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Introduction 

Edible oil refineries play an important role in the oil 

industry. There exist several parameters that control the 

performance of the system of the refinery plants. The 

edible oil refinery units are divided into four subsystems, 

with subsystem 'A- Cleaning ' comprising parallel 

subcomponents, in the event of component failure within 

subsystem 'A', the subsystem can continue operating at 

reduced capacity, which results in the system functioning 

in a reduced state. However, if unit A fails, the entire 

system experiences a total shutdown. The subsystems B- 

Shelling, D- Crushing, and E- Expeller are arranged in 

series for the effective working of the whole system so 

that if any one of these subsystems fails, the entire system 

will cease to function. Fuzzy logic can be used to declare 

that a particular subsystem or whole of the subsystem has 

failed and there is a single server that is 24x7 available. 

Shakuntla et al. (2011) conducted a behavior analysis of 

polytube using a supplemental adaptive technique. They 

discussed relative analysis of the subsystems that failed 
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simultaneously.  Similarly, Kumar et al. (2018) analyzed 

the performance of a bread plant. In their study, Kumar et 

al. (2019) employed the Regenerative Point 

Graphical Technique (RPGT) methodology to conduct a 

sensitivity analysis on a cold standby framework 

consisting of two identical units; the system considered 

server failure and prioritized preventative maintenance. 

The analysis is carried out into two parts, with one part 

focusing on the operational unit and the other part on the 

unit in cold standby mode. In a paper mill washing unit, 

Kumar et al. (2019) investigated mathematical 

formulation and behavior study. The particle Swarm 

Optimization algorithm was used by Kumari et al. (2021) 

to research limited situations. Using a heuristic approach, 

Rajbala et al. (2022) investigated the redundancy 

allocation problem in the cylinder manufacturing plant. 

Following the notations, abbreviations & assumptions 

system elements, and process parameters are modeled. 

Behavior shown by system parameters is discussed aimed 

at different repair and disappointment rates graphically 

and in tabular form. Overall, the availability analysis is 

an important tool for identifying the factors that impact 

the production and profitability of a plant (Zhu, 2013; 

Shamshirband et al., 2013; Taphade et al., 2021). By 

understanding these factors, plant managers can make 

informed decisions about investments in equipment, raw 

materials, and labor that can improve production 

efficiency and profitability (Shalev and Pasternak, 1989; 

Mosavi et al., 2019; Sharangi, 2013). 

Machine learning algorithms further assist in 

identifying patterns and inclinations in large datasets that 

cannot be immediately apparent to human analysts 

(Sarkar et al., 2019; Sarkar et al., 2020; Sarkar et al., 

2018; Sarkar et al., 2018a). This can assist in improving 

the accuracy of the availability analysis and enable plant 

managers to make more informed decisions about how to 

improve production efficiency and profitability. For 

example, machine learning algorithms can be trained on 

historical data from the plant to predict future demand for 

inputs for optimum output (Sarkar et al., 2017; Pramanik 

et al., 2021; Sarkar et al., 2021). This can help managers 

adjust production levels and raw material orders to match 

expected demand, reducing waste and improving 

profitability. Similarly, machine learning can be used to 

identify patterns in raw material availability and price 

fluctuations, enabling managers to optimize purchasing 

decisions and reduce costs. Another potential application 

of machine learning in availability analysis is predictive 

maintenance. By analyzing statistics from machine 

sensors and additional foundations, machine learning 

algorithms can identify patterns that might indicate an 

impending breakdown or maintenance issue.  

This study's main goals center on using a multifaceted 

approach to improve our understanding of edible oil 

refinery systems. To provide a thorough picture of the 

dynamics of the system, the study first attempts to 

simulate the complex system parameters using the 

Regenerative Point Graphical Technique (RPGT). 

Sensitivity analysis is the second method used in the 

research to examine the effects of fixed subsystem 

failure/repair rates while gradually raising the associated 

repair/disappointment rates. This methodology 

illuminates the system's robustness in many scenarios, 

providing valuable perspectives for well-designed 

systems. Finally, using machine learning approaches to 

improve decision-making processes, the study explores 

the optimization of system parameters. Finding the ideal 

values for subsystem failure/repair rates is the main 

reason for doing this study. 

The primary motivation for this research is to find the 

best values for subsystem failure/repair rates, which will 

help optimize system parameters. In addressing this 

requirement, the research has practical implications for 

industry experts looking to improve the efficiency and 

dependability of their operations, in addition to making a 

theoretical contribution to the understanding of edible oil 

refinery systems. 

Assumptions and Notations 

1) There is a single repairman who is always present.  

2) Failures/repairs of units are distinct and statistically 

independent.  

3) Repair of subsystems is perfect. 

4) Failure and repair distributions are statistically 

independent. 

Ri(t): Reliability of system at period t, assumed that 

organization is in the un-failed regenerative state.  

Ai(t)/Bi (t)/Vi(t): Availability /busy period of server/ 

expected number of server’s visits for time ‘t’, specified 

that the organization entered the reformative state ‘i’ at t 

= 0.’  

MTSF: Mean time to system Failure (T0) 

AOS: Availability of system (𝐴0) 

BPOS: Busy period of the system (𝐵0) 

EFNIR: Expected Fractional Number of Inspection by 

Repairman (𝑉0) 

(𝑖
𝑠𝑟
→ 𝑗): r-th directed simple path since i-state to j-state; 

r takes optimistic integral values for diverse paths since i-

state to j-state. 

(𝜉
𝑠𝑓𝑓
→  𝑖): A directed simple disappointment-free path 

since base state 𝜉 to i-state. 
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vij: path probability in moving from state i to state j‚ 

‘'’:  denotes derivative. 

Sr: r-th simple path,  

𝑠𝑟(𝑠𝑓𝑓): simple failure-free path,   

𝑝𝑟 (0
𝑠𝑟(𝑠𝑓𝑓)
→    𝑥): 

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑥, 

𝜇𝑖 =     ∫ 𝑅𝑖(𝑡)𝑑𝑡
 ∞

0
: mean sojourn time in state i 

qi,j(t)/ pij: transition/steady probability in moving from 

state i to state j 

* :   Denotes Laplace transform  

 : Working State,  

  : Ellipse denoted reduced capacity working. 

   : Failed State         

A/a: Full capacity functioning / unsuccessful state, 

similarly for other units B, D, E. 

wi/ λi  (0 ≤ i ≤ 5): Denote repair failure rates of units. 

(i, j, k): 3-D cycle through states i, j, k. 

Methodology  

The formulae for four system parameters using RPGT 

are as below 

MTSF: 

T0 =  [∑ {
{𝑝𝑟(0

𝑠𝑟(𝑠𝑓𝑓)
→      𝑥)}.𝜇𝑥

∏ {1−𝑉𝑚1,𝑚1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅}𝑚1≠0
}𝑥,𝑠𝑟 ]  ÷ [1 − ∑ {

{𝑝𝑟(𝑜
𝑠𝑟(𝑠𝑓𝑓)
→      0)}

∏ {1−𝑉𝑚2,𝑚2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅}𝑚2≠0
}𝑠𝑟 ] 

AOS: 

𝐴0= [∑ {
{𝑝𝑟(0

𝑠𝑟
→ 𝑦)}𝑓𝑦.𝜇𝑦

∏ {1−𝑉𝑚1,𝑚1}𝑚1≠0
}𝑦,𝑠𝑟 ] ÷ [∑ {

{𝑝𝑟(0
𝑠𝑟
→ 𝑥)}.𝜇𝑥

1

∏ {1−𝑉𝑚2,𝑚2}𝑚2≠0
}𝑥,𝑠𝑟 ] 

BPOS: 

𝐵0= [∑ {
{𝑝𝑟(𝜉

𝑠𝑟
→ 𝑗)}.𝜂𝑗

∏ {1−𝑉𝑘1,𝑘1}𝑘1≠𝜉
}𝑗,𝑠𝑟 ] ÷ [∑ {

{𝑝𝑟(𝜉
𝑠𝑟
→ 𝑖)}.𝜇𝑖

1

∏ {1−𝑉𝑘2,𝑘2}𝑘2≠𝜉
}𝑖,𝑠𝑟 ] 

EFNIR: 

𝑉0= [∑ {
{𝑝𝑟(𝜉

𝑠𝑟
→ 𝑗)}

∏ {1−𝑉𝑘1,𝑘1}𝑘1≠𝜉
}𝑗,𝑠𝑟 ] ÷ [∑ {

{𝑝𝑟(𝜉
𝑠𝑟
→ 𝑖)}.𝜇𝑖

1

∏ {1−𝑉𝑘2,𝑘2}𝑘2≠𝜉
}𝑖,𝑠𝑟 ]  

Where, 

 i: a reformative un-failed state to which the 

organization can transit previously entering any failed 

state while arriving at the initial state- ‘0’ at period t= 0. 

𝑘1  : a reformative state beside the path (0

𝑠𝑟(𝑠𝑓𝑓)
→    𝑥), at which a 𝑘1 − 𝑐𝑦𝑐𝑙𝑒̅̅ ̅̅ ̅̅ ̅ is formed through 

reformative un-failed states. 

𝑘2: a regenerative state beside the path at which a is 

shaped through reformative un-failed states. 

 

 

 

 

Base state ξ: It is a state in which primary cycles are 

maximum and secondary cycles are minimum. 

Transition Diagram:  

Following the upstairs assumptions and notations, a 

state transition diagram using the Markov Process is 

drawn in Figure 1 below.  

 

 
Figure 1. State Transition Diagram of System 

S0 = ABDE, S1 = 𝐴̅BDE, S2 = 𝐴̅BDe, S3 = ABDe, S4 = 

AbDE, S5 = aBDE, S6 = 𝐴̅bDE,  

S7 = ABdE, S8 = 𝐴̅BdE. 

Transition Probabilities pij and Mean Sojourn Times 

µi: 

Using RPGT, transition probabilities are derived in 

Table 1. 

Table 1. Transition Probabilities Using RPGT 

qi,j(t) pij = q*i,j(t) 

𝑞0,1=  𝜆1𝑒
−(𝜆1+𝜆3+𝜆5+𝜆4)𝑡  

𝑞0,3 =  𝜆5𝑒
−(𝜆1+𝜆3+𝜆5+𝜆4)𝑡  

𝑞0,4 =  𝜆3𝑒
−(𝜆1+𝜆3+𝜆5+𝜆4)𝑡  

 𝑞0,7 =  𝜆4𝑒
−(𝜆1 + 𝜆3 + 𝜆5 + 𝜆4)𝑡 

𝑝0,1 = λ1/{λ4 + λ3+ λ5 + 

λ1} 

𝑝0,3 = λ5/{λ4 + λ3 +  λ5 + 

λ1} 

𝑝0,4 = λ3/(λ4+ λ3+λ5+λ1) 

𝑝0,7 = λ4/(λ4+λ3+λ5+λ1) 

𝑞1,0= 𝑤1𝑒
−(𝑤1+𝜆2+𝜆3+𝜆5+𝜆4)𝑡 

𝑞1,5= 𝜆2𝑒
−(𝑤1+𝜆2+𝜆3+𝜆5+𝜆4)𝑡 

𝑞1,6= 𝜆3𝑒
−(𝑤1+𝜆2+𝜆3+𝜆5+𝜆4)𝑡 

𝑞1,2= 𝜆5𝑒
−(𝑤1+𝜆2+𝜆3+𝜆5+𝜆4)𝑡 

 𝑞1,8= 𝜆4𝑒
−(𝑤1+𝜆2+𝜆3+𝜆5+𝜆4)𝑡  

𝑝1,0= 

w1/{w1+λ2+λ5+λ4+λ3} 

𝑝1,5= 

λ2/{w1+λ2+λ5+λ4+λ3} 

𝑝1,6= 

λ3/{w1+λ2+λ5+λ4+λ3} 

𝑝1,2= 

λ5/{w1+λ2+λ5+λ4+λ4} 

𝑝1,8= 

λ4/{w1+λ2+λ3+λ4+λ5} 

𝑞2,1= 𝑤5𝑒
−𝑤5𝑡 𝑝2,1 = 1 

𝑞3+𝑖,0= 𝑤5𝑒
−𝑤5𝑡 𝑝3+𝑖,0= 1, 0 ≤ i ≤ 5 

Mean Sojourn Times µ: 

Using RPGT Mean Sojoun Times µi for various states 

is derived below in table 2. 
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Table 2. Mean Sojourn Times Using RPGT 

Ri(t) µi=Ri*(0) 

𝑅0
(𝑡)

= 𝑒−(𝜆1+𝜆3+𝜆5+𝜆4)𝑡 µ0 = 1/(λ4+λ3+λ5+λ1) 

𝑅1
(𝑡)

= 

𝑒−(𝜆5+𝜆3+𝜆2+𝜆4+𝑤1)𝑡 

µ1 = 

1/(w1+λ2+λ5+λ4+λ3) 

𝑅2
(𝑡)

=𝑅3
(𝑡)

= 𝑒−𝑤5𝑡 µ2 = µ3 = 1/w5 

𝑅4
(𝑡)

= 𝑅6
(𝑡)
= 𝑒−𝑤3𝑡 µ4 = µ6 =1/w3 

𝑅5
(𝑡)

= 𝑒−𝑤2𝑡 µ5 = 1/w2 

𝑅8
(𝑡)

= 𝑅7
(𝑡)
= 𝑒−𝑤4𝑡 µ8 = µ7= 1/w4 

Path Probabilities Vi,j:  

The path probabilities since the initial state ‘0’ to 

further states are, 

V0,0 = 1 

V0,1 = λ1(w1+λ5+λ3+λ2) (w1+λ4+ λ2+ λ3) (w1+λ5+ λ2 

+λ4)/(λ1+λ4+λ5+λ3) (w1+λ2+λ3+λ4+λ5)3
 

V0,2 = λ1λ5(w1+λ5+λ3+λ2) (w1+ λ2+ λ4+ λ3) (w1+λ5 + λ4 

+λ2)/(λ1+λ4+λ3+λ5) (w1+λ2+λ5+ λ4+ λ3)4
 

V0,3 = …….., so on. 

Evaluation of System Parameters  

The system parameters using RPGT with initial and 

base state as '0' are evaluated under 

MTSF (T0): The un-failed regenerative states to 

which the organization moves before failure since the 

initial state ‘0’ is given by,  

 MTSF (T0) = (V0,0μ0+V0,1μ1)/1-(1, 0, 1) 

AOS (A0): The states where the system is working in 

reduced or full capacity working are S0 S1 and 

regenerative states are S0 to S8 taking base state ‘ξ’ = ‘0’ 

availability of the system is  

A0 = [1/(λ1+λ4+λ3+λ5) + 

λ1(w1+λ2+λ5+λ4+λ3)/(λ1+λ3+λ5+λ4) (w1+λ5+λ3+λ2) 

(w1+λ4+λ3+λ2)  

(w1+λ2+λ4+λ5)]/1/(λ1+λ3+λ4+λ5) +{1+(λ5/w5) +(λ3/w3) 

+(λ4/w4)} +{k+(λ4/w4) +(λ5/w5) 

+(λ2/w2) +(λ3/w3) 

BPOS (B0): The states where the BPOS are S1 to S8, 

with base and initial state ξ = ‘0’, is given as 

B0= 1-V0,0μ0/1/(λ1+λ3+λ5+λ4) +{1+(λ5/w5) +(λ3/w3) 

+(λ4/w4)} +{λ1(w1+λ2+λ5+λ4+λ3) /(λ1+λ5+λ4+λ3) 

(w1+λ5+λ3+λ2) (w1+λ4+λ3+λ2) (w1+λ5+λ4+λ2) + (λ4/w4) + 

(λ5/w5)+(λ2/w2) 

+(λ3/w3)   

EFNIR (V0): Reformative states where server visits 

afresh for repair taking base state ‘ξ’ = ‘0’, is 

V0 = λ1(w1+λ2+λ5+λ4+ λ3)/ (λ1+λ5+λ4+λ3) (w1+λ2+λ5+λ3) 

(w1+λ2+λ4+λ3) (w1+λ5+λ4 +λ2)            

(w1+2λ2+2λ4+2λ3+λ5) + [(λ5+λ3+λ4)/(λ1+λ5+λ4+λ3)] 

 

 

Sensitivity Analysis 

In the context of the edible oil refinery, sensitivity 

analysis can be used to evaluate the impact of changes in 

input variables on the system parameters. Sensitivity 

analysis is carried out by passing parameter values to 

system parameters manually for two illustrations 

described below and, sensitivity analysis is carried out 

using a machine learning technique to evaluate the 

robustness of a model's performance to changes in its 

input variables or parameters i.e., values of 

disappointment/repair rates.  

Dataset: 

Table 3. Table of Systems Parameters of the refinery 

W (w1, w2, 

--------, wn) 

ƛ(ƛ1, ƛ2,…… . , ƛ𝑛) S (s1, s2, -

------, sn) 

p 

(0-20, 21-

100) 

(0-30, 31-100) (0-100) (0-80) 

To perform a sensitivity analysis of a dataset related to 

the edible oil refinery using machine learning in Table 3, 

the following steps are followed: 

1. Preprocess and clean the dataset: Before 

performing any analysis, it's important to ensure that the 

dataset is cleaned, preprocessed, and formatted correctly. 

This may involve removing misplaced values, converting 

categorical variables into arithmetical ones, and scaling 

or regularizing the statistics. 

2. Split the data into exercise and difficult sets: To 

appraise the recital of the model, it's important to split the 

dataset into exercise and difficult sets. The training set 

resolve is cast to train the classical, while the testing set 

resolve is used to gauge its recital. 

3. Train a machine learning model: one could 

choose to train a regression model to predict the output 

variable i.e., system parameters, based on the input 

variables. 

4. Perform sensitivity analysis: Once the model has 

been trained, one can perform sensitivity analysis to 

determine the impact of changes in input variables on the 

output variable. This can be done by varying the input 

variables within a certain range and observing the 

resulting changes in the output variable. One can use 

tools such as partial dependence plots or sensitivity 

indices to quantify the impact of changes in each input 

variable on the output variable. 

5. Evaluate the presentation of the model: Finally, 

one should appraise the performance of the model by 

associating the foretold values with the definite values in 

the testing set. One could use metrics such as mean-

shaped error or R-squared to assess the accuracy of the 

model's predictions. 
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Overall, sensitivity analysis helps to identify which 

input variables are most important for predicting the 

output variables i.e., system parameters in the edible oil 

refinery. This information can be used to optimize 

processing parameters, improve the 

disappointment/repair rates of subsystems, and ultimately 

increase the efficiency and profitability of the industry. 

Sensitivity analysis depicts the increasing and 

decreasing trend of system parameters through the rise in 

repair rates increasing and fixing the failure rates of all 

units, and vice-versa. It is analyzed in the following 

illustrations. 

Illustration 1: Taking failure rates of all units fixed at 

0.10 and varying wi (1 ≤ i ≤ 5) for each unit one by one 

respectively as 0.80, 0.85, 0.90, 0.95, 1.  

Values of various system parameters are derived in the 

following tables.  

MTSF (T0): 

Table 4. MTSF values for different w 

wi w1 w2 w3 w4 w5 

0.8 2.9 2.9 2.9 2.9 2.9 

0.85 29 2.9 2.9 2.9 2.9 

0.9 2.9 2.9 2.9 2.9 2.9 

0.95 2.9 2.9 2.9 2.9 2.9 

1 2.9 2.9 2.9 2.9 2.9 

 

 
Figure 2. MTSF 

According to Table 4 and Figure 2, it is observed that 

the value of MTSF is constant, which implies that MTSF 

is independent of the repair of units.  

AOS (A0): 

 Table 5. AOS values for different w 

wi w1 w2 w3 w4 w5 

0.8 0.656 0.643 0.623 0.611 0.603 

0.85 0.659 0.656 0.641 0.629 0.617 

0.9 0.673 0.664 0.656 0.645 0.632 

0.95 0.676 0.669 0.678 0.656 0.647 

1 0.678 0.681 0.694 0.681 0.656 

 
Figure 3. AOS 

From Table 5 and Figure 3, while moving down the 

columns, it is concluded that an increase in repair rates of 

subsystems increases availability but does not 

significantly rise. However, the repair rate of unit "D" 

should be kept at its highest level for maximum 

availability, as highlighted in the table. 

BPOS (B0):    

Table 6. BPOS values for different w 

wi w1 w2 w3 w4 w5 

0.8 0.323 0.328 0.345 0.368 0.397 

0.85 0.317 0.323 0.332 0.352 0.3375 

0.9 0.313 0.318 0.323 0.341 0.354 

0.95 0.306 0.311 0.315 0.323 0.337 

1 0.301 0.308 0.304 0.311 0.323 

 

 
Figure 4. BPOS 

It is realized from Table 6 and Figure 4 that the value 

of BPOS minimum when the repair rate of unit 'E' was at 

its highest level relative to other units. As a result, the 

repairman should be effective in fixing unit 'A' to 

minimize the BPOS. The minimum value of BPOS is 

0.301 as highlighted in Table 6. 
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EFNIR (V0):  

Table 7. EFNIR values for different w 

wi w1 w2 w3 w4 w5 

0.8 0.232 0.227 0.212 0.203 0.196 

0.85 0.236 0.232 0.224 0.210 0.202 

0.9 0.239 0.236 0.232 0.218 0.211 

0.95 0.242 0.240 0.238 0.232 0.219 

1 0.245 0.247 0.243 0.238 0.232 

 

 
Figure 5. EFNIR 

As per Fig. 5 and Table 7, for the cost-effective 

system, the number of calls for the server should be kept 

to a minimum, whereas it increases while observing in 

segments from top to bottom. It is a minimum of 0.196, 

as highlighted in the table.  

Illustration 2: Taking repair rates of all subsystems 

fixed as, wi = 0.80 (1 ≤ i ≤ 5) and increasing failure rates 

λi, one by one respectively as 0.10, 0.15, 0.20, 0.25, 0.30. 

MTSF (T0): 

 Table 8. MTSF values for different λ 

λi λ1 λ2 λ3 λ4 λ5 

0.10 2.41 249 2.54 2.69 2.91 

0.15 2.37 2.41 2.48 2.57 2.78 

0.20 2.33 2.37 2.41 2.48 2.64 

0.25 2.27 2.23 2.36 2.41 2.49 

0.30 2.22 2.18 2.27 2.34 2.41 

 
Figure 6. MTSF 

Table 8 and Figure 6 demonstrate that as the value of 

T0 decreases in moving from top to bottom in all 

columns, which corresponds to the practical trend, and is 

maximum as highlighted in the table at 2.91, which 

should be tried to be kept largest for the efficient and 

cost-effective working of the system. 

AOS (A0):  

Table 9. AOS values for different λ 

λi λ1 λ2 λ3 λ4 λ5 

0.10 0.523 0.534 0.546 0.553 0.572 

0.15 0.509 0.523 0.538 0.546 0.560 

0.20 0.502 0.512 0.523 0.537 0.551 

0.25 0.498 0.504 0.513 0.523 0.543 

0.30 0.492 0.495 0.504 0.515 0.523 

 

 
Figure 7. AOS 

According to Table 9 and Fig. 7, as seen from 

columns from top to bottom availability decreases with 

the rise in disappointment rates of subsystems, which is a 

practical trend and is maximum as 0.572 which is 

highlighted in the table.  

 

BPOS (B0):  

Table 10. BPOS values for different λ 

λi λ1 λ2 λ3 λ4 λ5 

0.10 0.520 0.512 0.505 0.485 0.474 

0.15 0.534 0.520 0.513 0.498 0.485 

0.20 0.545 0.533 0.520 0.507 0.499 

0.25 0.558 0.547 0.528 0.520 0.514 

0.30 0.568 0.558 0.537 0.534 0.520 
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Figure 8. BPOS 

From Figure 8 and Table 10, it is seen that the value 

of B0 increases in going from top to bottom as the failure 

rates of subsystems increase, hence for an efficient and 

cost-effective system disappointment rate of subsystems 

would be maintained to the lowest possible level, which 

is practical too, its optimum is 0.474 as highlighted in the 

table. 

EFNIR (V0)  

Table 11. EFNIR values for different λ 

λi λ1 λ2 λ3 λ4 λ5 

0.10 0.38367 0.38262 0.35236 0.33979 0.32763 

0.15 0.38471 0.38367 0.37081 0.35515 0.34386 

0.20 0.38560 0.38464 0.38367 0.36963 0.35693 

0.25 0.38664 0.38556 0.39666 0.38367 0.37031 

0.30 0.38702 0.38646 0.40947 0.39555 0.38367 

 

 
Figure 9. EFNIR 

From Table 11 and Figure 9, for efficient and cost-

effective system value of V0 should be minimum, which 

is 0.32763 as highlighted in the table. Also value of V0 

increases with the rise in disappointment rates of 

subsystems, so it is recommended that failure rates of 

subsystems should be kept at a bare minimum 

Performance Measure using Machine Learning:  

Here system parameters are evaluated using Linear 

SVC Classifier (LC) and Logistic Regression (LR) 

 

 

 

Table 12. Performances of machine learning models 

Model 

 

 

MTSF 

T0 

Expected 

proportional 

Number of 

Visits by the 

repair man 

V0 

Busy 

Period 

B0 

Availability 

A0 

Linear SVC 

Classifier 

(LC) 

0.9523 0.9703 0.9512 0.9823 

Logistic 

Regression 

(LR)  

0.9402 0.9502 0.9623 0.9745 

The results of the sensitivity analysis of a dataset 

related to the edible oil refinery provide valuable insights 

into the impact of changes in input variables on the 

output parameters. From the upstairs table, it is realized 

that the best values of T0, B0, and A0 are provided by the 

Linear SVC Classifier and that the value of V0 is given by 

Logistic Regression (LR). As optimum values of T0, B0, 

and A0 values are preferred over the value of V0, hence, 

Linear SVC Classifier (LC) provides the better values of 

input parameters from the data set. 

A system operation is best if MTSF's availability is 

large, whereas proportional server visits and BPOS are 

small, so, according to Table 12 comparative analysis of 

models in Linear Classifier gives better results than 

Logistic Regression.  

Future Scope 

The future researchers can expand their research in this 

domain in the following ways:  

1) The study can be extended to analyze the similarly 

situated industries. 

2) Future researchers can calculate the profit of the 

system for a given period. 

3) The study can be carried out by different failure and 

repair distributions observed by subsystems. 

Limitations 

The study is limited to a finite number of subsystems 

in an industry. 

Recommendations 

This can help to advance the efficacy, and reputation, 

and optimize processing parameters and profitability of 

the industry. 
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Conclusion  

In the framework of an edible oil refinery, this study 

explores system parameter modeling, sensitivity analysis, 

and optimization. Through the use of the Regenerative 

Point Graphical Technique (RPGT), the research offers a 

thorough comprehension of the dynamics of the system. 

The edible oil refinery's division into discrete 

subsystems, each with its own special traits and 

interdependencies, emphasizes how important effective 

repair techniques and superior subsystems are to 

preserving system performance as a whole. The state 

transition diagram's use of a Markov process improves 

comprehension of the system's dependability and possible 

weaknesses. Comparative investigation using machine 

learning models—Logistic Regression and Linear 

Classifier, in particular—shows that the linear classifier is 

better at predicting and improving system parameters. 

This discovery emphasizes the significance of choosing 

suitable models for precise forecasts in the context of 

edible oil refinery operations in addition to adding to the 

analytical toolset for system optimization. To put it 

briefly, the study's findings offer practical advice to 

decision-makers and practitioners in the sector, helping 

them to put efficient system optimization techniques into 

practice. Through highlighting the significance of 

reducing repair rates and optimizing subsystem quality, 

the study supports the overarching objective of 

augmenting the effectiveness, prestige, and financial gain 

of the edible oil refinery sector. 
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