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Introduction 

The qualities of object-oriented (OO) software are 

essential for satisfying explicit and implicit requirements 

(Colakoglu et al., 2021). High-quality software is always 

a priority because of its extensive effects on many facets 

of life and the economy. Software maintenance is the 

most expensive stage of development, accounting for 

roughly 75% of total costs. Stressing the importance of 

investing in maintenance activities is essential because 

software bugs jeopardize functionality. According to a 

report from the Consortium for Information and Software 

Quality (Garomssa et al., 2022), only in the US, poor-

coded software caused a staggering 2.08 trillion dollars in 

losses in the year 2020 and 4.4 billion people were 

impacted by software flaws in 2016 alone, resulting in a 

1.1 trillion-dollar loss to the global economy. The 

ISO/IEC 9126 standard has identified efficiency, 

functionality, maintainability, portability, reliability, and 

usability as characteristics of high-quality software (Jung 

et al., 2004). Maintainability has recently gained 

significant attention as a crucial quality indicator for 

software systems' success. Software maintainability 

refers to a system's or component's ability to fix flaws, 

enhance performance, or adapt to environmental changes. 

Looking more at software maintenance may affect the 

overall cost of software development. As a solution, 
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Abstract: Accurate maintenance effort and cost estimation are essential for effective 

software development. By identifying software modules with poor maintainability, 

Software Maintainability Prediction (SMP) plays a crucial role in managing software 

maintenance expenses. Previous research efforts have used multiple regression 

techniques to predict software maintainability, but the results regarding various 

accuracy and performance metrics are inconclusive. As such, developing a methodology 

that can recommend regression techniques for software maintainability prediction in the 

face of inconsistent performance or accuracy metrics is imperative. This research 

addresses the critical issue of software maintainability and presents a novel approach, 

the Software Maintainability Model (SMP) utilizing the Predictor Importance (PI) 

Method, Multiple Linear Regression (MLR), and five machine learning techniques. The 

proposed SMP integrates ten static source code metrics from object-oriented 

programming. MLR and PI implement feature selection, and the SMP's performance is 

evaluated based on accuracy and the Mean Magnitude of Relative Error (MMRE) 

parameters. Our findings are promising: for the User Interface Management System 

(UIMS) software, the proposed SMP demonstrates an impressive MMRE of 0.2441 and 

an accuracy of 91.91%. Similarly, for the Quality Evaluation System (QUES) software, 

an MMRE value of 0.2222 is achieved alongside a maximum accuracy of 80.95%. The 

ensemble method, when compared to other Machine Learning (ML) techniques, 

exhibits superior performance. These results affirm the effectiveness of our approach, 

contributing to the enhancement of software maintainability in object-oriented 

programming systems. 
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many researchers have provided various SMP models 

(Ahmed and Al-Jamimi, 2014; Al Dallal, 2013; Wang et 

al., 2019; Zhang et al., 2015). SMP forecasts the costlier 

classes before the maintenance phase; hence, the cost can 

be minimized after looking at these classes more. The 

SMP model needs independent and dependent metric 

values based on historical data of different software 

versions. Figure 1 illustrates the standard procedures for 

estimating the maintainability of any OO software. The 

Unified Modelling Language (UML) class diagram is 

used to identify the software's essential classes, and the 

CKJM tool (Chidember and Kemerer, 1994) calculates 

various OO metrics for each class. Then, using feature 

selection techniques, the right feature sets are chosen. 

Additionally, the developed SMP model uses these metric 

collections as inputs to predict maintainability for each 

distinct class of software. In the literature, various OO 

metrics (Mahfuz and Shill, 2023; Haner and Ercelebi, 

2023; Ouellet and Badri, 2023) are used to develop the 

SMP model as predictor variables, whereas change metric 

is used as a response variable (Malhotra and Chug, 2014; 

Eish et al., 2015; Kumar and Rath, 2016; Kumar et al., 

2017). For training of SMP models, various machine 

learning and statistical techniques are provided in the 

literature, such as Association rule mining, Bayesian 

networks, Clustering, Neural networks, Regression-based 

models, and Support Vector Machines, which are some of 

the widely used ML methods for maintainability 

prediction (Zhang et al., 2015; Kumar et al., 2017; 

Malhotra and Lata, 2021). 

The SMP model's effectiveness depends on choosing 

the right metrics for object-oriented source code. The 

feature selection process entails selecting a suitable 

subset from various object-oriented programming metrics 

offered (Kumar and Rath, 2017; Moradi et al., 2022). 

Also, it still needs to be determined to develop an 

accurate SMP model that can predict the maintainability 

of a class. Keeping these facts, the following goals have 

been established for this study: 

• To determine the significant relationship between OO 

Metrics and change metrics.  

• Selection of an appropriate collection of OO metrics for 

SMP creation.  

• Creation and Comparison of the proposed SMP model 

with existing SMPs. 

To achieve the objectives mentioned above, two 

commercial OO software are collected, and OO metrics 

and change metrics are extracted to build the data set. 

Further, MLR is applied to investigate the impact of each 

OO metric on the Change metric based on hypothesis 

testing. Additionally, PI is also used for feature selection. 

Three cases are created, and Five different ML 

techniques are applied to each case to create an SMP 

model. The performance of each SMP model is then 

evaluated using parameters such as accuracy and MMRE.    

Related Work 

This section gives a summary of the body of research 

that has been done on the use of software metrics and 

their applicability to SMP, as shown in Table 1. From 

Table 1, it can be understood that for SMP, the 

maintainability can be determined by the Change metric 

and used in various studies (Li and Henri, 1993; Koten 

and Gray, 2006; Zhou and Leung, 2007, 2013; Al-

Jamimi, 2013) whereas maintainability as maintainability 

index (MI) are utilized by Zhou and Xu (2008), Coleman 

et al. (1994), and Zhang et al. (2015).   

As Table 1 illustrates, the majority of the research that 

has already been done is focused on certain methods and 

performance indicators. The study of predictor 

significance and method integration are noticeably 

underemphasized. For instance, even though some 

researchers have used various methods, such as Support 

Vector Machines and Bayesian networks, none have 

specifically addressed the idea of predictor relevance. 

Moreover, the novel method that combines Multiple 

Linear Regression, Object-Oriented Metrics, and 

Predictor Importance is still unexplored. 

Research Methodology 

In order to create an effective SMP model, the current 

study investigates how OO metrics and the change metric 

relate to one another. The study focuses on three cases for 

feature selection and training using five machine learning 

techniques. The current study involves the following 

steps: 

1. Dataset Formation: The initial dataset comprises ten 

OO metrics, considered predictor variables or input 

variables, and the change metric, the response variable 

representing software maintainability. These metrics  

Figure 1. Flow chart for SMP model. 



Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023) 

DOI: https://doi.org/10.52756/ijerr.2023.v36.013 
137 

 

 

Table 1. An overview of the empirical research on maintainability 

Year Author Maintainability Techniques Performance measure 

1993 Li & Henry CHANGE Regression 

Analysis 

R2 and Adjusted R2 

1994 Coleman et al. Maintainability = 171 

-5.2 x ln(aveVol) 

-0.23 x ave V(g') 

-16.2 x ln(aveL0C) 

+(50 x sin (d2.46 x 

perCM)) 

Regression 

Analysis 

- 

2006 C. van Koten, A.R. 

Gray 

CHANGE Bayesian network MMRE 

2007 Zhou & Leung,  CHANGE multivariate 

adaptive regression 

splines 

MMRE 

2008 Zhou & Xu Maintainability Index 

(MI)= 171−5.2 

ln(aveV) − 

0.23aveV(g') 

− 16.2 ln (aveLOC) + 

50 sin (sqrt 

(2.4perCM)) 

Univariate and 

Multivariate 

Regression 

Analysis 

Absolute relative error, 

magnitude of relative 

error, and R squared  

2013 Al Dallal,  CHANGE Multivariate 

logistic regression 

analysis 

Precision, Recall, 

Inverse precision 

(denoted IP), Inverse 

Recall (denoted IR) 

2013 Ahmed & Al-

Jamimi,  

CHANGE Mamdani fuzzy 

inference engine 

NRMSE, MMRE 

2014 Malhotra & Chug,  CHANGE 1. Group Method 

of Data Handling 

2. Feed Forward 3-

Layer Back 

Propagation 

Network 

3. General 

Regression Neural 

Network 

magnitude of relative 

error (MARE) 

2015 Elish et al. CHANGE Ensemble 

methods 

MMRE 

2015 Zhang et al. MI & ME automated tool: 

SMPlearner 

Spearman’s Rank 

Correlation Coefficient 

2016 Kumar and Rath CHANGE functional link 

artificial neural 

network (FLANN) 

with genetic 

algorithm (GA), 

particle swarm 

optimization (PSO)  

Standard Error of 

Mean, MAE, MMRE 
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 are collected from software projects to create the 

foundation for the research analysis. 

2. Preprocessing: Before conducting the analyses, the 

dataset undergoes preprocessing   (missing data, 

outlier removal, and normalization). 

3. Feature Selection and Case Formation: Three distinct 

cases are formed for feature selection, each involving 

different methods for selecting relevant features to 

build predictive models: 

Case 1: As a baseline, in this case, all ten OO metrics are 

used as features for both training and testing the software 

maintainability prediction model. 

Case 2: MLR is employed as a method for hypothesis 

testing and feature selection.  

Case 3: PI analysis is utilized for feature selection.  

Training and Testing: For each of the three feature 

selection cases, five different machine learning 

techniques i.e., Ensemble (ENS), Classification Tree 

(CT), Naïve Bayes (NB), Discriminant Analysis (DA), 

and Support Vector Machine (SVM) are employed for 

training and testing the predictive model their brief 

description are as follows: 

• ENS: A prediction model made up of a weighted 

mixture of many classification models is called a 

classification ensemble. Combining several 

classification models often improves prediction 

accuracy (Elish et al. et al., 2016). 

• CT: also known as decision trees, are used to forecast 

data responses. Following the choices made in the tree 

through the root (starting) node up to a leaf node to 

anticipate a response. The answer is stored in the leaf 

node. 'True' or 'false' are examples of nominal replies 

provided by classification trees (Alsolai et al., 2020). 

• NB: It refers to a group of classification techniques 

based on Bayes' Theorem. It's not just one algorithm; 

rather, it's a collection of algorithms bound together 

by a common premise: the notion that every pair of 

characteristics being classed stands alone (Kaur et al., 

2014). 

• DA: It makes the assumption that various groups use 

different Gaussian distributions to construct their data. 

The classifier computes the Gaussian distribution 

parameters for every group during training. It chooses 

the class with the lowest misclassification expense in 

order to forecast fresh data (Yenduri and Gadekallu, 

2023). 

• SVM: It finds the optimum hyperplane in an N-

dimensional space to efficiently split data points into 

different classes (Gupta and Chug, 2020). 

1. Performance Evaluation: comparative analysis using 

MMRE and accuracy.  

The accuracy of the SMP model is calculated using a 

confusion matrix. It has four aspects: true positive (TP), 

true negative (TN), false positive (FP), and false negative 

   and clonal selection 

algorithm (CSA) 

also rough set 

analysis (RSA) and 

Principal 

Component 

Analysis (PCA) 

 

2017 Kumar et al. CHANGE Support Vector 

Machine 

Precision, Recall, 

Specificity, F-Measure, 

AUC 

2019 Wang et.al. CHANGE Fuzzy Network MMRE 

2020 Malhotra & 

Lata 

change count (CC) AB, C4.5, 

BAGG, IRBFNN, 

KNN, KS, LR, 

MLP-CG, RBFNN 

Sensitivity, 

Specificity, G-mean, 

Balance 

2021 Malhotra & 

Lata 

CM (Class 

Maintainability) 

28 classification 

techniques 

g-mean (GM), and 

balance (BL) 

2023 Kumar & Kaur CHANGE Multi Criteria 

Decision Making 

with 22 regression 

techniques 

Eight Performance 

measures 

2023 Jaya Bharath et 

al. 

CHANGE Gradient Boost 

Classifier 

Accuracy 

2023 Hu et al. Static Code Deep Neural 

Network (DeepM) 

Accuracy 
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(FN). Consider that positive means a high-maintenance 

class and negative means a low-maintenance class, in 

such situation TP: The predicted value is positive, and the 

actual value is also positive. FP: The predicted value is 

positive, but the actual value is negative. FN: The 

predicted value is negative, but the actual value is 

positive. TN: The predicted value is negative, and the 

actual value is also negative. Flowchart for the proposed 

work is presented in Figure 2. 

 
Figure 2. Flowchart of the proposed SMP model. 

Experimental Setup 

The SMP's creation, considering various case studies, 

is the primary subject of the present section. The data is 

normalized to increase accuracy, and both dependent and 

independent variables are chosen to create the SMP 

model. 

Dataset Description 

The dataset is obtained using two of the most popular 

commercial software systems, i.e., UIMS and QUES, 

which were developed using Classic-Ada programming 

language, hence providing the OO paradigm. UIMS 

contains ten OO metrics and a Change metric with 39 

instances, whereas QUES contains 10 OO metrics and a 

Change metric with 74 instances. The dataset was 

proposed by Li and Henry (Li and Henry,1 993).  

Dependent variable: Change metric 

Authors have developed different definitions and metrics 

for software maintainability (Li and Henry, 1993; Zhou 

and Leung, 2007). According to the existing literature, 

most researchers use the "MI" and "change metric" to 

evaluate the maintainability of software. In the current 

study, the change metric is considered to be 

maintainability. Maintainability is the amount of 

modification added to the code throughout maintenance. 

A line change is defined as either the "addition" or 

"deletion" of lines of code within a class during the 

maintenance phase (Malhotra and Chug, 2014; Li and 

Henry, 1993; Zhou and Leung, 2007). 

Predictor/Independent Variable: OO metric 

The current study focuses on ten static source code 

metrics within the OO paradigm. Selected OO metrics for 

SMP are shown in Table 2. 

Table 2. List of OO Metric used in proposed SMP 

model 

DIT is the maximum length from the node to the tree's 

root. The cohesion and interdependence of methods in a 

class are assessed using LCOM in OO programming. It 

quantifies how much information or variables are shared 

between methods in a class. Indicating that the methods 

are less related or lack semantic coherence, a higher 

LCOM value suggests weaker cohesion. NOC counts the 

immediate subclasses of a parent class. For example, in 

Java programming, if classes B and C inherited a class 

named A, then the NOC value for class A would be 2. 

RFC is a metric for how many methods in a class can be 

used to respond to a message. It is assumed that the 

higher the value of RFC, the higher the complexity and 

the lower the effort and maintainability of the code. For 

example, if Class A is inherited by Class B and both have 

two methods, then the object of Class B can invoke all 

four methods: therefore, RFC (Class B) =4, whereas RFC 

(Class A) = 2. WMC is the average of all the 

complexities of methods defined in a class. If the WMC 

value of a class is high, it means the class is more 

complex and vice versa. DAC is the count of abstract 

data types defined in a class. DAC generally depicts that 

Metric suit Metric 
Object Oriented 

property 

(Chidamber 

and Kemerer, 

1994) 

DIT Inheritance 

LCOM Cohesion 

NOC Inheritance 

RFC Coupling 

WMC 
Cyclomatic 

complexity 

(Li and Henry 

1993) 

DAC 
Abstraction and 

coupling 

MPC Coupling 

NOM Encapsulation 

SIZE1 Elements of Source 

Code SIZE2 



Int. J. Exp. Res. Rev., Vol. 36: 135-146 (2023) 

DOI: https://doi.org/10.52756/ijerr.2023.v36.013 
140 

a class has too many responsibilities. In other words, 

there are many fields with references. For example, if 

Class A declares two different objects, then the DAC 

(Class A) = 2. The MPC counts how often a class's 

methods refer to methods in other classes, indicating how 

dependent local methods are on methods implemented by 

other classes. It enables analysis of the message 

transmission (method calls) between the involved classes' 

objects. NOM counts the total number of public methods 

defined in a class. For example, if two methods are public 

in a class A, one is private, and one is protected, then 

NOM (Class A) =2. SIZE1 determines the number of 

semicolons used, and SIZE2 determines the addition of 

several attributes and methods in a class. 

Efficiency of metrics 

In the current study, three cases are defined for 

selecting different sets of OO metrics, as described in 

Table 3. Based on three cases, c1, c2, and c3, SMP is 

constructed, and performance is evaluated. 

Table 3. Test case description. 

Case 
Response 

variable 
Predictor variables 

c1 Change 

metric 

DIT, WMC, RFC, NOC, DAC, 

LCOM, MPC, NOM, SIZE2, 

SIZE1 

c2 Change 

metric 

Reduced feature attributes using 

MLR 

c3 Change 

metric 

Reduced feature attributes using 

PI 

Feature selection  

A crucial step in predicting maintainability is 

choosing the appropriate software metric set. This study 

uses two different kinds of feature selection methods to 

increase the predictability of OO software 

maintainability. These methods assist in selecting the 

relevant group OO metrics from the more extensive 

selection of options. 

MLR 

Regression analysis estimates how a dependent 

variable will change as an independent variable or group 

of independent variables changes. In the current study, 

MLR (Riaz et al., 2009) is utilized in order to analyze 

how strong the relationship is between various OO 

metrics and change. MLR can be demonstrated by 

Equation (1). 

𝑀 =  𝑏0 +  𝑏1 ∗ 𝑋1 +  𝑏2 ∗ 𝑋2 + 𝑏3 ∗ 𝑋3 ……… (1) 

In Equation (1), M represents the dependent variable, 

X1, X2, and X3 are the independent variables, and b0, 

b1, b2, and b3 are the coefficient values. Four different 

properties of MLR include Coefficient Estimates (CE), 

Standard error (SE), t-statistic(t-stat), and p-value. 

Hypothesis testing and feature selection process may be 

based on the p-value of the t-statistic. For instance, if the 

p-value of X2 in Equation (1) is more significant than 

0.05, this term is insignificant at the 5% significance 

level given the other terms in the model and vice-versa. 

The workflow of MLR is shown in Figure 3.  

 
Figure 3. Feature Selection using MLR. 

PI 

PI is another method used in the current study to 

assess the significance of each predictor of a tree (Xu et 

al., 2019). It involves evaluating the impact of splits for 

each predictor on node risk and summing up these 

changes. The total sum is then divided by the number of 

branch nodes. The difference between the risk of the 

parent node and the combined risk of its two offspring 

nodes signifies the actual change in node risk caused by 

the predictor splits. To illustrate, when a tree divides a 

parent node (let us say node 1) into two child nodes (for 

instance, nodes 2 and 3), the significance of the split 

predictor is enhanced according to equation 2 in the PI 

method. 

𝑆1 = (𝑅1 –  𝑅2– 𝑅3)/𝑁𝑏𝑟𝑎𝑛𝑐ℎ ………………… (2) 

Ri represents the node risk of node i, and Nbranch is 

the overall count of branch nodes. S1 is the significance of 

node 1. A node's risk is determined by its error or 

impurity, which is then weighted by the probability 

associated with that particular node. 

𝑅𝑖  =  𝑃𝑖 ∗ 𝐸𝑖 …………………………………….. (3) 

Here, Pi denotes the node probability of node i, and Ei 

corresponds to either the node error (in the case of a tree 

grown using the towing criterion) or node impurity (for a 

tree grown using an impurity criterion like the Gini index 

or deviance) for that specific node i. 
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Performance Evaluation  

Since the SMP belongs to the prediction models, 

Accuracy and MMRE (Elish et al., 2015; Kumar & Rath, 

2016; Wang et al., 2019) are the two parameters used for 

the performance evaluation. The formula of the Accuracy 

measure is defined in Equation (4). MMRE is used in this 

study to compare results with earlier investigations. 

MMRE stands for a mean of a measure called the 

magnitude of relative error. Because of the linearity of 

the mean, any measure that reduces the predicted 

magnitude of relative error (MRE) would also reduce the 

expected MMRE. Equation (5) can be calculated where 

Xi’ represents the predicted outcome, Xi is the actual 

outcome, and n is the total number of observations.   

Accuracy (ACC) =  
TP+TN

TP+FP+TN+FN
  ………………… (4) 

𝑀𝑀𝑅𝐸 =
1

𝑛
∑

|𝑋𝑖
′− 𝑋𝑖|

𝑋𝑖

𝑛
𝑖=1   …………………………… (5) 

Results and Discussion 

This section describes the results obtained by multiple 

regression analysis and hypothesis testing, followed by 

the performance analysis of SMP for each case. Multiple 

linear regression predicts a variable using multiple 

predictors. When used for binary classification, it can be 

adapted by setting a threshold on predicted values for 

categorization. Hypothesis testing assesses each 

predictor's significance and their combined impact on the 

outcome, often determined using methods like p-values 

or F-tests. 

Results of Multiple Linear Regression 

This section presents the results of a regression 

analysis conducted on the UIMS and QUES software 

dataset to investigate the impact of various OO metrics 

on the Change metric as described in Table 4. The 

analysis aimed to discern the impact of different metrics 

on SMP performance and provide insights into the 

significance and direction of feature selection. Based on 

the p-value, the following null and alternate hypotheses 

are considered in the present work. 

H0: “No significant correlation exists between OO metric 

and Change Metric." 

Ha: “There is a significant correlation between OO metric 

and Change Metric." 

When considering UIMS, Table 4 shows that the 

intercept term in the regression model was estimated to 

be 9.5395 with a standard error of 30.802. The associated 

t-value of 0.3097 resulted in a p-value of 0.75908. 

However, the intercept's p-value suggests that it is not 

statistically significant, indicating that it may not sub- 

 

-stantially influence the change metric. The regression 

analysis and NOC metric have a coefficient estimate of 

10.705, accompanied by a standard error of 4.2832. The 

computed t-value of 2.4993 led to a p-value of 0.018582. 

These results suggest that the NOC metric has a 

statistically significant positive effect on UIMS 

performance, hence rejecting the null hypothesis. The 

LCOM metric had a coefficient estimate of 4.4209, and 

its standard error was 2.3058. The t-value of 1.9173 

resulted in a p-value of 0.065457. This implies that the 

LCOM metric has a marginally significant favorable 

influence on the change metric, hence rejecting the null 

hypothesis. In the WMC metric, the coefficient estimate 

was 4.2741, and the standard error was 2.7144. The t-

value of 1.5746 corresponded to a p-value of 0.12658. 

This suggests that the WMC metric has a marginally 

significant positive effect on UIMS performance, hence 

rejecting the null hypothesis. Since the p-values for DIT, 

MPC, RFC, DAC, NOM, SIZE1, and SIZE2 metrics are 

less than 0.05, these metrics do not significantly impact 

change metrics. Therefore, NOC, LCOM, and WMC are 

selected as the subset of SMP features for UIMS. 

When considering QUES, Table 4 shows that the 

intercept term in the regression model was estimated to 

be -3.4033 with a standard error of 16.365. The 

corresponding t-value of -0.20796 resulted in a p-value of 

0.83597. These findings indicate that the intercept term is 

not statistically significant, suggesting that it may not 

significantly contribute to the variation in the QUES 

scores. For LCOM, DAC, and WMC, the p-values are 

0.0085661, 0.00094389, and 0.0032928, respectively. 

This implies that these metrics have a statistically 

significant adverse effect on the Change metric and also 

reject the null hypothesis for these metrics. P-values for 

SIZE1 and SIZE2 metrics are 1.2129e-08 and 0.095063, 

respectively. This reveals that SIZE1 has a highly 

significant positive effect on the Change metric, and 

SIZE2 has a marginally significant positive effect on the 

Change metric, resulting in rejecting the null hypothesis. 

Also, the result of regression analysis on QUES suggests 

that p-values for DIT, MPC, RFC, and NOM metrics are 

more significant than 0.05; therefore, these metrics show 

no impact on the change metric. As far as NOC is 

concerned, since the value of 0 results in a coefficient 

estimate of 0 and a standard error of 0. Since NOC is 

constant, its t-value and p-value are Not-a-Number. This 

implies that the NOC predictor cannot contribute 

meaningfully to the regression analysis due to its constant 

nature. 
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Results of Predictor Importance 

Figure 4 shows the importance of each OO metric for 

predicting the Change metric. The horizontal axis 

represents each OO metric, and the vertical axis 

represents the estimated values. It is observed that RFC, 

NOC, MPC, DAC, NOM, SIZE1, WMC, DIT, SIZE2, 

and LCOM are top-ranked predictor variables in this 

order that have a high impact on the Change of OO 

software system UIMS, whereas in the case of QUES, the 

decreasing order of importance of predictors is SIZE2, 

MPC, WMC, SIZE1, DAC, NOM, LCOM, RFC, and 

DIT. The selected features for all the cases C1, C2, and 

C3 presented in the current study are shown in Table 5. 

 
Figure 4 (a & B). PI estimates for SMP. 

 

 

 

 

Table 5. Selected Features for SMP in all cases. 

Case UIMS QUES 

C1 DIT, NOC, RFC, 

LCOM, WMC, MPC, 

DAC, NOM, SIZE1, 

SIZE2 

DIT, NOC, RFC, 

LCOM, WMC, MPC, 

DAC, NOM, SIZE1, 

SIZE2 

C2 NOC, LCOM, WMC LOC, DAC, WMC, 

SIZE1, SIZE2 

C3 DAC, MPC, NOC, 

RFC, SIZE1, SIZE2 

and WMC 

DAC, MPC, NOM, 

WMC, SIZE1, and 

SIZE2 

 

Comparative Analysis 

This section presents the results of a comprehensive 

evaluation of SMP methods for UIMS and QUES in 

various cases (C1, C2, and C3). The evaluation is based 

on two performance metrics, i.e., MMRE and Accuracy. 

The analysis aims to identify the most effective SMP 

method for each case. Table 6 shows the results of each 

case C1, C2, and C3 for UIMS. It is evident from Table 6 

That Case C1 shows that CT, NB, and SVM achieved 

comparable MMRE values of 0.2500. CT and NB also 

exhibited high accuracy rates of 81.82%. Case C2, CT, 

and SVM yielded MMRE values of 0.2441 and high 

accuracy rates of 91.91%. This indicates that CT and 

SVM outperformed other methods, delivering accurate 

and consistent predictions for UIMS analysis in Case C2. 

For Case C3, NB and SVM achieved MMRE values of 

0.2441, along with accuracy rates of 91.91%. These 

results indicate that NB and SVM are well-suited for 

UIMS analysis in Case C3, demonstrating accurate 

predictions and minimal magnitude of relative error. 

Table 4. MLR Statistics for UIMS and QUES. 

Metric 
UIMS QUES 

Estimate SE t-value P-value Estimate SE t-value P-value 

(Intercept) 9.5395 30.802 0.3097 0.75908 -3.4033 16.365 

-

0.20796 0.83597 

DIT -3.5758 11.095 -0.32229 0.74963 5.9466 7.4352 0.79979 0.42699 

NOC 10.705 4.2832 2.4993 0.018582 0 0 NaN NaN 

MPC 2.7355 6.0698 0.45067 0.6557 -0.68361 0.67612 -1.0111 0.31603 

RFC -0.92205 2.5565 -0.36067 0.72105 0.45772 0.32204 1.4213 0.16041 

LCOM 4.4209 2.3058 1.9173 0.065457 -3.8794 1.4271 -2.7183 0.0085661 

DAC 11.21 15.377 0.729 0.47205 -13.841 3.9786 -3.4789 0.00094389 

WMC 4.2741 2.7144 1.5746 0.12658 -1.4923 0.48743 -3.0615 0.0032928 

NOM -2.5711 16.751 -0.15349 0.87911 -4.6262 3.6341 -1.273 0.20793 

SIZE2 -0.25786 15.971 -0.01615 0.98723 6.1088 3.6018 1.696 0.095063 

SIZE1 -0.29626 0.38651 -0.76651 0.44979 0.36601 0.055481 6.597 1.2129e-08 
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Table 6. MMRE and ACCURACY of each utilized 

method for UIMS for each case. 

Met

hod 

C1 C2 C3 

M

MR

E 

ACCU

RACY 

M

MR

E 

ACCU

RACY 

M

MR

E 

ACCU

RACY 

CT 0.25

00 

81.82 0.24

41 

91.91 0.24

41 

91.91 

EN

S 

0.41

67 

54.55 0.35

50 

81.82 0.35

50 

81.82 

DA 0.30

56 

81.82 0.41

67 

90.91 0.41

67 

90.91 

NB 0.25

00 

81.82 0.25

00 

81.82 0.25

00 

81.82 

SV

M 

0.30

56 

63.64 0.24

41 

91.91 0.24

41 

91.91 

The evaluation of different classification methods for 

assessing the QUES across distinct cases (C1, C2, and 

C3) is summarized in Table 7. Across all cases, CT and 

ENS methods consistently achieved similar MMRE 

values of 0.2778 and demonstrated an accuracy rate of 

76.19%. Regardless of the specific case, these methods 

showcase stable and reliable performance in QUES 

analysis. DA exhibited varying MMRE and accuracy 

scores across the cases. Notably, in Case C1, DA yielded 

an MMRE of 0.3550 and an accuracy rate of 66.67%. 

However, DA's performance deteriorated in Cases C2 

and C3, resulting in higher MMRE values and lower 

accuracy rates of 0.4861 and 57.14%, respectively. This 

suggests that the effectiveness of DA is contingent on the 

particular QUES context. NB and SVM consistently 

demonstrated moderate to low-performance acrOnB, 

yielding the SVM's highest MMRE values of 0.5139 and 

accuracy rates of 52.38%. On the other hand, SVM's 

performance remained relatively stable, with MMRE 

values ranging from 0.3056 to 0.3194 and accuracy rates 

of 71.43%. 

Table 7. MMRE and ACCURACY of each utilized 

method for QUES for each case. 

Met

hod 

C1 C2 C3 

MM

RE 

ACCU

RACY 

MM

RE 

ACCU

RACY 

MM

RE 

ACCU

RACY 

CT 0.27

78 

76.19 0.27

78 

76.19 0.33

33 

71.43 

ENS 0.27

78 

76.19 0.22

22 

80.95 0.22

22 

76.19 

DA 0.35

50 

66.67 0.48

61 

57.14 0.48

61 

57.38 

NB 0.51

39 

52.38 0.51

39 

52.38 0.51

39 

52.38 

SV

M 

0.31

94 

71.43 0.31

94 

71.43 0.30

56 

71.43 

The best SMP models for analyzing UIMS and QUES 

are chosen depending on the specific scenario and 

preferred performance criteria. It is evident that ENS and 

DA consistently produce dependable forecasts for both 

UIMS and QUES results. According to the overall trend 

of the findings, these figures unequivocally show that 

ENS consistently outperforms alternative SMP models in 

terms of predictive capability. 

Additionally, for comparative analysis with existing 

studies (Elish and Elish, 2009; Al-Jamimi, 2012; Chanda, 

2012; Aljamaan, 2013; Kumar and Rath, 2016), MMRE 

values are compared. The studies selected used the same 

dataset and performance measure, i.e., MMRE. It was 

found that the combination of CT and PI gives a 0.2441 

value of MMRE for UIMS, which outperforms the other, 

whereas the combination of ENS and PI outperforms the 

others. The Comparison is shown in Figure 5.  

 
(a) Comparison of UIMS. 

 
(b) Comparison of QUES. 

Figure 5 (a & b). Error Comparison of the proposed 

method with previous studies. 

The research findings shown in Tables 6 and 7 

highlight the potential for the suggested approaches to 

play a significant role in the maintainability of software 

systems in practice. A comparison to previous studies in 

Figure 5 further supports this. Improved accuracy and 

decreased prediction mistakes are key features of these 

approaches for practical use, and decision-making for 

finding the low-maintenance classes and working on 
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them will result in improving the overall cost of software 

development. 

Overall, the computational complexity could be 

influenced by the dataset size, the number of features, 

and the algorithm's intricacy in each methodology step. 

The scalability of these computations could become a 

concern when dealing with large-scale datasets or when 

applying resource-intensive algorithms. 

Conclusion 

The popular UIMS and QUES software datasets were 

thoroughly examined in this study, largely focused on 

improving SMP accuracy and assessing the effects of 

several OO metrics on the Change metric. The current 

research emphasises building an SMP model integrating 

MLR, PI and five ML techniques. MLR and PI are used 

for feature selection in the proposed SMP model. Based 

on MLR analysis on UIMS, NOC displayed a statistically 

meaningful positive effect on UIMS performance among 

the metrics, supported by its coefficient estimate of 10.705 

and a notably low p-value of 0.018582. Similarly, LCOM 

exhibited a subtly significant positive influence, whereas 

WMC demonstrated a marginal yet noteworthy positive 

impact. For QUES, the outcomes underscored that the 

intercept term lacked statistical significance, implying its 

limited contribution to the variability in QUES scores. 

LCOM, DAC, and WMC significantly showcased 

statistically significant adverse effects on the Change 

metric. In addition, SIZE1 emerged with a highly 

significant positive influence, while SIZE2 registered a 

slight but discernible positive impact. In contrast, PI 

analysis underscored the substantial influence of metrics 

such as DAC, MPC, NOC, RFC, SIZE1, SIZE2, and 

WMC for UIMS and DAC, MPC, NOM, WMC, SIZE1, 

and SIZE2 for QUES. The comprehensive evaluation of 

SMP methods for both UIMS and QUES consistently 

revealed the strong performance of CT and ENS methods. 

These outcomes showcased their effectiveness across 

various scenarios, yielding precise predictions and low 

MMRE values. The study's findings demonstrate how 

defining important criteria for QUES and UIMS may offer 

practical guidance to practitioners in selecting the best 

SMP approaches for improved user experience and 

software quality. Additionally, showcasing the synergy 

between MLR, PI, and several ML techniques in the SMP 

model suggests that these methods might be included in 

additional software quality evaluation studies. The study's 

limitations include its focus on specific datasets, which 

may limit generalizability and the fact that statistical 

significance does not guarantee practical impact. Future 

research might examine longitudinal changes in metrics 

and SMP techniques, as well as corroborate findings using 

a range of software datasets to enhance the SMP model's 

accuracy and usefulness in assessing software quality. In 

summary, this research highlighted influential metrics for 

UIMS and QUES, offering valuable guidance to 

practitioners when selecting SMP methods and conducting 

feature selection to enhance software quality and user 

experience. Further validation and practical 

implementation of these findings in real-world software 

contexts are highly recommended. 
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