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Introduction 

From the earliest days, plagiarism has been the most 

concerning writing. Plagiarism means copying someone 

else's work without informing the author and using it for 

personal purposes. The origin of the word “Plagiarism” is 

from Latin, which means “Kidnapper” or “to kidnap”. 

Plagiarism detection plays an essential role in academics 

because students, research scholars and teachers are 

intended to produce original research work (Maurya and 

Madhusudhan, 2023). Plagiarism can be prevented by 

using the proper citation to ensure the original author gets 

credit for their original content (Prasanth and Rajshree, 

2014; En et al., 2023). Detecting plagiarism will open 

many doors in research articles and thesis writing 

(Sedaghat, 2024). A mathematical document consists of 

formulas and results that do not need standard literature 

to understand those papers. A plagiarism detection tool is 

used to maintain the standard of the paper (Nguyen, 

2023). The fast-growing internet provides lots of 

information in little time, and that information is used 

while writing papers. There is now a consensus regarding 

plagiarism, and we can say that plagiarism has become 

one of the biggest challenges in day-to-day life, and it 

also discourages the academic community from writing 

their papers. 

Type of Plagiarism 

Several techniques are available to detect plagiarized 

content. Plagiarism is categorized into (i) Intentional and 

(ii) Unintentional plagiarism. In Intentional plagiarism, 

the writer has intentionally copied the content from 

various sources (Banerjee & Pedersen (2002)). The 

copied part from dissimilar sources is detected during the 
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plagiarism check. Intentional plagiarism is further 

divided into four parts: 

Idea Plagiarism: 

In this, any individual copyrights the original author’s 

idea without crediting the original author. It is 

challenging to identify, and only authorized individuals 

can detect plagiarism. 

Para Phrasing:  

The copyrighted text is re-ordered or re-arranged, but 

the text’s meaning remains the same. 

Direct Plagiarism: 

 In this case, the individuals reuse the few words or 

text that the original user and plagiarism tools can 

quickly identify.  

Patchwork Plagiarism:  

It lifts some patches of content, and without crediting 

the original user, that portion of the original work is 

copyrighted by another user.  

The writer does not intentionally plagiarize the 

content in unintentional plagiarism, but it may happen 

automatically due to a lack of vocabulary (Gipp et al., 

2014). Unintentional plagiarism can be sub-divided into 

three types: 

a. Citation Plagiarism:  

 A particular portion of the document is copied and 

claimed for another. 

b. Insufficient acknowledgment of plagiarism:  

The content is copied from internet and paper sources, 

which is not appropriately cited in the paper, causing 

plagiarism.  

c. Mosaic Plagiarism:  

By mistake or ignorance, a person left their content on 

the internet or any repository that may be plagiarized 

after a particular time. The original author may not 

know about the copied portion of his/her original 

work. 

Plagiarism Detection Methods 

Plagiarism detection consists of both paid and 

accessible formats. Tools like “PlagTracker” and 

“Turnitin” take the original text as input and apply some 

algorithms to extract the string. The extracted text string 

is then compared with the existing string database across 

the Network. The database used by this tool is dedicated, 

with strings used to match the original text (Slimani, 

2013). If the content is plagiarized, it is identified from 

the database and marked throughout the document. The 

plagiarism detection algorithm works in the following 

three steps: 

Knowledge-based Method: 

It is a machine-readable repository where standard 

datasets match the content with the original text (Abdi et 

al., 2017). For comparison, there are different techniques 

used under this method, such as: 

a. LESK Algorithm: It works on a data dictionary 

repository and checks the word's definition in a 

sentence. Similar words are collected in the dictionary 

according to a maximum number of matches. 

b. Semantic Similarity: It finds the standard distance 

between similar words with the same meaning and 

sense.  

c. Selection Preferences: It counts the number of pairs 

of words with identical meanings. The selection is 

made using the original document and paired Word 

document. The detected pair of words are separated to 

form a plagiarized dictionary used for plagiarism 

detection.  

d. Heuristic Method: It evaluates many different 

linguistic properties to find the sense.  

Supervised Method:  

This machine learning technique applies the Word-

Sense Disambiguation (WSD) system (Manning et al., 

2008). In this method, the tags are created from the 

dictionary. There are several ways for supervised 

machine learning, such as: 

a. Decision List: In this, the list is created using the “if 

and else” condition and used to calculate the score. 

The score is then used to generate the final decision 

tree, and the maximum score will indicate a high 

chance of matching sense between the content. 

b. Decision Tree: It uses the classification rule to divide 

the data set into two parts. The test result and output 

are stored in the correct node, while the possible sense 

of the word is stored in the left node. 

c. Naïve Bayes: It is a probabilistic classifier that 

compares the condition for finding the sentence 

feature. The mathematical model for a training set is 

given as: 

S= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑆𝑖∈𝑆𝑒𝑛𝑠𝑒𝐷(𝑤)

𝑃(𝑆𝑖|𝑓1, … , 𝑓𝑚)                      (1) 

S= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑆𝑖∈𝑆𝑒𝑛𝑠𝑒𝐷(𝑤)

𝑃(𝑓1,…,𝑓𝑚|𝑆𝑖𝑃(𝑆𝑖)

𝑃(𝑓1,…,𝑓𝑚)
                    (2) 

S= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑆𝑖∈𝑆𝑒𝑛𝑠𝑒𝐷(𝑤)

P (𝑆𝑖) ∏ 𝑃(𝑓𝑖|𝑆𝑖)𝑚
𝑗=1            (3) 

Where, S= Sense, w = words, f = features, m = 

number of features, P(s) = probability of frequency in 

training set of sense, 𝑃(𝑓𝑖|𝑆𝑖) = calculated feature present 

in the sense (Upadhyay et al., 2021). 

Instance-Based Learning: 

It is a memory-based learning algorithm used to 

compare new problem instances with training instances. 

A similar instance is stored in memory using the k-NN 
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(k-nearest neighbor) algorithm to find the similarity 

between two words. Once a similarity is found, the 

Hamming distance is calculated using k-NN. The 

resultant familiarity between input and stored data is 

stored in the repository. 

Unsupervised Method: 

It depends on readable dictionaries or a sense-

annotated data set. It does not assign meaning to the 

word. Instead, it divides the words based on the 

information. It consists of different techniques such as: 

a. Context Clustering: The context vectors with the 

same meaning are grouped to form clusters. The word 

space, vector space, and dimension parameters are 

clustering parameters. The word within the context is 

treated as a vector, and the similarity is calculated 

using the co-occurrence matrix. Google uses the n-

gram (i.e., n=5), which is considered a compressed 

summary. There are 9.7 billion sentences that 5-grams 

extract. All of them are tagged with POS (part-of-

speech), and the resulting clustering is used for WSD 

utilization (Mahdavi et al., 2014). 

b. Word Clustering: Here, similar and identical 

contexts are clustered. A list of the words is taken, and 

then the similarity is found among them, following 

which an ordered similarity tree is created for matched 

words. The common word is treated as an initial node, 

and the sense of the word is placed in the sub-node of 

the tree. 

c. Co-occurrence Graph: A graph-based detection 

method wherein a word is plotted in vertices ‘X,’ and 

the corresponding ID of the word is plotted on edges 

‘E’. The distance between two words is calculated 

using the Markov clustering method, where every 

edge has a weight, which is the co-occurring 

frequency of the words. Weight for the edge {m, n} is 

given by the formula,  

𝑊𝑚𝑛 = 1- max {P (𝑊𝑚|𝑊𝑛 ), P (𝑊𝑛 |𝑊𝑚)}          (4) 

Here P (𝑊𝑚|𝑊𝑛 ) = is the freqmn/freqn, freqmn is the co-

occurrence frequency of words Wm and Wn, and freqn is 

the occurrence frequency of Wn. 

Different researchers use different methods and 

techniques for plagiarism detection. Some conventional 

methods, such as the Spanning tree-based approach, are 

used to identify the set of senses. Joshi et al. (2013) 

introduced the Graph Dependence (PGD) method for 

graph dependence analysis. PGD works on large data 

documents and files. It works on manual detection, taking 

more time while comparing the data with stored data. Pal 

et al. (2013) implemented the WSD technique, which 

works on Indian languages, mainly for Bengali. Due to 

automatic detection, it works for an extensive data set 

with less time complexity. Alzahrani et al. (2012) 

implemented a monolingual language for plagiarism 

detection, which works on intrinsic, extrinsic, and cross-

lingual plagiarism detection. It works on copying text but 

fails to detect intelligent plagiarism. It is speedy and 

precise for small document files but will not work for 

large documents. Hiremath et al. (2014) implemented the 

day’s plagiarism for text-based and shape-based 

plagiarism detection. It is reliable only for text-based 

searches. Basile et al. (2014) implemented the LESK and 

Word Sense Disambiguation (WSD) technique to find the 

overlap between words with absolute meanings. 

Mozgovoy (2011) implemented a natural language 

processing technique that works on a similar function for 

tree matching due to its manual detection taking less time 

while processing. Agarwal et al. (2013) implemented a 

semantic similarity for a group of words (text file) to find 

a proper relation. This method is very fast and 

automatically detects plagiarism. Mentari et al. (2022) 

used a Winnowing-based system to detect cross-language 

plagiarism, achieving 84.7% accuracy. While promising, 

challenges like computational complexity and tool 

reliance persist. Nonetheless, it represents a crucial step 

in preserving academic integrity across diverse linguistic 

landscapes, demanding further refinement for sustained 

efficacy. Kumari and Kumar (2023) introduce an 

extended Lesk and Conceptual Density approach for 

Word Sense Disambiguation (WSD), which is crucial in 

natural language processing. By leveraging overlap 

density and evaluation through BLUE, promising results 

are offered, particularly for morphologically rich 

languages like Hindi. Ayetiran and Agbele (2016) 

propose an optimized variant of Lesk-based algorithms 

for Word Sense Disambiguation (WSD), addressing 

computational complexity through topic composition. 

Leveraging English WordNet enriched with Wikipedia 

and Semcor corpus, the algorithm demonstrates superior 

efficiency and effectiveness across general and domain-

specific datasets, particularly in knowledge-based 

techniques. El-Rashidy et al. (2023) propose an advanced 

plagiarism detection system that uses SVM and Chi-

square techniques to leverage selective sentence 

similarity features and hyperplane equations. With three 

key phases, including document pre-processing and 

hyperplane computation, it outperforms recent systems, 

achieving top scores on PAN 2013 and PAN 2014 

datasets. Kumar et al. (2020) introduce an Adapted Lesk 

algorithm-based Word Sense Disambiguation (WSD) 

system, employing a knowledge-based approach with 

WordNet. The system consists of three units: Input query, 
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Pre-Processing, and WSD classifier. By leveraging 

context information and the lexical database, the WSD 

classifier accurately identifies the sense of polysemous 

words. Vrbanec and Meštrović (2020) overview 

paraphrase detection techniques, focusing on corpus-

based models, particularly deep learning (DL) models. 

Evaluating eight models on three public datasets, 

including LSI, TF-IDF, Word2Vec, Doc2Vec, GloVe, 

FastText, ELMO, and USE, it explores text pre-

processing, hyperparameters, sub-model selection, and 

similarity thresholds. Results indicate DL models' 

competitiveness with traditional approaches, suggesting 

further development potential. Plagiarism detection 

software, often labeled as prevention tools, faces 

limitations in capturing the breadth of plagiarism, 

including translations and intent. Despite being marketed 

as such, these tools primarily function as text-matching 

tools among over 25 available options. Concerns like 

false positives and negatives persist, while recent legal 

rulings reinforce universities' authority to revoke 

doctorates based on their criteria (Altheneyan & Menai, 

2020). Plagiarism detection software, often labeled as 

prevention tools, faces limitations in capturing the 

breadth of plagiarism, including translations and intent. 

Despite being marketed as such, these tools primarily 

function as text-matching tools among over 25 available 

options. Concerns like false positives and negatives 

persist, while recent legal rulings reinforce Universities' 

authority to revoke doctorates based on their criteria 

(Weber-Wulff, 2018). The motivation of this work is to 

detect plagiarism in the least amount of time with higher 

accuracy. Previous techniques have found similarities 

between the two documents. It provides high accuracy in 

text-matching, whereas it fails when it detects image 

plagiarism. This paper uses semantic similarity to find the 

distance and relationship between the content. This paper 

is organized into four significant fragments. Section 1 

will discuss the introduction, followed by the description 

of the research methodology in Section 2. In section 3, 

we discuss the result. Finally, in section 4, the conclusion 

of the paper is presented. 

Research Methodology 

After an exhaustive study of research articles, we 

proposed a modified LESK Algorithm using semantic 

similarity for plagiarism detection. For the completeness 

of this paper, we have used the simplified LESK 

Algorithm with brilliant default word sense (Vasilescu et 

al., 2004). The algorithm is used to find the sense 

between two words. 

function SIMPLIFIED LESK(word, sentence) returns 

best sense of word  

best-sense <- most frequent sense for word  

max-overlap <- 0 

context <- set of words in the sentence  

for each sense in the senses of word do  

signature <- set of words in the gloss and examples of 

sense 

overlap <- COMPUTEOVERLAP (signature, context) 

if overlap > max-overlap then  

max-overlap <- overlap 

best-sense <- sense 

end return (best-sense)  

In semantic similarity, it checks the distance and 

relationship between the content. In semantic similarity, 

we have used WSD (Word Sense Disambiguation), which 

checks the sense of the word. The proposed framework 

for detection is represented in table 1. The step-by-step 

procedure for the proposed plagiarism detection strategy 

is discussed as follows: 

Step 1:  

For the initial simulation, the paper dictionary is set. 

The two types of dictionary location are used: (i) Local 

and (ii) Global. The college database (DB) creates the 

local dictionary, and the universal web repository is 

shared globally. 

Step 2:  

For our proposed framework, the data is collected 

from the World Wide Web (WWW) and is placed in the 

local DB. 

 
Figure 1. Framework for Proposed Plagiarism 

Detection. 
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Step 3:  

The Universal Language Translator (ULT) is applied, 

where it is possible to change the exact word by changing 

the language and publishing it in national journals, 

articles, and magazines. Using this, it is changed to a 

unique language (English) before checking for 

plagiarism. 

It can be observed that the number of characters and 

words is different. For this reason, we use a universal 

language translator in our work. 

Step 4:  

The text normalization has been applied to the result 

of a ULT. Text normalization converts documented text 

into plain text by removing all the non-alphanumeric 

characters, regular expressions, word suffixes, and 

whitespace characters into a single space. The 

canonicalization process converts the ULT text data into 

standard, shared, or canonical form for delegated text 

normalization. 

If we observe, before normalization, the text had 

unwanted characters. Normalization removed all the 

unwanted characters and removed the numbers.  

Step 5:  

Semantic Analysis is challenging for natural language 

processing. It is used to analyze the relationship between 

two sets of documents. The text must check the domain 

space and determine whether two words are similar. 

While using the WSD to find the sense in the plain text 

and the improved LESK algorithm to get an accurate 

result in less time, we already know word sense 

disambiguate in the introduction, types of WSD, and its 

applications. In this semantic analysis, we divided the 

document into three phases to get a better result: (i) 

heading, (ii) body, and (iii) references. 

(i).The document’s heading is used to check with another 

document (cluster) if it is related to each other or not. 

For example, if the document heading is “Network 

Security and its applications in modern society,” the 

document that forms a cluster is stored in the Network 

related clusters in serial order (N1). It is easier to 

check the documents only with these clusters. 

(ii).The document’s body can only be checked with other 

related documents, i.e., related clusters using the 

LESK algorithm, which will have been explained in 

detail. 

(iii).References to the document are not considered 

because most authors and research scholars may have 

a standard reference, which is neglected during 

plagiarism detection. 

Improved LESK Algorithm 

Based on Vasilescu et al. (2004), the Improved LESK 

algorithm is proposed using a dynamic window. For that, 

we separated the text document (all the words), gave 

them a sense, and saved them in an array. As the 

algorithm moved forward, the context of the window also 

increased. The algorithm also took care of the missing 

target words. Hence, the number of ambiguities is 

calculated by counting the senses. 

(i).Word <− senses (calculate how many words are in a 

sense) 

Sample 1: French Sentence 

Dans les siècles qui ont aucune trace ces îles étaient le foyer de millions d’oiseaux heureux, la station 

balnéaire de cent fois plus de millions de poissons, des lions de mer, et d’autres créatures dont les noms ne 

sont pas si communs ; la résidence marine, en fait, d’innombrables créatures prédestinées à partir de la 

création du monde à mettre en place un magasin de richesse pour l’agriculteur britannique, et un. 

ULT Result Conversion: English Language 

In ages without record, these islands were the home of millions of happy birds, the resort of a hundred 

times more millions of fishes, sea lions, and other creatures whose names are not so common. 

 

Sample 2: Before Normalization 

Last Thursday, G. Gordon Liddy had the so-called confidential witness live on his radio show. CW, who 

discovered foster’s body in Fort Marcy Park, Va., just across the Potomac River from Washington, at 5:45 

p.m. on July 20, 1993, said several times with emphasis that he told the FBI that foster’s hands were palms 

up, thumbs out and there was no gun in either hand. 

After Normalized: 

Last Thursday, G Gordon Liddy had the so-called confidential witness live on his radio show. CW, who 

discovered foster’s body in Fort Marcy Park, Va, just across the Potomac River from Washington, at five 

forty-five pm on July twentieth, nineteen ninety-three, said several times with emphasis that he told the 

FBI that foster’s hands were palms up, thumbs out and there was no gun in either hand. 
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(ii).Sense_Count <− number of senses (calculate the sense 

count of the word) 

(iii).Instance_Count <− Context window of size n, 

(whereas n = determined dynamically, calculate the 

output for every target word. The context window is 

dynamic. If, in any case, the given sense overlaps the 

target sense, then Instance_Count + = 1. The context 

window is the number of left and right words in the 

target words. 

(iv).For every target word, the context vector is generated. 

(v).Determine plagiarism rate. 

Step 6:  

The result is compared with the local database, and 

the simulation is stopped. 

Modified SVM Classifier 

The proposed system utilizes two paths to determine 

sentence similarity. The first path relies on traditional 

word-level comparison, as discussed earlier. The second 

path involves the use of a modified SVM classifier (Haloi 

et al., 2023). However, the first path’s initial “word-level 

comparison” did not yield satisfactory results in 

identifying text similarity. Instead, it involves 

constructing an SVM classifier that can detect several 

types of lexical, syntactic, and semantic similarities. The 

development process of the SVM classifier consists of 

four main stages: extraction of negative and positive 

instances, computation of sentence similarity features, 

selection of relevant features, and construction the 

classifier. In the initial stage, the system extracts “Non-

plagiarized” and “Plagiarized” cases from training 

documents to create a supervised training database. The 

second stage system calculates sentence similarity 

features for each case, encompassing several lexical, 

syntactic, and semantic text similarities. These features 

are then recorded along with their corresponding class 

labels. In the third stage, the system employs a filter 

feature selection technique using the Chi-square 

algorithm to rank the features and select the most 

discriminative ones. It detects efficient text plagiarism, 

covering diverse lexical, syntactic, and semantic 

plagiarism types. Finally, in the fourth stage, the system 

constructs the hyperplane equation using the modified 

SVM classification algorithm. It eliminates the need for 

extensive experimentation to find the optimal weighting 

coefficients for incorporating the features effectively. By 

adopting this systematic approach, the proposed system 

aims to detect text plagiarism precisely, emphasizing the 

importance of feature selection and SVM classification. 

Positive Feature Extraction 

The algorithm is designed to extract features from 

positive sentence pairs, where ‘Pz’ is the plagiarized 

passage and ‘Ps’ is the source passage. It seems to involve 

pre-processing steps and extracting features from each 

sentence pair. The pseudo-code representation of the 

algorithm is as follows: 

Algorithm 1 

function extract_features(Pz, Ps): 

# Segment pz into sentences 

    sentences_ Pz = segment_into sentences(Pz) 

# Segment ps into sentences 

    sentences_ Ps = segment_into_sentences(Ps) 

# Pre-process source sentences 

    processed_sentences_ Ps = preprocess(sentences_Ps) 

# Initialize feature sets 

    feature_set = [] 

# Loop through each sentence in sentences_pz 

    for sentence_ Pz in sentences_ Pz: 

# Pre-process plagiarized sentence 

        processed_sentence_ Pz = preprocess(sentence_ Pz) 

# Calculate shared unigrams 

        shared_unigrams = calculate_shared_unigrams(processed_sentence_ Pz, processed_sentences_ Ps) 

# Calculate Meteor score 

        meteor_score = calculate_meteor_score(processed_sentence_ Pz, processed_sentences_ Ps) 

# Add the feature set for this sentence pair to the feature_set list 

        feature_set.append({‘shared_unigrams’: shared_unigrams, ‘meteor_score’: meteor_score}) 

# Return the feature set for all positive sentence pairs 

    return feature_set 
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• Plagiarized_sentence: The actual plagiarized 

sentence extracted from the plagiarized passage ‘Pz’. 

• source_sentence: The corresponding source sentence 

extracted from the source passage ‘Ps’. 

• shared_unigrams: A list of unigrams that are shared 

between the plagiarized sentence and the 

corresponding source sentence. 

• meteor_score: The similarity score between the 

plagiarized sentence and the corresponding source 

sentence calculated using the Meteor metric or any 

other chosen similarity metric. 

The process’s second step is constructing semantic 

matrices using semantic similarity between words. It 

calculates the semantic similarity between words using 

seven WordNet similarity metrics. The dimension of the 

semantic matrix is equal to the number of words in the 

joint matrix, and each cell in the semantic matrix 

corresponds to a word in the joint matrix. The semantic 

similarity metrics mentioned earlier (such as Path Length, 

Wu-Palmer Similarity, Leacock-Chodorow Similarity, 

Resnik Similarity, and Jiang-Conrath Similarity) can be 

used to quantify the similarity between any two words in 

the dataset based on their meanings as represented by the 

WordNet synsets. A high-level explanation: Path 

Similarity Metric (PSM) is based on the shortest path 

length between two synsets in the WordNet hierarchy. 

The shorter the path length, the more closely related the 

synsets are in meaning. The path similarity metric is a 

normalized measure that ranges from 0 to 1, where 0 

indicates no similarity, and 1 indicates identical meanings 

(i.e., the same synset). 

PSM(A, B) = 
1

𝑑+1
              (5) 

Here, ‘d’ is the shortest path length between synsets A 

and B in the WordNet hierarchy. Wu-Palmer Similarity 

(WUP) is based on the depth of the Least Common 

Subsumer (LCS) and the depth of the two synsets being 

compared. 

𝑊𝑈𝑃𝑆𝑀 (𝐴, 𝐵) =
2∗𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝑆 (𝐴,𝐵))

𝑑𝑒𝑝𝑡ℎ(𝐴)+𝑑𝑒𝑝𝑡ℎ(𝐵)
                             (6) 

Leacock-Chodorow Similarity (LCH) is based on the 

shortest path length between two synsets and the depth of 

the WordNet hierarchy. 

𝐿𝐶𝐻𝑆𝑀 (𝐴, 𝐵) = −𝑙𝑜𝑔
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒+1

2∗𝑑𝑒𝑝𝑡ℎ(𝐴,𝐵)
                              (7) 

Resnik Similarity (RES) is based on the information 

content of the Least Common Subsumer (LCS). 

𝑅𝐸𝑆𝑆𝑀 (𝐴, 𝐵) = 𝐼𝐶 (𝐿𝐶𝑆 (𝐴, 𝐵)                                  (8) 

𝐼𝐶(𝑐) = log
1

𝑃(𝑐)
                                                             (9) 

𝑃(𝑐) =
𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒𝑠(𝑡)

𝑣
                                                  (10) 

Where P(c) probability of concept ‘c’ in the corpus, 

the corpus that can inferred by ‘c’ and ‘v’ is the total 

number of corpus terms, Jiang-Conrath Similarity (JCN) 

is based on the information content of the two synsets 

being compared, and the information content of their 

Least Common Subsumer (LCS). 

𝐽𝐶𝑁𝑆𝑀(𝐴, 𝐵) =
1

𝐼𝐶(𝐴)+𝐼𝐶(𝐵)−2∗𝐼𝐶(𝐿𝐶𝑆(𝐴,𝐵))
          (11) 

These metrics are used to measure the similarity 

between two synsets in WordNet, and they are commonly 

used in natural language processing tasks that require 

assessing the semantic relatedness between words or 

Data structure 1 

# Data structure for feature set of positive sentence pairs 

feature_set = [ 

    { 

        ‘plagiarized_sentence’: ‘…’,          # The actual plagiarized sentence 

        ‘source_sentence’: ‘…’,              # The corresponding source sentence 

        ‘shared_unigrams’: […],              # List of shared unigrams between the sentences 

        ‘meteor_score’: 0.0                    # Meteor similarity score between the sentences 

    }, 

    { 

        ‘plagiarized_sentence’: ‘…’, 

        ‘source_sentence’: ‘…’, 

        ‘shared_unigrams’: […], 

        ‘meteor_score’: 0.0 

    }, 

    # Add more dictionaries for other positive sentence pairs as needed 

] 
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concepts. In the third step of the process, the algorithm 

computes semantic similarity measurements between two 

sets of words, namely A and B. It utilizes three measures 

of semantic similarity: cosine measure, dice measure, and 

Jaccard measure. Cosine similarity measures the cosine 

of the angle between two vectors in a high-dimensional 

space. It ranges from -1 (completely dissimilar) to 1 

(completely similar). In semantic similarity, the vectors 

represent the word embeddings or semantic 

representations of the sets A and B. The Dice similarity 

coefficient measures the similarity between two sets. It is 

the ratio of the size of the intersection of the two sets to 

the average of their sizes. It ranges from 0 (completely 

dissimilar) to 1 (completely similar). For semantic 

similarity, this measure can be calculated using the 

semantic matrix. The Jaccard similarity coefficient is also  

 

 

 

 

used to measure the similarity between two sets. It is the  

ratio of the size of the intersection of the two sets to the 

size of their union. Like the Dice measure, it ranges from 

0 (completely dissimilar) to 1 (completely similar). The 

Jaccard measure can also be calculated using the 

semantic matrix. The semantic similarity evaluates the 

degree of similarity between the word sets A and B based 

on the semantic matrix, providing insights into their 

semantic relationship in the context of plagiarism 

detection or any other relevant natural language 

processing task. 

List of dictionaries to represent the detected 

plagiarism segments and their properties. Each dictionary 

in the list will represent a segment and contain 

information such as the start and end positions of the 

segment in the document and the segment’s similarity 

score. 

 

 

 

Algorithm 2 

function detect_plagiarism(suspicious_document, source_document): 

    # Step 1: Identify filter seeds for potential plagiarism segments 

    filter_seeds = generate_filter_seeds() 

 

    # Step 2: Apply filter seeds to identify potential plagiarism segments 

    suspicious_segments = filter_plagiarism_segments(suspicious_document, filter_seeds) 

    source_segments = filter_plagiarism_segments(source_document, filter_seeds) 

 

    # Step 3: Merge adjacent detected seeds to form larger segments 

    suspicious_segments = merge_adjacent_segments(suspicious_segments) 

    source_segments = merge_adjacent_segments(source_segments) 

 

    # Step 4: Apply adaptive behavior (adjust parameters if required) 

    adjust_parameters() 

 

    # Step 5: Filter segments to remove false positives 

    filtered_suspicious_segments = filter_segments(suspicious_segments) 

    filtered_source_segments = filter_segments(source_segments) 

 

    # Step 6: Apply extension techniques to improve recall and granularity 

    extended_suspicious_segments = extend_segments(filtered_suspicious_segments, 

suspicious_document) 

    extended_source_segments = extend_segments(filtered_source_segments, source_document) 

 

    # Step 7: Compare extended segments to find the best-plagiarized segments 

    best_plagiarized_segments = compare_segments(extended_suspicious_segments, 

extended_source_segments) 

 

    # Step 8: Return the best-plagiarized segments 

    return best_plagiarized_segments 
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Data Structure 2 

# Data structure for detected plagiarism segments 

plagiarism_segments = [ 

    { 

        ‘start_position’: 0,        # Start position of the segment in the document 

        ‘end_position’: 50,         # End position of the segment in the document 

        ‘similarity_score’: 0.85    # Similarity score of the segment (e.g., cosine similarity) 

    }, 

    { 

        ‘start_position’: 100, 

        ‘end_position’: 130, 

        ‘similarity_score’: 0.91 

    }, 

    # Add more dictionaries for other detected segments as needed 

] 

 

Step 1: Feature Extraction 

function extract_features(document): 

    # Extract relevant features from the document 

    features = [] 

 

    # … Feature extraction process as discussed earlier … 

    return features 

 

Step 2: Feature Selection 

function select_features(features): 

    # Select the most effective subset of features 

    selected_features = [] 

 

    # … Feature selection process as discussed earlier … 

return selected_features 

 

Step 3: SVM Training 

function train_svm_classifier(train_data, labels, selected_features): 

    # Train the SVM classifier using the selected features 

    svm_model = SVM.train(train_data[:, selected_features], labels) 

 

    return svm_model 

 

Step 4: Hyperplane Equation 

function get_hyperplane_equation(svm_model): 

    # Obtain the hyperplane equation from the trained SVM model 

    hyperplane_equation = svm_model.coefficients 

 

    return hyperplane_equation 

 

Step 5: Plagiarism Detection 

function detect_plagiarism(suspicious_document, source_document, svm_model, selected_features, 

threshold): 

    # Extract features from suspicious and source documents 

    suspicious_features = extract_features(suspicious_document) 

    source_features = extract_features(source_document) 
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Result and Discussion 

The proposed algorithm has worked for all types of 

English letter language papers. The simulation is run 

under the Python and Oracle 11g environments. The 

result is evaluated using simple text files in different 

cases. However, during the testing phase, we noticed that 

Plagiarism detection tools were not giving the exact 

result. While evaluating the plain text, we modified it by 

different senses and references, but it does not give the 

exact result. In the testing phase, we checked sentence to 

sentence to make it easier to detect the plagiarism rate. 

TEST CASE 1 

Here, we copied the text from sentence to sentence by 

copying it exactly from another text document. So, we 

took plain text with 80% copied and 20% not copied. 

Then, we noticed that it gave an 80% plagiarism 

detection rate, summarized in Table 1. 

Figure 2 represents a copied and self-analysis text. 

The higher percentage of the copied text shows that the 

plagiarism rate is much higher.  

 

TEST CASE 2: 

Here, we copied the text, sentence to sentence, by 

copying exactly from another text document. In this case, 

we have taken 30% of the copied text, and the original 

text changes 50% of the sentence, but the sense remained 

constant, and 20% of the text is not copied, i.e., the self-

analyzed text. Table 2 represents the 60% plagiarism 

detection rate, which means it does not give an accurate 

plagiarism rate. 

Figure 3 represents the comparison of copied text and 

changed text sense, where changed text sense has a 

higher percentage of plagiarism. 

TEST CASE 3: 

In this case, we have taken 10% of the copied text, 

and the original text changes 70% of the sentence, but the  

 

  Calculate similarity scores using the SVM classifier and hyperplane equation 

    suspicious_score = SVM.predict(suspicious_selected_features, svm_model) 

    source_score = SVM.predict(source_selected_features, svm_model) 

 

  Determine if the documents are plagiarized or not based on similarity scores 

    if suspicious_score > threshold and source_score > threshold: 

        return “Plagiarized” 

    else: 

        return “Not Plagiarized” 

Table 1. Plagiarism detection rate at copied and 

self-analysis text. 

Text Data Detection Rate 

Copied text 80% 

Self-Analysis text 20% 

Plagiarizes detection rate 80% 

Table 2. Plagiarism detection rate at copied, 

changed text and self-analysis text. 

Text Data Detection 

Rate 

Copied Text 30% 

Changed text, but the sense is the 

same 

50% 

Self-Analyzed text 20% 

Plagiarism rate 60% 

0%

20%

40%

60%

80%

Copied text Self-Analysis text

P
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n

ta
g
e 

(%
)

Figure 2. The plagiarism detection rate of copied and self-analysis. 
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sense remained constant, and 20% of the text is not 

copied, i.e., self-analyzed text. Then we noticed that it 

gives nearly a 55% plagiarized detection rate, which 

means ‘t’ does not give an accurate plagiarism rate. From 

this case, we can say that plagiarism can also calculate 

the senses with the help of WSD, which is summarized in 

Table 3.  

 

 

Figure 4 explains the exact meaning of getting a high 

plagiarism rate. At the same time, copied and self-

analyzed text gets minor plagiarism during the detection. 

To find the accuracy of the proposed method, we 

compared the result with a different research paper. As 

we saw in test case 1 for self-analyzed text, the accuracy 

for plagiarism detection was 80%. 

 

Table 3. The plagiarism detection rate of the original text but senses is changed. 

Text Data Detection Rate 

Copied Text 10% 

Changed text, but the sense is the same 70% 

Self-Analyzed text 20% 

Plagiarism rate ~55% 

Table 4. Comparison of different research papers with the proposed method. 

Work Accuracy (%) 

Sánchez-Vega et al. (2013) 75.9 % 

Chong et al. (2010) 70.53 % 

Vani & Gupta (2017) 83.16 % 

Proposed System 80 % 
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Figure 3. The plagiarism detection rate of copied, changed text and self-

analysis text. 
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Figure 4. Graphical Representation of Test Case 3. 
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Table 4 represents the comparison of the proposed 

model with Vani & Gupta (2017), Chong et al. (2010), 

and Sánchez-Vega et al. (2013). The proposed model 

uses the self-analyzed text, which gave 80% accuracy 

higher than Chong et al. (2010) and Sánchez-Vega et al. 

(2013). While comparing with Vani & Gupta (2017), the 

proposed system will provide nearly the same accuracy 

rate. 

Evaluation Based on Dataset 

The experiments described in the text were conducted 

on three datasets from the PAN Workshop series: PAN 

2012, PAN 2013, and PAN 2014. Each dataset contains 

suspicious and source documents, and the authors applied 

various obfuscation strategies on paragraphs of different 

lengths of the source documents, which were then 

incorporated into the suspicious documents. Below is a 

summary of the datasets and their characteristics: 

• PAN 2012 Dataset: Data Source: Books available at 

Project Gutenberg, Training Set: 1804 suspicious 

documents and 4210 source documents, and Test Set: 

3000 suspicious documents and 3500 source 

documents. 

• PAN 2013 Dataset: Data Source: ClueWeb 2009 

corpus, Total Documents: 3653 suspicious documents 

and 4774 source documents. 

• PAN 2014 Dataset: Data Source: ClueWeb 2009 

corpus (same as PAN 2013), Training Set: Same as 

PAN 2013 (3653 suspicious documents and 4774 

source documents), and Test Set: Introduced an 

additional test set. 

The datasets were used for evaluating plagiarism 

detection algorithms, and they are publicly available as 

part of the PAN Workshop series. The training sets are 

used to train the plagiarism detection models, while the 

test sets are used to evaluate the performance of the 

models on unseen data. 

Table 5 evaluates the effectiveness of the proposed 

system for text plagiarism detection. The experiments use 

three datasets created from the documents of PAN 2012, 

PAN 2013, and PAN 2014. These experiments aim to 

assess the proposed system's performance in detecting 

different types of text plagiarism. The First Dataset 

contains positive and negative cases extracted from the 

documents of PAN 2012. The purpose is to construct the 

proposed system for plagiarism detection. The proposed 

system is constructed and trained on this dataset. Dataset 

content extracting cases from the documents of PAN 

2012 and PAN 2013. The purpose is to train the proposed 

system's Support Vector Machine (SVM). The SVM 

classifier of the proposed system is trained on this dataset 

to discover several types of text plagiarism. The system's 

performance is evaluated on test documents from the 

random obfuscation PAN 2013 sub-corpora, complete 

PAN 2013 corpus, and complete PAN 2014. The 

comparison of results indicates that the proposed system 

achieved the highest classification accuracy when trained 

on the dataset. It suggests that the proposed system is 

more effective in training the SVM classifier. 

In summary, Table 6 analyses the significance of each 

feature in the constructed training database for text 

plagiarism detection. The metrics, such as mean, standard 

deviation, and 95% confidence limits, help assess the 

features' ability to distinguish between positive 

(plagiarized) and negative (non-plagiarized) cases. The 

importance of similarity features in discriminative 

sentences lies in their ability to accurately differentiate 

positive and negative cases. Features with high intra-

similarity (within the same class) and low inter-similarity 

(between different classes) are considered discriminative. 

The findings from Table 6 show that many sentences 

similarity features have mean values close for both 

positive and negative cases. 

Additionally, the 95% confidence limits of the 

positive cases are far from 1 and closer to the mean 

values of both positive and negative cases. Relying solely 

on these features for decision-making may lead to 

confusion and inaccurate classification. Combining 

multiple features, particularly those with higher intra-

similarity and lower inter-similarity, is crucial to 

enhancing text plagiarism detection's accuracy and 

effectiveness. By considering various informative 

features, the system can better distinguish between 

plagiarized and non-plagiarized text segments, resulting 

in more reliable detection outcomes.  

The results presented in Table 7 show that most of the 

previous systems achieved varying ranks across different 

datasets. This variation in performance is attributed to 

differences in dataset structures and the types of 

plagiarism present in each dataset. On the other hand, the  

 

Table 5. Comparison results on PAN 2012, PAN 2013, and PAN 2014 complete corpus data. 

Dataset PlagDet (%) F-measure (%) Recall  

(%) 

Precision (%) Granularity 

PAN 2012 88.44 88.54 86.79 90.54 1.00019 

PAN 2013 89.54 89.83 86.79 93.12 1.00034 

PAN 2014 92.84 92.52 90.32 95.54 1.00052 
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Table 6. Statistical Analysis  

Statistical analysis of the constructed dataset The Extracted Cases 

Sentence Similarity Feature Negative 

N = 42983 

Mean ± Standard 

Deviation 

Positive 

N = 42983 

Mean ± Standard Deviation 

Syntactic with word path similarity 0.5123 ± 0.1190 0.8414 ± 0.151 
Dice Semantic with word path similarity 0.5321 ± 0.0785 0.7521 ± 0.202 

Jaccard Semantic with word path similarity 0.4231 ± 0.0185 0.8502 ± 0.1414 
Cosine Semantic with word path similarity 0.5123 ± 0.1185 0.9083 ± 0.1312 
Syntactic with word depth estimation 0.3174 ± 0.1086 0.7327 ± 0.1959 

Dice Semantic with word depth estimation 0.2124 ± 0.0145 0.7407 ± 0.1832 
Jaccard Semantic with word depth estimation 0.6104 ± 0.1058 0.7673 ± 0.1844 
Cosine Semantic with word depth estimation 0.3174 ± 0.0157 0.6574 ± 0.2374 

Syntactic with combined word similarity 0.4144 ± 0.0722 0.7781 ± 0.1746 
Dice Semantic with combined word similarity 0.3124 ± 0.0988 0.7227 ± 0.1956 
Jaccard Semantic with combined word similarity 0.4134 ± 0.1105 0.6908 ± 0.2362 

Cosine Semantic with combined word similarity 0.5211 ± 0.1975 0.5092 ± 0.2925 
Syntactic with WUP word similarity 0.3123 ± 0.0125 0.7361 ± 0.1832 
Dice Semantic with WUP word similarity 0.4214 ± 0.0315 0.4086 ± 0.4094 
Jaccard Semantic with WUP word similarity 0.5141 ± 0.0765 0.3562 ± 0.3924 

Cosine Semantic with WUP word similarity 0.8124 ± 0.0359 0.9005 ± 0.1089 
Syntactic with LCH word similarity 0.3148 ± 0.0421 0.8342 ± 0.1563 
Dice Semantic with LCH word similarity 0.5818 ± 0.0512 0.9073 ± 0.1655 

Jaccard Semantic with LCH word similarity 0.3289 ± 0.0251 0.7391 ± 0.1834 
Cosine Semantic with LCH word similarity 0.5221 ± 0.0321 0.7653 ± 0.1459 
Syntactic with RES word similarity 0.4312 ± 0.0612 0.6438 ± 0.2059 

Dice Semantic with RES word similarity 0.3276 ± 0.0562 0.7743 ± 0.1454 
Jaccard Semantic with RES word similarity 0.3498 ± 0.0663 0.7348 ± 0.1844 
Cosine Semantic with RES word similarity 0.3212 ± 0.0432 0.4859 ± 0.287 
Syntactic with JCN word similarity 0.3211 ± 0.0123 0.8414 ± 0.151 

Dice Semantic with JCN word similarity 0.4331 ± 0.0331 0.7521 ± 0.202 
Jaccard Semantic with JCN word similarity 0.3765 ± 0.0447 0.8502 ± 0.1414 
Cosine Semantic with JCN word similarity 0.4587 ± 0.0234 0.9083 ± 0.1312 

Syntactic with LIN word similarity 0.4377 ± 0.0221 0.5772 ± 0.2796 
Dice Semantic with LIN word similarity 0.3786 ± 0.0322 0.6999 ± 0.2294 
Jaccard Semantic with LIN word similarity 0.3986 ± 0.0412 0.7409 ± 0.1831 

Cosine Semantic with LIN word similarity 0.3753 ± 0.0187 0.7306 ± 0.2085 
Hybrid similarity 0.3997 ± 0.0322 0.6173 ± 0.2581 
Fuzzy Semantic 0.4689 ± 0.0132 0.7409 ± 0.1998 

 

proposed system consistently maintained its rank and 

demonstrated superior performance across the different 

datasets. These results indicate that the proposed system 

exhibits efficiency and robustness in detecting various 

forms of text plagiarism. The success of the proposed 

system can be attributed to the support vector machine 

(SVM) algorithm's ability to find the hyperplane equation 

of the selected 32 features, enabling it to effectively 

detect different types of text similarities. The proposed 

system's adaptive behaviour has enhanced the Plagdet 

score in sub-corpus without negatively affecting the 

recall value in the no-obfuscation sub-corpus. These 

findings highlight the adaptability and effectiveness of 

the proposed system in tackling different challenges 

posed by several types of text plagiarism in diverse 

datasets.  

Discussion 

The techniques proposed in this paper hold significant 

practical implications for real-world educational settings, 

particularly in Word Sense Disambiguation (WSD). By 

leveraging the Adapted Lesk algorithm and a knowledge-

based approach using WordNet, these methods offer a 

promising avenue for enhancing language understanding 

and educational tools. Implementation of these 

techniques in educational settings can offer numerous 

benefits. Firstly, utilizing widely available resources such 

as WordNet facilitates accessibility and reduces 

implementation barriers.  
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Educational platforms can integrate these methods 

seamlessly into their existing infrastructure, allowing 

educators and students to benefit from more accurate and 

nuanced language analysis. The structured approach 

outlined in the manuscript, consisting of input query 

processing, pre-processing, and WSD classification units, 

provides a clear framework for implementation. The 

structured workflow ensures that the system can 

effectively handle unstructured queries from users, 

process them into structured queries with added linguistic 

features, and accurately classify the sense of polysemous 

words based on context and lexical data. Despite these 

advantages, several potential challenges may arise during 

the implementation process. One significant challenge is 

adapting the techniques to diverse educational contexts, 

each with unique linguistic and pedagogical 

requirements. Ensuring the methods are applicable across 

various subjects, languages, and educational levels may 

require additional customization and fine-tuning. 

Integrating these techniques into existing educational 

systems may pose technical challenges. Educational 

platforms often have diverse architectures and interfaces, 

requiring careful consideration to ensure compatibility 

and seamless integration. Providing adequate training and 

support for educators and students to use these tools 

effectively is essential for successful implementation. 

Scalability and computational requirements are important 

considerations, especially in resource-constrained 

educational environments. Ensuring that the methods can 

operate efficiently within the constraints of educational 

infrastructure, such as limited computing resources and 

network bandwidth, is crucial for widespread adoption. 

 

Conclusion 

In this research, we thoroughly evaluated the proposed 

system for text plagiarism detection using three datasets 

constructed from PAN 2012, PAN 2013, and PAN 2014 

documents—the experiments aimed to assess the system's 

performance in detecting several types of text plagiarism. 

The First Dataset extracted positive and negative cases 

from the documents of PAN 2012 and served as the 

foundation for constructing the proposed plagiarism 

detection system. The Second Dataset included cases 

extracted from PAN 2012 and PAN 2013 and was 

instrumental in training the Support Vector Machine 

(SVM) classifier. The SVM classifier's training on this 

dataset facilitated the detection of multiple types of text 

plagiarism. We evaluated the system's performance on 

test documents from the random obfuscation PAN 2013 

sub-corpora, complete PAN 2013 corpus, and complete 

PAN 2014. The results indicated that when the proposed 

system was trained on the Second Dataset, it achieved the 

highest classification accuracy. It highlights the system's 

effectiveness and superiority in training the SVM 

classifier. Metrics such as mean, standard deviation, and 

95% confidence limits were instrumental in assessing the 

features' ability to distinguish between positive 

(plagiarized) and negative (non-plagiarized) cases. The 

importance of discriminative sentence similarity features, 

characterized by high intra-similarity within the same 

class and low inter-similarity between different classes, 

was evident. Many sentence similarity features were 

observed to have mean values close for both positive and 

negative cases, and the 95% confidence limits of positive 

cases were closer to the mean values of both positive and 

negative cases. It indicated that relying solely on these 

features for decision-making might lead to confusion and 

Table 7. Comparison of Rank Score. 

Comparison of the result of the proposed system on the complete PAN 2014 dataset 

Team Plagdet 

(%) 

F-measure 

(%) 

Recall 

(%) 

Precision 

(%) 

Granularity 

Gillam & Notley (2014) 44.08 44.07 29.66 85.74 1.0000 

Abnar et al., (2014) 66.38 66.59 84.78 54.83 1.00455 

Palkovskii and Belov (2014) 90.78 90.80 88.92 92.76 1.00027 

Oberreuter et al., (2014) 89.27 89.30 91.54 87.17 1.00051 

Sanchez-Perez et al., (2014) 89.20 89.21 91.98 86.61 1.00026 

Glinos (2014) 88.77 89.89 84.51 96.01 1.01761 

Shrestha et al., (2014) 86.81 87.05 89.84 84.42 1.00381 

Gross & Modaresi, (2014) 85.50 86.84 81.82 92.52 1.02187 

PlagLinSVM (2020) 90.01 90.15 90.55 89.75 1.00210 

PlagRbfSVM (2020) 88.27 88.40 91.49 85.52 1.00209 

El-Rashidy et al. (2023) 92.91 92.95 90.14 95.94 1.00053 

Proposed System Using SVM 92.86 92.50 90.84 95.82 1.00087 
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inaccurate classification. Thus, combining multiple 

features, particularly those with higher intra-similarity 

and lower inter-similarity, proved crucial in enhancing 

the accuracy and effectiveness of text plagiarism 

detection. Looking ahead, we plan to expand the system's 

training with a larger data set to evaluate its performance 

further. We also foresee potential applications of this 

work in detecting plagiarism in documents written in 

different languages by leveraging mathematical problem-

solving techniques. We aim to explore the extension of 

this approach to detect duplicity in images using Word 

Sense Disambiguation (WSD) techniques. The proposed 

algorithm's results demonstrated superior performance to 

conventional techniques, validating its efficacy in text 

plagiarism detection. To enhance future executions, we 

aim to reduce time complexity by implementing parallel 

computing techniques. The research marks considerable 

progress in text plagiarism detection, with the proposed 

system showing promising results and potential for 

broader applications. As we continue to refine and extend 

our approach, we envision a significant contribution to 

ensuring the authenticity and originality of digital content 

in diverse contexts. 
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