

*Corresponding Author: sandeep19csd004@ncuindia.edu

86

DOI: https://doi.org/10.52756/ijerr.2023.v34spl.009 Int. J. Exp. Res. Rev., Vol. 34: 86-96 (2023)

 An efficient android malware detection method using BorutaShap algorithm

 Sandeep Sharma1*, Prachi1, Rita Chhikara1 and Kavita Khanna2

1Department of Computer Science, The North Cap University, India;
2Delhi Skill and Entrepreneurship University, India

E-mail/Orcid Id:

SS, sandeep19csd004@ncuindia.edu; P, prachi@ncuindia.edu, https://orcid.org/0000-0002-6241-7659; RC, ritachhikara@ncuindia.edu,

 https://orcid.org/0000-0001-9537-3907; KK, kavita.khanna@dseu.ac.in, https://orcid.org/0000-0001-5745-1206

Introduction

Android operating system (OS) is the extensively used

OS in smart devices such as smartphones, tablets, smart

TV’s, Android Auto and Smartwatches. First unveiled in

2007, it quickly became popular because it is open-source,

commercially backed, and developed by Google.

According to Statista (2003), Android is the main mobile

OS with a 71.8% market share in the fourth quarter of

2022. This huge user base makes it a very lucrative target

for attackers. In addition to the Google Play Store, users

can also get applications from other third-party

marketplaces. The open-source nature of Android OS,

large user base and availability of applications on various

third-party stores make Android users more prone to

various malware attacks. Android malware can steal

information, cause disruption in services, gain

unauthorized access, modify data, spam users, or, in

general, interfere with the security of a user’s device.

According to Cyber Security News and Insights for

Executives (2022), Android malware attacks are over 50

times higher than iOS malware attacks. Google describes

Android malware as Potentially Harmful applications

(PHAs). In 2018 research report by Google (Android,

2019), the PHAs are classified as Trojan, SMS fraud,

phishing, hostile downloaders, spyware, privilege

escalation, toll fraud, click fraud, backdoors and

commercial spyware. Researchers have investigated

several ways of detecting Android malware. These

techniques are categorized as static and dynamic analysis-

based techniques.

Static analysis-based detection methods reverse

engineer the applications to retrieve static features such as

permissions, intents, API calls, opcodes, etc (Zhang et al.,

2020; Kazmi et al., 2023; Goel et al. 2023). Dynamic

analysis-based detection methods execute applications on

Android devices or emulators to observe the application’s

behavior. Mainly, the dynamic analysis methods (Khan

and Jain, 2020; Martinelli et al., 2017; Vinod et al., 2019;

Article History:

Received: 20th Jul., 2023
Accepted: 08th Oct., 2023
Published: 30th Oct., 2023

Abstract: The Android operating system captures the largest global smartphone market

share. However, its popularity and open-source nature have garnered the attention of

cybercriminals. The landscape of Android malware has evolved significantly over time.
Traditional techniques for detecting Android malware are encountering difficulties in

keeping up with this evolution. Specifically, methods that rely on extracting various

features from Android applications are becoming difficult to implement as high-

dimensional feature sets incur huge computational overheads when employed with
machine learning algorithms. Therefore, this research proposes using Bortua and

BorutaShap feature selection algorithms to choose features that contribute to detecting

malicious Android applications. It uses static and dynamic features of Android applications
to create a detection model for verification and evaluation of the mentioned algorithms.

Experimental results showed that Bortua and BorutaShap algorithms offer promising

results by achieving the highest accuracy of approximately 99%.

Keywords:
Android, Feature Selection,
Feature Extraction, Malware
Detection, Machine
Learning, Optimized
features

How to cite this Article:

Sandeep Sharma, Prachi, Rita
Chhikara and Kavita Khanna (2023).
An efficient Android Malware
Detection Method using Borutashap
Algorithm. International Journal of

Experimental Research and

Review, 34(Spl.), 86-96.
DOI : https://doi.org/10.52756/

Int. J. Exp. Res. Rev., Vol. 34: 86-96 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v34spl.009
87

Xu et al., 2019; Li et al., 2019; Kaleem et al., 2023;

Vivekanandan and Gunasekaran, 2023) use a simulated

environment that triggers the activity of malicious code

(Alzaylaee et al., 2020) and monitors the behavior of the

application. These techniques are much more effective in

the case of obfuscated malware or dynamically loaded

code. Thus, it can also detect novel malware based on their

real-time activities. However, they fail to offer complete

code coverage.

An efficient and robust Android malware solution

should consider static and dynamic features because they

are key attributes defining an application as benign or

malicious. However, the extracted features are frequently

afflicted by high dimensionality, leading to a considerable

increase in computational overhead. Also, many features

are redundant and irrelevant in nature. They increase the

complexity and decrease the performance of a

classification model. Therefore, this work proposes an

Android malware detection model based on a few

important static as well as dynamic features that can

effectively differentiate malicious applications from

benign ones.

Contributions to this work are -

(1) Extract hybrid features from benign and malicious

APKs.

(2) Reduce the dimensionality using Boruta,

BorutaShap and Gini importance methods.

(3) Detect the malware and calculate Android malware

detection accuracy using Random Forest algorithm and

AdaBoost algorithm.

The rest of the paper is organized as follows:

Section 2 discusses the related work and section 3

presents the proposed methodology, section 4 includes

experimental results and discussion and section 5

concludes the paper.

Related Work

Several researchers have explored the application of

feature selection in the context of Android malware

detection. Here is a summary of their findings and

methods:

1. Deepa et al. (2015): They used the correlation feature

selection method and achieved an accuracy of 88.75% in

Android malware detection by mining the top few features.

2. Zhao et al. (2015): They introduced a novel feature

selection technique that considered the frequency of

features in benign and malicious Android samples. Their

method achieved up to 98% accuracy by selecting distinct

features.

3. Wen and Yu (2017): They extracted hybrid features

from applications and used Principal Component Analysis

and Relief to extract promising features. Their method

achieved 95.2% accuracy on malicious applications.

4. Altaher and Barukab (2017): They extracted

permissions and API calls and applied filter-based feature

selection techniques to rank features based on importance

in distinguishing malicious samples from benign ones.

5. Bhattacharya and Goswami (2018): They presented

a feature selection method and obtained 87.8% and 97.9%

accuracy rates on two different datasets, claiming that their

technique can perform well on large datasets.

6. Peynirci et al. (2020): They selected features with the

highest Inverse Document Frequency (IDF) in benign

applications and the lowest IDF in malicious applications,

achieving above 99% accuracy on three different datasets.

7. Dhalaria and Gandotra (2020): They extracted

hybrid features from Android applications and used the

Chi-Square feature selection method to select important

features for detecting malicious Android applications.

8. Sahin et al. (2021): They applied eight different

feature selection techniques and demonstrated that feature

selection methods from text classification studies can

improve classification model performance.

9. Kouliaridis et al. (2021): They used PCA and t-SNE

with multiple machine learning algorithms to select

features from the entire feature set and achieved an

accuracy of 91.7%.

These studies highlight the importance of feature

selection in enhancing the accuracy and efficiency of

Android malware detection algorithms.

Proposed Method

The method followed in this work to detect malware

and measure the accuracy of different algorithms can be

divided into 3 steps. First, to create a dataset of static and

dynamic features of APKs using tools such as MobSF,

Strace and Androguard. Then, a feature set of

corresponding features from APKs is created in which if a

feature/attribute is present in a particular APK, then it is

marked as 1 otherwise 0. Second, Boruta, BorutaShap and

Gini Importance feature selection algorithms are applied

to extract the important features from the feature set. This

improves the performance of the classification model by

removing redundant information. Lastly, Random Forest

and AdaBoost classifiers are applied to the selected

features to find the best possible approach for malware

detection.

Dataset Collection

This step collects benign and malicious Android

samples from two major sources: malware samples from

AndroZoo repository (Allix et al., 2016) and benign

Int. J. Exp. Res. Rev., Vol. 34: 86-96 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v34spl.009
88

samples from Google Play Store. This work uses

AndroZoo to collect malware samples because it is a

comprehensive repository containing samples from

various sources. Later on, samples are executed within

Genymotion emulator and their dynamic features, such as

system calls, are retrieved through Mobile Security

Framework (MobSF) (Abraham, 2022) and the strace tool.

Further, static features are extracted with the help of

MobSF and Androguard (Androguard, 2019). The

Androguard tool reverse-engineers the samples to obtain

manifest.xml and classes.dex files. The following static

features are obtained from these samples: opcode,

permission, API call and intent filter.

Feature Selection - Boruta and BorutaShap Algorithm

Feature selection techniques are one of the best ways to

handle the curse of dimensionality and reduce over-fitting

in a machine-learning model. It makes the model simple

and increases the interpretation of the model, highlighting

the most informative features. This research work uses

Boruta algorithm to elect the most contributory features.

Boruta Algorithm works on the concept of creating

duplicates referred to as shadow features of all

independent features, as shown in Figure 2. The values are

shuffled after that to remove the correlation between

independent and dependent features. The algorithm works

on the concept of top-down search. It compares the

importance of original attributes with shadow features

created through permutation and gradually eliminates the

features that are not important. The features that are better

than shadow features are retained.

The algorithm then computes a Z score, finds the

greatest Z score, and tags variables as 'unimportant' or

'important' depending on whether they are significantly

lower or higher than the highest Z score. This process is

repeated until all attributes are either tagged 'unimportant'

or 'important'.

Boruta can be combined with SHAP (SHapley

Additive exPlanations) in a machine learning pipeline for

feature selection and interpretation of the model. SHAP

values are used to explain the contribution of each feature

in a predictive model. They are used to give a summary of

the importance of features.

Performance Metrics

This work uses the following metrics for evaluating

the performance of ML algorithms.

Precision

This metric shows that out of predicted positive values

(predicted malware), how many values were actually

positive (actual malware).

Precision 	

��
 �������
�

True Positives � False Positives

Recall

Recall means ratio of predicted positives (predicted

malware) out of total actual positives.

Recall 	

��
 �������
�

True Positives � False Negatives

F1-score

F1-score is used to get a balanced metric out of

precision and recall.

F1 ! Score 	 2 ∗
Precision ∗ Recall

Precision � Recall

Accuracy

Accuracy defines the overall correctness of our model.

It is the ratio of correct predictions out of all predictions

made by the model.

Accuracy 	
'TP � TN(

'TP � FP � TN � FN(

Experimental Results and Analysis

This section includes various experiments and tests

conducted on the dataset mentioned in the previous

section, which includes 102 dynamic features and 915

static features on 190 APK samples. To maintain

uniformity, the dataset is split into train and test for all the

experiments at 60%:40%. The feature selection techniques

Boruta, BorutaShap and Gini Importance filter the

dynamic and static features that can detect Android

Malware efficiently. The performance of selected features

is compared with Random Forest and AdaBoost. The

results and analysis of various experiments are as follows-

Results of Feature Selection

As reported in Table 1, the original dimensionality is

significantly reduced with all the feature selection

techniques with good accuracy. However, the BorutaShap

with Random Forest Classifier outperforms all the other

techniques. The number of features is significantly

reduced from 13102 to 30 for dynamic features and 915 to

74 for static features by Boruta. BorutaShap obtains the

best accuracy from Table 1 as a Feature Selector with a

Random Forest Classifier. The BorutaShap has the

advantage over other methods applied in this study as it

projects a strong addictive explanation of features, which

is the strength of the SHAP method and at the same time,

it has the robustness of the Boruta algorithm. This ensures

that only significant variables remain on the set.

Int. J. Exp. Res. Rev., Vol. 34: 86-96 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v34spl.009
89

Figure 1. Proposed model for feature extraction and analysis

Int. J. Exp. Res. Rev., Vol. 34: 86-96 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v34spl.009
90

Figure 2. Boruta algorithm Steps

Int. J. Exp. Res. Rev., Vol. 34: 86-96 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v34spl.009
91

Comparison of Random Forest performance with

different feature selection techniques

 The three feature selection techniques Boruta,

BorutaShap and Gini Importance, are evaluated by two

popular classification algorithms Random Forest and

AdaBoost. As observed from Table 2 Random Forest with

BorutaShap feature selector outperforms all other

combinations of feature selector and classification

algorithm. Random Forest works on the concept of an

ensemble of decision trees through bagging. This reduces

the variance of the single decision tree and overcomes

overfitting in the model. The highest accuracy as reported

in Table 2, is 98.9% and Precision, Recall and F1-score of

approx. 99%. On the other hand, AdaBoost algorithm with

the Gini importance feature selector does not give good

results. The lowest accuracy is 70%, reported by

Adaboost+Gini Importance.

The Figure 3 displays the feature importance of all

features through Boruta with Shap as feature selector.

Figure 4 and Figure 5 project the boxplot of top 10

dynamic features and static features respectively. Higher

value of z-score represents the significant importance of

the feature.

Table 1. Comparison of the number of static and dynamic features selected

Classifier
Feature

Selecctor

No. of

Dynamic

Features

Selected

Accuracy (%)

Number of

Static

Features

Selected

Accuracy (%)

Random Forest

Boruta 30 88 74 98

BorutaShap 30 90 74 98.6

Gini Importance 32 84 80 98

AdaBoost

Boruta 30 70 74 85

BorutaShap 30 72.3 74 76.4

Gini Importance 32 60.5 80 69.3

Table 2. Comparison of different Feature Selection models

Classifier

Type of

Feature

Selector

Accuracy (%) Precision Recall F1-Score

Random Forest

Without

Feature

Selection

95.4
0-94.0%

1-94.4%

0-95.0%

1-94.6%

0-95.2%

1-93.7%

Boruta 98.6
0-99.3%

1-97.0%

0-98.0%

1-99.4%

0-99.0%

1-98.0%

BorutaShap 98.9
0-99.4%

1-98.0%

0-98.0%

1-99.2%

0-99.0%

1-99.0%

Gini

Importance
98.6

0-99.0%

1-94.0%

0-96.0%

1-99.9%

0-98.0%

1-97.0%

AdaBoost

Without

Feature

Selection

82.5
0-80.0%

1-78.4%

0-79.0%

1-76.8%

0-81.1%

1-77.3%

Boruta 85.9
0-92.0%

1-75.0%

0-87.0%

1-83.0%

0-89.0%

1-79.0%

BorutaShap 78.9
0-86%

1-68%

0-81%

1-71%

0-83%

1-71%

Gini

Importance
70.1

0-72%

1-65%

0-83%

1-50%

0-77%

1-56%

Int. J. Exp. Res. Rev., Vol. 34: 86-96 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v34spl.009
92

Figure 3. Feature importance graph for all the features

Int. J. Exp. Res. Rev., Vol. 34: 86-96 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v34spl.009
93

Figure 4. Feature importance graph of selected dynamic features using BorutaShap

Int. J. Exp. Res. Rev., Vol. 34: 86-96 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v34spl.009
94

Conclusion

This work proposes Boruta and Boruta Shap feature

selection algorithm for detecting malicious Android

applications. It reduces the count of features and verifies

the performance of Boruta and Boruta Shap algorithms in

Android malware. The experimental results have been

performed under different scenarios, static and dynamic

features were evaluated individually as well as in an

integrated manner. Results proved that the Boruta Shap

algorithm is more effective than other state-of-art

algorithms in decreasing feature dimension and increasing

accuracy. The performance is determined through various

metrics and classification algorithms: Random Forest and

AdaBoost.

Further work will implement this framework on a

benchmark dataset to compare results with state-of-art

works in the literature. Further, in addition to binary

classification, multi-class classification will be performed

on malicious samples to map them into their respective

families.

References

Abraham, A. (2022). Mobile Security Framework

(MobSF). https://github.com/MobSF/Mobile-

Security-Framework-MobSF

Allix, K., Bissyandé, T. F., Klein, J., & Le Traon, Y.

(2016). Androzoo: Collecting millions of android

apps for the research community. In Proceedings of

the 13th International Conference on Mining

Software Repositories, pp. 468-471.

https://doi.org/10.1145/2901739.2903508

Altaher, A., & Barukab, O.M. (2017). Intelligent hybrid

approach for Android malware detection based on

permissions and API calls. International Journal of

Advanced Computer Science and Applications,

8(6), 60-67.

 https://doi.org/10.14569/IJACSA.2017.080608

Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2020). DL-

Droid: Deep learning based android malware

detection using real devices. Computers & Security,

89, 101663.

Figure 5. Feature importance graph of selected static features using BorutaShap

Int. J. Exp. Res. Rev., Vol. 34: 86-96 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v34spl.009
95

 https://doi.org/10.1016/j.cose.2019.101663

AndroGuard. (2019). Reverse engineering and pentesting

for Android applications.

https://pypi.org/project/androguard/

Android. (2019). Android Security & Privacy 2018 year In

Review.

https://source.android.com/security/reports/Google_Andr

oid_Security _2018_Report_Final.pdf.

Bhattacharya, A., & Goswami, R. T. (2018). A hybrid

community based rough set feature selection

technique in android malware detection. Springer

Singapore, In Smart Trends in Systems, Security and

Sustainability: Proceedings of WS4, 2017, 249-258.

https://doi.org/10.1007/978-981-10-6916-1_23

Cyber Security News and Insights for Executives. (2022).

10 eye-opening mobile malware statistics to know.

https://www.cybertalk.org/2022/06/10/10-eye-

opening-mobile-malware-statistics-to-know/

Deepa, K., Radhamani, G., & Vinod, P. (2015).

Investigation of feature selection methods for

android malware analysis. Procedia Computer

Science, 46, 841-848.

 https://doi.org/10.1016/j.procs.2015.02.153

Dhalaria, M., & Gandotra, E. (2020). Android malware

detection using chi-square feature selection and

ensemble learning method. IEEE, In 2020 Sixth

International conference on parallel, distributed

and grid computing (PDGC), pp. 36-41.

https://doi.org/10.1109/PDGC50313.2020.9315818

Goel, A., Wasim, J., & Srivastava, P. (2023). A Noise

reduction in the medical images using hybrid

combination of filters with nature-inspired Black

Widow Optimization Algorithm. International

Journal of Experimental Research and Review, 30,

433-441.

https://doi.org/10.52756/ijerr.2023.v30.040

Kaleem, W., Sajid, M., & Rajak, R. (2023). Salp Swarm

Algorithm to solve Cryptographic Key Generation

problem for Cloud computing. International

Journal of Experimental Research and

Review, 31(Spl Volume), 85-97.

https://doi.org/10.52756/10.52756/ijerr.2023.v31sp

l.009

Kazmi, S., Singh, M., & Pal, S. (2023). Image Retrieval

Performance Tuning Using Optimization

Algorithms. International Journal of Experimental

Research and Review, 33, 8-17.

https://doi.org/10.52756/ijerr.2023.v33spl.002

Khan, M.A., & Jain, M.K. (2020). Feature Point Detection

for Repacked Android Apps. Intelligent Automation

& Soft Computing, 26(6), 1359–1373.

https://doi.org/10.32604/iasc.2020.013849

Kouliaridis, V., Potha, N., & Kambourakis, G. (2021).

Improving android malware detection through

dimensionality reduction techniques. Springer

International Publishing, In Machine Learning for

Networking: Third International Conference, MLN

2020, Paris, France, November 24–26, 2020,

Revised Selected Papers 3, pp. 57-72.

https://doi.org/10.1007/978-3-030-70866-5_4

Li, Y., Xu, G., Xian, H., Rao, L., & Shi, J. (2019). Novel

Android Malware Detection Method Based on

Multi-dimensional Hybrid Features Extraction and

Analysis. Intelligent Automation & Soft Computing,

25(3), 637-647.

https://doi.org/10.31209/2019.100000118

Martinelli, F., Marulli, F., & Mercaldo, F. (2017).

Evaluating convolutional neural network for

effective mobile malware detection. Procedia

Computer Science, 112, 2372-2381.

https://doi.org/10.1016/j.procs.2017.08.216

Peynirci, G., Eminağaoğlu, M., & Karabulut, K. (2020).

Feature selection for malware detection on the

android platform based on differences of IDF

values. Journal of Computer Science and

Technology, 35, 946-962.

 https://doi.org/10.1007/s11390-020-9323-x

Şahin, D. Ö., Kural, O. E., Akleylek, S., & Kılıç, E. (2021).

A novel Android malware detection system:

adaption of filter-based feature selection methods.

Journal of Ambient Intelligence and Humanized

Computing, 14, 1243-1257.

https://doi.org/10.1007/s12652-021-03376-6

Statista (2023). Mobile operating systems' market share

worldwide from 1st quarter 2009 to 4th quarter

2022.

Vinod, P., Zemmari, A., & Conti, M. (2019). A machine

learning based approach to detect malicious android

apps using discriminant system calls. Future

Generation Computer Systems, 94, 333-350.

https://doi.org/10.1016/j.future.2018.11.021

Vivekanandan, S., & Gunasekaran, G. (2023). A

Computation of Frequent Itemset using Matrix

Based Apriori Algorithm. International Journal of

Experimental Research and Review, 30, 247-256.

https://doi.org/10.52756/ijerr.2023.v30.022

Wen, L., & Yu, H. (2017). An Android malware detection

system based on machine learning. AIP Publishing,

In AIP Conference Proceedings, Vol. 1864, No. 1.

https://doi.org/10.1063/1.4992953

Int. J. Exp. Res. Rev., Vol. 34: 86-96 (2023)

DOI: https://doi.org/10.52756/ijerr.2023.v34spl.009
96

Xu, K., Li, Y., Deng, R., Chen, K., & Xu, J. (2019).

Droidevolver: Self-evolving android malware

detection system. IEEE, In 2019 IEEE European

Symposium on Security and Privacy (Euro S & P).

pp. 47-62.

 https://doi.org/10.1109/EuroSP.2019.00014

Zhang, X., Zhang, Y., Zhong, M., Ding, D., Cao, Y.,

Zhang, Y., Zhang, M., & Yang, M. (2020).

Enhancing state-of-the-art classifiers with api

semantics to detect evolved android malware. In

Proceedings of the 2020 ACM SIGSAC Conference

on Computer and Communications Security, pp.

757-770. https://doi.org/10.1145/3372297.3417291

Zhao, K., Zhang, D., Su, X., & Li, W. (2015). Fest: A

feature extraction and selection tool for Android

malware detection. IEEE, In 2015 IEEE

symposium on computers and communication

(ISCC), pp. 714-720.

https://doi.org/10.1109/ISCC.2015.7405598

How to cite this Article:

Sandeep Sharma, Prachi, Rita Chhikara and Kavita Khanna (2023). An efficient Android Malware Detection Method using Borutashap

Algorithm. International Journal of Experimental Research and Review, 34(Spl.), 86-96.

DOI: https://doi.org/10.52756/ijerr.2023.v34spl.009

