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Introduction 

Over the last few decades, traditional 2-level inverters 

have been extensively employed in DC-AC conversion 

technology due to advancements in power electronic 

converters (Rashid, 2004). However, they suffer from 

various drawbacks, such as inadequate rejection of 

undesired harmonics in the output voltage and current, 

leading to excessive power dissipation and increased 

switch loading. To address these limitations, the multilevel 

inverter (MLI) was introduced in 1981 and has since 

gained significant importance (Franquelo et al., 2008; 

Rodríguez et al., 2002). MLIs outperform traditional 

inverter topologies in terms of their capability to generate 

high voltages, high efficiency, and low voltage stress into 

power switches, reduced harmonic currents, and minimal 

electromagnetic interference (EMI) (Rodríguez et al., 

2007; Tolbert et al., 1999; Abu-rub et al., 2010). MLIs 

find crucial applications in various domains, such as 

FACTs, renewable and nonconventional energy systems 

(Mukherjee et al., 2017; Kumar and Reddy, 2023), electric 

drives (Carpita et al., 2008), and active filters (Jha et al., 

2016). Broadly, there are three well-known classical 

MLIs: Neutral-Point Clamped (NPC) (Rodriguez et al., 

2010), Flying Capacitor (FC-MLI) (Malekjamshidi et al., 

2014), and Cascaded H-Bridge (CHB) (Ahrabi et al., 

2015). H-bridge arrangements can be additionally 

categorized into two types i.e., symmetrical cascaded H-

bridge multilevel inverters (CHB-MLI), which are 
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characterized by DC sources with identical magnitudes, 

and asymmetrical cascaded H-bridge multilevel inverters 

(CHB-MLIs) which is distinguished by DC sources with 

varying magnitudes (Ahrabi et al., 2015).  CHB-MLIs are 

commonly employed in motor drive applications (Mahato 

et al., 2017; Mahato et al., 2018). However, increasing the 

voltage level in these systems necessitates adding more 

power switches and corresponding gate driver circuits, 

resulting in a more complex and expensive circuit. Hence, 

reducing the number of power switches while improving 

efficiency, cost-effectiveness, and system performance has 

emerged as a major a formidable obstacle in the realm of 

power electronic devices. 

This paper introduces a novel approach that 

distinguishes itself from the previously mentioned 

references by proposing a 17-level multilevel inverter 

that aims to reduce the number of necessary power 

switches further. The suggested arrangement is crafted 

with a designated count of power switches and integrates 

uneven magnitudes for the DC sources. A 17-level 

asymmetry value for the DC sources is modelled and 

tested using the MATLAB environment. Furthermore, a 

contrast is established between the newly suggested MLI 

configuration and several contemporary topologies (Arun 

et al., 2018; Samadaei et al., 2018; Gautam et al., 2018; 

Ajami et al., 2014; Mahato et al., 2019; Agrawal et al., 

2017; Dahidah et al., 2015; Samadaei et al., 2019; Nanda 

et al., 2017; Alishah et al., 2017; Paul at al., 2022). 

Proposed Topology (H-Type) 

The suggested universal topology is illustrated in 

Figure 1(a); it is structured into two distinct parts: the 

upper part comprises bidirectional switches, while the 

lower part consists of unidirectional switches. 

A bidirectional switch consists of IGBT and four anti-

parallel diodes. Various existing configurations of 

bidirectional switches are detailed (Agrawal et al., 2017), 

as illustrated in Figure 1(b), where an IGBT switch 

featuring a common emitter, common collector, and four 

number of anti-parallel diodes is presented. The design of 

a bidirectional switch based on a common-collector 

configuration aims to reduce the voltage drop in the on-

state, albeit necessitating two IGBTs and two gate drive 

circuits (Agrawal et al., 2017). 

In a similar manner, the configuration of the common-

emitter-base bidirectional switch aims to minimize the 

voltage drop in the on-state, but it necessitates two IGBTs 

and one gate drive (Agrawal et al., 2017). On the other 

hand, the third bidirectional switch comprises four diode 

IGBTs, resulting in greater conduction losses when 

contrasted with the aforementioned switch. While aiming 
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Figure 1. (a) Proposed MLI (b) Bi-directional switches 

for elevated voltage levels, a larger number of IGBTs, 

snubber circuits, common-collectors and common-emitter 

bidirectional switches are required. As a result, this leads 

to an increase in the total cost of the inverter. It is evident 

that a significant number of IGBTs and bidirectional 

switches, along with snubber circuits for common 

collectors and common emitters, are necessary at higher 

voltage levels, thereby increasing the expenses involved. 

In spite of the elevated conduction losses linked with 

bidirectional switches in the topology, the proposed 

configuration opts for the third type of bidirectional 

switch for the aforementioned reasons. For achieving Nl 

voltage levels, the upper part of the proposed topology 

requires S(n+1)u bidirectional switches, while the lower 

part necessitates Snl  unidirectional switches.  Negative 

voltage generation is accomplished using four 

unidirectional power switches, namely S1, S2, S3, and S4. 

Depending on the magnitude and number of DC sources, 

various algorithms are proposed and described in Table 1. 

Algorithm one utilizes DC sources with magnitudes of 

3Vdc and Vdc at the top and bottom, respectively. It has 

been observed that eleven power switches produce  
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 twenty-five voltage levels according to algorithm one, 

while algorithm two yields thirty-one voltage levels with 

the same eleven power switches. Similarly, algorithm 

one, algorithm two, and algorithm three generate thirty-

three, forty-one, and forty-nine voltage levels, 

respectively, using thirteen power switches. Table 1 

provides a comprehensive overview of the number of 

voltage levels produced by a given number of switches 

according to algorithm one. Algorithm one demonstrates 

higher overall tolerance and relatively superior voltage 

performance compared to the other proposed algorithms. 

Therefore, this article primarily focuses on the various 

cases pertaining to algorithm one. 

Modes of operation 

The low-frequency modulation based NLC technique 

has been chosen to validate the proposed topology in the 

MATLAB environment. This technique is selected among 

other control strategies for multilevel inverters, such as 

selective harmonic elimination, phase-shifted modulation, 

sine-based carrier PWM, and the nearest level modulation 

technique. The low-frequency modulation-based NLC 

 
Figure 2. Pulse generated in respective power switches 

for 17 level inverters obtained by MATLAB/Simulink 

 

 

Table 1. Various Algorithms for the proposed multilevel inverter 
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technique is chosen because of its simplicity and ease of 

control. Although SHE amplifies lower-order harmonics, 

the substantial offline calculation of switching angles for 

various modulation indices can be burdensome. Sinusoidal 

Pulse Width Modulation (PWM) utilizes a high-frequency 

carrier signal to improve the Total Harmonic Distortion 

(THD) characteristics and reduce low-order harmonics in 

the recommended inverter. Furthermore, several 

configurations of triangular pulses, such as Phase 

Disposition (PD), Phase Opposition Disposition (POD), 

and Alternate Phase Opposition Disposition (APOD), have 

been examined (Mahato et al., 2018). 

NLC (Nearest Level Control) technology makes it 

feasible to bring the elevated voltage reference closer to 

the nearest attainable voltage level. This proximity aids in 

the synthesis of numerous voltage levels while 

minimizing switching losses. The NLC technique 

(Raushan et al., 2018) is utilized to generate the reference 

signal, switching signal, and their corresponding gating 

pulse. 

Table 2. Comparing various performance parameters of the proposed topology with those from existing 

literature 
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Figure 3 provides a comprehensive illustration of the 

various voltage generation modes. The dark lines in 

figure 3 depict the voltage generation paths of the 

proposed topology specifically designed for a 17-level 

inverter. The switching patterns for each switch are 

obtained from the simulations presented in figures 2(a) 

Table 3. Comparing the proposed multi-level inverter with alternative topologies 
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Figure 3. Modes of operation of 17 level inverter showing voltage generation paths 
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and 2(b) correspondingly. A full bridge circuit is utilized 

to generate both negative and positive polarities. 

Switches S3 and S4 are responsible for generating positive 

voltage levels, while switches S1 and S2 are employed to 

produce negative voltage levels. Figure 3 visually 

illustrates the voltage levels produced by the upper and 

lower sections of the proposed topology. 

Comparison with existing MLIs 

Extensive research has been conducted on the existing 

literature regarding reduced switch topologies (Arun et al., 

2018; Samadaei et al., 2018; Gautam et al., 2016 and 

2018; Ajami et al., 2014; Mahato et al., 2019; Agrawal et 

al., 2017; Dahidah et al., 2015; Samadaei et al., 2019; 

Nanda et al., 2017; Alishah et al., 2017; Paul at al., 2022), 

focusing on several important parameters. These 

parameters include the required quantities of total power 

switches (Nps), DC sources (NDC), unidirectional switches 

(Nus), clamping diodes (Ncl), bidirectional switches (Nbs), 

and output voltage levels (Nvl). 

Table 2 provides generalized equations for all the 

parameters described previously in order to demonstrate 

the effective behaviour of the suggested inverter 

architecture. These expressions are formulated in terms of 

the total number of switches (Nps). Furthermore, 

corresponding generalized expressions are computed and 

summarized in Table 2 to simplify the calculation of these 

parameters. A comparative analysis is also conducted, 

focusing on the total number of switches, number of DC 

power supplies, and level per switch ratio. Additionally, 

Table 3 includes additional features and disadvantages of 

these multilevel inverter configurations, aiming to 

demonstrate the effectiveness of the proposed topology. A 

thorough analysis is conducted, comparing the MLI 

topologies (Samadaei et al., 2018; Gautam et al., 2016; 

Gautam et al., 2018; Mahato et al., 2019), which employ 

both unidirectional and bidirectional switches. The MLI 

structures discussed in (Arun et al., 2018; Ajami et al., 

2014) use only switches that can conduct electricity in one 

way. However, the expense and complexity of achieving 

higher voltage levels rise due to the greater number of 

power switches and the driving circuits needed. Table 3 

provides a comprehensive analysis of the construction of 

the multilevel inverter. 

 (a) 
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A comparative analysis has been conducted of the 

recent studied literature (Arun et al., 2018; Samadaei et 

al., 2018; Gautam et al., 2018; Ajami et al., 2014; Mahato 

et al., 2019; Agrawal et al., 2017; Dahidah et al., 2015; 

Samadaei et al., 2019; Nanda et al., 2017; Alishah et al., 

2017; Paul at al., 2022) and the proposed topologies based 

on the A1 algorithm. Figure 4 presents graphical 

representations of this analysis.  Figure 4(a) depicts the 

 (b) 

(c) 

Figure 4. Performance parameters of the proposed topology based on 

A1 algorithm (a) Number of switch (Nps) versus Number of voltage 

levels (b) Number of DC sources versus Number of voltage levels (c) 

Level/ Switch ratio versus Number of voltage levels. 
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correlation between the quantity of switches (Nps) and the 

quantity of voltage levels. Figure 4(b) illustrates the 

relationship between the quantity of DC sources and the 

number of voltage levels. Finally, Figure 4(c) illustrates 

the graph representing the output level per switch. The 

comparative analysis revealed that the proposed topology, 

which utilizes the A1 algorithm, produces a higher 

quantity of voltage levels while using the same number of 

power switches compared to the topologies of multilevel 

inverters (Arun et al., 2018; Samadaei et al., 2018; 

Gautam et al., 2018; Ajami et al., 2014; Mahato et al., 

2019; Agrawal et al., 2017), as shown in Figure 4(a). 

The suggested topology based on the A1 algorithm 

outperforms alternative topologies in terms of the number 

of DC sources required to obtain the same number of 

voltage levels, as shown in Figure 4(b). In addition, this 

study determines the ratio of switching levels for the 

proposed multilevel inverter and the already used reduced-

switch multilevel inverters. This ratio indicates the amount 

of power devices needed to provide the necessary output 

voltage levels. Figure 4(c) presents the level to switch 

ratio for both the proposed and recent reduced-switch 

multilevel inverters, considering a total of twenty-one 

power devices. The proposed multilevel inverter 

configuration requires significantly fewer switches (Nps) 

than the other reduced-switch multilevel inverters. 

 

Simulation Verification 

This study focuses on conducting simulation 

validation of the proposed inverter, specifically based on 

algorithm-1 (A1). 

Table 1 presents a comprehensive overview of 

numerous scenarios, each dependent on a distinct number 

of power switches. Utilizing the A1 algorithm, the 

suggested design demonstrates the capacity to produce 

seventeen distinct voltage levels by employing nine 

power switches and four DC sources. In addition, it can 

attain 25 voltage levels using 11 power switches and 6 

DC sources, 33 voltage levels using 13 power switches 

and 8 DC sources, and 41 voltage levels using 15 power 

Figure 5. Various simulation results of output voltage and output current across RL load at 

R=100Ω, L=25mH for (a) 17-level inverter, (b) 25-level inverter, (c) 33-level inverter, (d) 41-level 

inverter. 
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switches and 10 DC sources. To thoroughly assess the 

performance of each circuit, all the aforementioned 

configurations are meticulously modelled and simulated 

in the MATLAB/Simulink environment. 

Furthermore, the magnitudes of the DC sources 

corresponding to the different cases of the proposed 

topology, based on the A1 algorithm, are detailed. "DC 

sources are considered as V1u=V2u=3Vdc=120V; 

V1l=V2l=Vdc=40V for the seventeen level inverter with a 

peak magnitude of 320V, V1u=V2u=V3u=3Vdc=81V; 

V1l=V2l= V3l=Vdc=27V for the twenty-five level inverter 

with a peak magnitude of 324V, 

V1u=V2u=V3u=V4u=3Vdc=60V; V1l=V2l=V3l=V4l=Vdc=20V 

for the thirty-three level inverter with a peak magnitude of 

320V, V1u=V2u=V3u=V4u=V5u=3Vdc=48V; and 

V1l=V2l=V3l=V4l=V5u=Vdc=16V for the forty one level 

inverter with a peak magnitude of 320V.” The proposed 

multilevel inverters ' simulated results (both output voltage 

and current) are shown in figure 5 for R=100Ω, L=25mH. 

Total harmonic distortion (THD) for the proposed 

multilevel inverter for different levels of output is shown 

in Figure 6. The THD percentage is less than 8% for both 

current and voltage; hence, as per IEEE519 (Samadaei et 

al., 2018; Paul et al., 2022), no proposed inverters require 

no filter circuit. 

Table 4. Calculated powers and efficiency of the proposed multilevel inverter 

 

Figure 6. Variation of THD with output levels. 
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Efficiency and losses in proposed multilevel inverter 

The proposed inverter's efficiency is calculated by 

calculating the output and input power ratio, as illustrated 

in Table 4. Conduction and switching losses for each 

level of output have been calculated based on available 

literature (Samadaei et al., 2016 and 2019; Alishah et al., 

2017; Saeedian et al., 2017; Avanaki et al., 2019; Lee, 

2018; Dhanamjayulu et al., 2022) and values are noted in 

the Table 4. 

Conclusion 

This study introduces a novel 

multilevel topology capable of generating 17 levels using 

only nine power switches. This unique design can be 

easily expanded to accommodate any desired voltage 

levels. Furthermore, the topology can be categorized into 

different algorithms based on the availability of DC 

sources. To validate the effectiveness of the proposed 

inverter, a prototype model was developed using the A1 

algorithm. Extensive analysis of the output voltage and 

current results confirmed the superior performance of the 

proposed topology when subjected to RL-load conditions. 

A comprehensive comparison was conducted between the 

proposed topology and various recent multilevel inverter 

topologies. The results clearly indicated that the proposed 

topology outperforms the others in terms of fewer power 

electronic devices, cost-effectiveness, simplified circuits, 

ease of control, high efficiency, lower maintenance 

requirements, and reduced space utilization. Additionally, 

the topology operates without the need for filters in 

accordance with IEEE519 standards. Therefore, based on 

these findings, it can be concluded that the proposed 

reduced-switch multilevel inverter is superior to 

the newly proposed multilevel inverters. 
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