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Introduction 

Android operating system (OS) is the extensively used 

OS in smart devices such as smartphones, tablets, smart 

TV’s, Android Auto and Smartwatches. First unveiled in 

2007, it quickly became popular because it is open-source, 

commercially backed, and developed by Google. 

According to Statista (2003), Android is the main mobile 

OS with a 71.8% market share in the fourth quarter of 

2022. This huge user base makes it a very lucrative target 

for attackers. In addition to the Google Play Store, users 

can also get applications from other third-party 

marketplaces. The open-source nature of Android OS, 

large user base and availability of applications on various 

third-party stores make Android users more prone to 

various malware attacks. Android malware can steal 

information, cause disruption in services, gain 

unauthorized access, modify data, spam users, or, in 

general, interfere with the security of a user’s device. 

According to Cyber Security News and Insights for 

Executives (2022), Android malware attacks are over 50 

times higher than iOS malware attacks. Google describes 

Android malware as Potentially Harmful applications 

(PHAs). In 2018 research report by Google (Android, 

2019), the PHAs are classified as Trojan, SMS fraud, 

phishing, hostile downloaders, spyware, privilege 

escalation, toll fraud, click fraud, backdoors and 

commercial spyware. Researchers have investigated 

several ways of detecting Android malware. These 

techniques are categorized as static and dynamic analysis-

based techniques. 

Static analysis-based detection methods reverse 

engineer the applications to retrieve static features such as 

permissions, intents, API calls, opcodes, etc (Zhang et al., 

2020; Kazmi et al., 2023; Goel et al. 2023). Dynamic 

analysis-based detection methods execute applications on 

Android devices or emulators to observe the application’s 

behavior. Mainly, the dynamic analysis methods (Khan 

and Jain, 2020; Martinelli et al., 2017; Vinod et al., 2019; 
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Xu et al., 2019; Li et al., 2019; Kaleem et al., 2023; 

Vivekanandan and Gunasekaran, 2023) use a simulated 

environment that triggers the activity of malicious code 

(Alzaylaee et al., 2020) and monitors the behavior of the 

application. These techniques are much more effective in 

the case of obfuscated malware or dynamically loaded 

code. Thus, it can also detect novel malware based on their 

real-time activities. However, they fail to offer complete 

code coverage. 

An efficient and robust Android malware solution 

should consider static and dynamic features because they 

are key attributes defining an application as benign or 

malicious. However, the extracted features are frequently 

afflicted by high dimensionality, leading to a considerable 

increase in computational overhead. Also, many features 

are redundant and irrelevant in nature. They increase the 

complexity and decrease the performance of a 

classification model. Therefore, this work proposes an 

Android malware detection model based on a few 

important static as well as dynamic features that can 

effectively differentiate malicious applications from 

benign ones. 

Contributions to this work are -  

(1) Extract hybrid features from benign and malicious 

APKs.  

(2) Reduce the dimensionality using Boruta, 

BorutaShap and Gini importance methods.  

(3) Detect the malware and calculate Android malware 

detection accuracy using Random Forest algorithm and 

AdaBoost algorithm. 

The rest of the paper is organized as follows:  

Section 2 discusses the related work and section 3 

presents the proposed methodology, section 4 includes 

experimental results and discussion and section 5 

concludes the paper. 

Related Work 

Several researchers have explored the application of 

feature selection in the context of Android malware 

detection. Here is a summary of their findings and 

methods: 

1. Deepa et al. (2015): They used the correlation feature 

selection method and achieved an accuracy of 88.75% in 

Android malware detection by mining the top few features. 

2. Zhao et al. (2015): They introduced a novel feature 

selection technique that considered the frequency of 

features in benign and malicious Android samples. Their 

method achieved up to 98% accuracy by selecting distinct 

features. 

3. Wen and Yu (2017): They extracted hybrid features 

from applications and used Principal Component Analysis 

and Relief to extract promising features. Their method 

achieved 95.2% accuracy on malicious applications. 

4. Altaher and Barukab (2017): They extracted 

permissions and API calls and applied filter-based feature 

selection techniques to rank features based on importance 

in distinguishing malicious samples from benign ones. 

5. Bhattacharya and Goswami (2018): They presented 

a feature selection method and obtained 87.8% and 97.9% 

accuracy rates on two different datasets, claiming that their 

technique can perform well on large datasets. 

6. Peynirci et al. (2020): They selected features with the 

highest Inverse Document Frequency (IDF) in benign 

applications and the lowest IDF in malicious applications, 

achieving above 99% accuracy on three different datasets. 

7. Dhalaria and Gandotra (2020): They extracted 

hybrid features from Android applications and used the 

Chi-Square feature selection method to select important 

features for detecting malicious Android applications. 

8. Sahin et al. (2021): They applied eight different 

feature selection techniques and demonstrated that feature 

selection methods from text classification studies can 

improve classification model performance. 

9. Kouliaridis et al. (2021): They used PCA and t-SNE 

with multiple machine learning algorithms to select 

features from the entire feature set and achieved an 

accuracy of 91.7%. 

These studies highlight the importance of feature 

selection in enhancing the accuracy and efficiency of 

Android malware detection algorithms. 

Proposed Method  

The method followed in this work to detect malware 

and measure the accuracy of different algorithms can be 

divided into 3 steps. First, to create a dataset of static and 

dynamic features of APKs using tools such as MobSF, 

Strace and Androguard. Then, a feature set of 

corresponding features from APKs is created in which if a 

feature/attribute is present in a particular APK, then it is 

marked as 1 otherwise 0. Second, Boruta, BorutaShap and 

Gini Importance feature selection algorithms are applied 

to extract the important features from the feature set. This 

improves the performance of the classification model by 

removing redundant information. Lastly, Random Forest 

and AdaBoost classifiers are applied to the selected 

features to find the best possible approach for malware 

detection. 

Dataset Collection  

This step collects benign and malicious Android 

samples from two major sources: malware samples from 

AndroZoo repository (Allix et al., 2016) and benign  
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samples from Google Play Store. This work uses 

AndroZoo to collect malware samples because it is a 

comprehensive repository containing samples from 

various sources. Later on, samples are executed within 

Genymotion emulator and their dynamic features, such as 

system calls, are retrieved through Mobile Security 

Framework (MobSF) (Abraham, 2022) and the strace tool. 

Further, static features are extracted with the help of 

MobSF and Androguard (Androguard, 2019). The 

Androguard tool reverse-engineers the samples to obtain 

manifest.xml and classes.dex files. The following static 

features are obtained from these samples: opcode, 

permission, API call and intent filter.  

Feature Selection - Boruta and BorutaShap Algorithm  

Feature selection techniques are one of the best ways to 

handle the curse of dimensionality and reduce over-fitting 

in a machine-learning model. It makes the model simple 

and increases the interpretation of the model, highlighting 

the most informative features. This research work uses 

Boruta algorithm to elect the most contributory features.  

Boruta Algorithm works on the concept of creating 

duplicates referred to as shadow features of all 

independent features, as shown in Figure 2. The values are 

shuffled after that to remove the correlation between 

independent and dependent features. The algorithm works 

on the concept of top-down search. It compares the 

importance of original attributes with shadow features 

created through permutation and gradually eliminates the 

features that are not important. The features that are better 

than shadow features are retained.  

The algorithm then computes a Z score, finds the 

greatest Z score, and tags variables as 'unimportant' or 

'important' depending on whether they are significantly 

lower or higher than the highest Z score. This process is 

repeated until all attributes are either tagged 'unimportant' 

or 'important'.  

Boruta can be combined with SHAP (SHapley 

Additive exPlanations) in a machine learning pipeline for 

feature selection and interpretation of the model. SHAP 

values are used to explain the contribution of each feature 

in a predictive model. They are used to give a summary of 

the importance of features. 

Performance Metrics 

This work uses the following metrics for evaluating 

the performance of ML algorithms. 

Precision 

This metric shows that out of predicted positive values 

(predicted malware), how many values were actually 

positive (actual malware). 

Precision 	

��
 �������
�

True Positives � False Positives 
 

Recall  

Recall means ratio of predicted positives (predicted 

malware) out of total actual positives. 

Recall 	

��
 �������
�

True Positives � False Negatives 
 

 

F1-score  

F1-score is used to get a balanced metric out of 

precision and recall. 

F1 ! Score 	 2 ∗ 
Precision ∗ Recall

Precision � Recall 
 

 

Accuracy  

Accuracy defines the overall correctness of our model. 

It is the ratio of correct predictions out of all predictions 

made by the model. 

Accuracy 	
'TP � TN(

'TP � FP � TN � FN( 
 

 

Experimental Results and Analysis  

This section includes various experiments and tests 

conducted on the dataset mentioned in the previous 

section, which includes 102 dynamic features and 915 

static features on 190 APK samples. To maintain 

uniformity, the dataset is split into train and test for all the 

experiments at 60%:40%. The feature selection techniques 

Boruta, BorutaShap and Gini Importance filter the 

dynamic and static features that can detect Android 

Malware efficiently. The performance of selected features 

is compared with Random Forest and AdaBoost. The 

results and analysis of various experiments are as follows-  

 

Results of Feature Selection  

As reported in Table 1, the original dimensionality is 

significantly reduced with all the feature selection 

techniques with good accuracy. However, the BorutaShap 

with Random Forest Classifier outperforms all the other 

techniques. The number of features is significantly 

reduced from 13102 to 30 for dynamic features and 915 to 

74 for static features by Boruta. BorutaShap obtains the 

best accuracy from Table 1 as a Feature Selector with a 

Random Forest Classifier. The BorutaShap has the 

advantage over other methods applied in this study as it 

projects a strong addictive explanation of features, which 

is the strength of the SHAP method and at the same time, 

it has the robustness of the Boruta algorithm. This ensures 

that only significant variables remain on the set. 
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Figure 1. Proposed model for feature extraction and analysis 
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Figure 2. Boruta algorithm Steps 
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Comparison of Random Forest performance with 

different feature selection techniques  

 The three feature selection techniques Boruta, 

BorutaShap and Gini Importance, are evaluated by two 

popular classification algorithms Random Forest and 

AdaBoost. As observed from Table 2 Random Forest with 

BorutaShap feature selector outperforms all other 

combinations of feature selector and classification 

algorithm. Random Forest works on the concept of an 

ensemble of decision trees through bagging. This reduces 

the variance of the single decision tree and overcomes 

overfitting in the model. The highest accuracy as reported  

 

 

 

in Table 2, is 98.9% and Precision, Recall and F1-score of 

approx. 99%. On the other hand, AdaBoost algorithm with  

the Gini importance feature selector does not give good 

results. The lowest accuracy is 70%, reported by 

Adaboost+Gini Importance. 

The Figure 3 displays the feature importance of all 

features through Boruta with Shap as feature selector. 

Figure 4 and Figure 5 project the boxplot of top 10 

dynamic features and static features respectively. Higher 

value of z-score represents the significant importance of 

the feature. 

 

Table 1. Comparison of the number of static and dynamic features selected 

Classifier 
Feature 

Selecctor 

No. of 

Dynamic 

Features 

Selected 

Accuracy (%) 

Number of 

Static 

Features 

Selected 

Accuracy (%) 

Random Forest 

Boruta 30 88 74 98 

BorutaShap 30 90 74 98.6 

Gini Importance 32 84 80 98 

AdaBoost 

 

Boruta 30 70 74 85 

BorutaShap 30 72.3 74 76.4 

Gini Importance 32 60.5 80 69.3 

 

 

Table 2. Comparison of different Feature Selection models 

Classifier 

Type of 

Feature 

Selector 

Accuracy (%) Precision Recall F1-Score 

Random Forest 

Without 

Feature 

Selection  

95.4 
0-94.0% 

1-94.4% 

0-95.0% 

1-94.6% 

0-95.2% 

1-93.7% 

Boruta 98.6 
0-99.3% 

1-97.0% 

0-98.0% 

1-99.4% 

0-99.0% 

1-98.0% 

BorutaShap 98.9 
0-99.4% 

1-98.0% 

0-98.0% 

1-99.2% 

0-99.0% 

1-99.0% 

Gini 

Importance 
98.6 

0-99.0% 

1-94.0% 

0-96.0% 

1-99.9% 

0-98.0% 

1-97.0% 

AdaBoost 

Without 

Feature 

Selection  

82.5 
0-80.0% 

1-78.4% 

0-79.0% 

1-76.8% 

0-81.1% 

1-77.3% 

Boruta 85.9 
0-92.0% 

1-75.0% 

0-87.0% 

1-83.0% 

0-89.0% 

1-79.0% 

BorutaShap 78.9 
0-86% 

1-68% 

0-81% 

1-71% 

0-83% 

1-71% 

Gini 

Importance 
70.1 

0-72% 

1-65% 

0-83% 

1-50% 

0-77% 

1-56% 
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Figure 3. Feature importance graph for all the features 
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Figure 4. Feature importance graph of selected dynamic features using BorutaShap 
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Conclusion  

This work proposes Boruta and Boruta Shap feature 

selection algorithm for detecting malicious Android 

applications. It reduces the count of features and verifies 

the performance of Boruta and Boruta Shap algorithms in 

Android malware. The experimental results have been  

performed under different scenarios, static and dynamic 

features were evaluated individually as well as in an 

integrated manner. Results proved that the Boruta Shap 

algorithm is more effective than other state-of-art 

algorithms in decreasing feature dimension and increasing 

accuracy. The performance is determined through various 

metrics and classification algorithms: Random Forest and 

AdaBoost.  

Further work will implement this framework on a 

benchmark dataset to compare results with state-of-art 

works in the literature. Further, in addition to binary 

classification, multi-class classification will be performed 

on malicious samples to map them into their respective 

families. 
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