Prediction Using Multiple Linear Regression and Predictor

Importance. International Journal of Experimental Research and Review, 36, 135-146.

DOI : https://doi.org/10.52756/ijerr.2023.v36.013

https://creativecommons.org/licenses/by-nc-nd/4.0/

