

*Corresponding Author: deveshupadhyay3@gmail.com

92

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007 Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

 Enhancing Academic Integrity: An Analysis of Advanced Techniques for Plagiarism Detection using

LESK, Word Sense Disambiguation, and SVM

 Devesh Kumar Upadhyay1* and Keshav Sinha2

1Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi, India;

 2School of Computer Science, UPES, Dehradun, India
E-mail/Orcid Id:

DV, deveshupadhyay3@gmail.com, https://orcid.org/0000-0002-2399-1850;

KS, Keshav.sinha@yandex.com, https://orcid.org/0000-0003-1053-3911

Introduction

From the earliest days, plagiarism has been the most

concerning writing. Plagiarism means copying someone

else's work without informing the author and using it for

personal purposes. The origin of the word “Plagiarism” is

from Latin, which means “Kidnapper” or “to kidnap”.

Plagiarism detection plays an essential role in academics

because students, research scholars and teachers are

intended to produce original research work (Maurya and

Madhusudhan, 2023). Plagiarism can be prevented by

using the proper citation to ensure the original author gets

credit for their original content (Prasanth and Rajshree,

2014; En et al., 2023). Detecting plagiarism will open

many doors in research articles and thesis writing

(Sedaghat, 2024). A mathematical document consists of

formulas and results that do not need standard literature

to understand those papers. A plagiarism detection tool is

used to maintain the standard of the paper (Nguyen,

2023). The fast-growing internet provides lots of

information in little time, and that information is used

while writing papers. There is now a consensus regarding

plagiarism, and we can say that plagiarism has become

one of the biggest challenges in day-to-day life, and it

also discourages the academic community from writing

their papers.

Type of Plagiarism

Several techniques are available to detect plagiarized

content. Plagiarism is categorized into (i) Intentional and

(ii) Unintentional plagiarism. In Intentional plagiarism,

the writer has intentionally copied the content from

various sources (Banerjee & Pedersen (2002)). The

copied part from dissimilar sources is detected during the

Article History:

Received: 07th Oct., 2023

Accepted: 19th May, 2024

Published: 30th May, 2024

Abstract: Plagiarism is widespread in academia, from ancient literature to modern

research, where scholars' work is copied and published without authorization. In the

late 90s, researchers explored various methods to detect plagiarism, including Word

Sense Disambiguation (WSD), LESK, and Support Vector Machine (SVM). However,

these conventional techniques have shown limitations in aligning with contemporary

writing styles. This paper proposes an improved LESK algorithm for word sense

detection and Improved SVM for feature extraction, addressing the shortcomings of

existing methods and offering enhanced accuracy and efficiency in identifying

plagiarized content. The study evaluates the proposed system using three datasets

from PAN 2012, PAN 2013, and PAN 2014 documents to assess its performance

across different types of text plagiarism. Results demonstrate the system's superiority,

achieving higher classification accuracy when trained on the Second Dataset. A

comprehensive analysis of the feature’s significance in the training database reveals

the importance of discriminative sentence similarity. The proposed system contributes

to combating academic dishonesty, ensuring the authenticity of digital content in

various contexts. Future work will explore cross-lingual plagiarism detection and

image duplicity identification using Word Sense Disambiguation techniques.

Additionally, efforts will be made to optimize time complexity for faster execution.

Keywords:

Word Sense Disambiguation

(WSD), LESK, Semantic

Analysis, Support Vector

Machine (SVM), Universal

Language Translator (ULT)

How to cite this Article:

Devesh Kumar Upadhyay and Keshav Sinha

(2024). Enhancing Academic Integrity: An

Analysis of Advanced Techniques for

Plagiarism Detection using LESK, Word

Sense Disambiguation, and SVM.

International Journal of Experimental

Research and Review, 39(spl.) 92-108.

DOI:

https://doi.org/10.52756/ijerr.2024.v39spl.007

https://doi.org/10.52756/ijerr.2024.v39spl.007
https://crossmark.crossref.org/dialog/?doi=10.52756/ijerr.2024.v39spl.007&domain=iaph.in

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
93

plagiarism check. Intentional plagiarism is further

divided into four parts:

Idea Plagiarism:

In this, any individual copyrights the original author’s

idea without crediting the original author. It is

challenging to identify, and only authorized individuals

can detect plagiarism.

Para Phrasing:

The copyrighted text is re-ordered or re-arranged, but

the text’s meaning remains the same.

Direct Plagiarism:

 In this case, the individuals reuse the few words or

text that the original user and plagiarism tools can

quickly identify.

Patchwork Plagiarism:

It lifts some patches of content, and without crediting

the original user, that portion of the original work is

copyrighted by another user.

The writer does not intentionally plagiarize the

content in unintentional plagiarism, but it may happen

automatically due to a lack of vocabulary (Gipp et al.,

2014). Unintentional plagiarism can be sub-divided into

three types:

a. Citation Plagiarism:

 A particular portion of the document is copied and

claimed for another.

b. Insufficient acknowledgment of plagiarism:

The content is copied from internet and paper sources,

which is not appropriately cited in the paper, causing

plagiarism.

c. Mosaic Plagiarism:

By mistake or ignorance, a person left their content on

the internet or any repository that may be plagiarized

after a particular time. The original author may not

know about the copied portion of his/her original

work.

Plagiarism Detection Methods

Plagiarism detection consists of both paid and

accessible formats. Tools like “PlagTracker” and

“Turnitin” take the original text as input and apply some

algorithms to extract the string. The extracted text string

is then compared with the existing string database across

the Network. The database used by this tool is dedicated,

with strings used to match the original text (Slimani,

2013). If the content is plagiarized, it is identified from

the database and marked throughout the document. The

plagiarism detection algorithm works in the following

three steps:

Knowledge-based Method:

It is a machine-readable repository where standard

datasets match the content with the original text (Abdi et

al., 2017). For comparison, there are different techniques

used under this method, such as:

a. LESK Algorithm: It works on a data dictionary

repository and checks the word's definition in a

sentence. Similar words are collected in the dictionary

according to a maximum number of matches.

b. Semantic Similarity: It finds the standard distance

between similar words with the same meaning and

sense.

c. Selection Preferences: It counts the number of pairs

of words with identical meanings. The selection is

made using the original document and paired Word

document. The detected pair of words are separated to

form a plagiarized dictionary used for plagiarism

detection.

d. Heuristic Method: It evaluates many different

linguistic properties to find the sense.

Supervised Method:

This machine learning technique applies the Word-

Sense Disambiguation (WSD) system (Manning et al.,

2008). In this method, the tags are created from the

dictionary. There are several ways for supervised

machine learning, such as:

a. Decision List: In this, the list is created using the “if

and else” condition and used to calculate the score.

The score is then used to generate the final decision

tree, and the maximum score will indicate a high

chance of matching sense between the content.

b. Decision Tree: It uses the classification rule to divide

the data set into two parts. The test result and output

are stored in the correct node, while the possible sense

of the word is stored in the left node.

c. Naïve Bayes: It is a probabilistic classifier that

compares the condition for finding the sentence

feature. The mathematical model for a training set is

given as:

S= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑆𝑖∈𝑆𝑒𝑛𝑠𝑒𝐷(𝑤)

𝑃(𝑆𝑖|𝑓1, … , 𝑓𝑚) (1)

S= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑆𝑖∈𝑆𝑒𝑛𝑠𝑒𝐷(𝑤)

𝑃(𝑓1,…,𝑓𝑚|𝑆𝑖𝑃(𝑆𝑖)

𝑃(𝑓1,…,𝑓𝑚)
 (2)

S= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑆𝑖∈𝑆𝑒𝑛𝑠𝑒𝐷(𝑤)

P (𝑆𝑖) ∏ 𝑃(𝑓𝑖|𝑆𝑖)𝑚
𝑗=1 (3)

Where, S= Sense, w = words, f = features, m =

number of features, P(s) = probability of frequency in

training set of sense, 𝑃(𝑓𝑖|𝑆𝑖) = calculated feature present

in the sense (Upadhyay et al., 2021).

Instance-Based Learning:

It is a memory-based learning algorithm used to

compare new problem instances with training instances.

A similar instance is stored in memory using the k-NN

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
94

(k-nearest neighbor) algorithm to find the similarity

between two words. Once a similarity is found, the

Hamming distance is calculated using k-NN. The

resultant familiarity between input and stored data is

stored in the repository.

Unsupervised Method:

It depends on readable dictionaries or a sense-

annotated data set. It does not assign meaning to the

word. Instead, it divides the words based on the

information. It consists of different techniques such as:

a. Context Clustering: The context vectors with the

same meaning are grouped to form clusters. The word

space, vector space, and dimension parameters are

clustering parameters. The word within the context is

treated as a vector, and the similarity is calculated

using the co-occurrence matrix. Google uses the n-

gram (i.e., n=5), which is considered a compressed

summary. There are 9.7 billion sentences that 5-grams

extract. All of them are tagged with POS (part-of-

speech), and the resulting clustering is used for WSD

utilization (Mahdavi et al., 2014).

b. Word Clustering: Here, similar and identical

contexts are clustered. A list of the words is taken, and

then the similarity is found among them, following

which an ordered similarity tree is created for matched

words. The common word is treated as an initial node,

and the sense of the word is placed in the sub-node of

the tree.

c. Co-occurrence Graph: A graph-based detection

method wherein a word is plotted in vertices ‘X,’ and

the corresponding ID of the word is plotted on edges

‘E’. The distance between two words is calculated

using the Markov clustering method, where every

edge has a weight, which is the co-occurring

frequency of the words. Weight for the edge {m, n} is

given by the formula,

𝑊𝑚𝑛 = 1- max {P (𝑊𝑚|𝑊𝑛), P (𝑊𝑛 |𝑊𝑚)} (4)

Here P (𝑊𝑚|𝑊𝑛) = is the freqmn/freqn, freqmn is the co-

occurrence frequency of words Wm and Wn, and freqn is

the occurrence frequency of Wn.

Different researchers use different methods and

techniques for plagiarism detection. Some conventional

methods, such as the Spanning tree-based approach, are

used to identify the set of senses. Joshi et al. (2013)

introduced the Graph Dependence (PGD) method for

graph dependence analysis. PGD works on large data

documents and files. It works on manual detection, taking

more time while comparing the data with stored data. Pal

et al. (2013) implemented the WSD technique, which

works on Indian languages, mainly for Bengali. Due to

automatic detection, it works for an extensive data set

with less time complexity. Alzahrani et al. (2012)

implemented a monolingual language for plagiarism

detection, which works on intrinsic, extrinsic, and cross-

lingual plagiarism detection. It works on copying text but

fails to detect intelligent plagiarism. It is speedy and

precise for small document files but will not work for

large documents. Hiremath et al. (2014) implemented the

day’s plagiarism for text-based and shape-based

plagiarism detection. It is reliable only for text-based

searches. Basile et al. (2014) implemented the LESK and

Word Sense Disambiguation (WSD) technique to find the

overlap between words with absolute meanings.

Mozgovoy (2011) implemented a natural language

processing technique that works on a similar function for

tree matching due to its manual detection taking less time

while processing. Agarwal et al. (2013) implemented a

semantic similarity for a group of words (text file) to find

a proper relation. This method is very fast and

automatically detects plagiarism. Mentari et al. (2022)

used a Winnowing-based system to detect cross-language

plagiarism, achieving 84.7% accuracy. While promising,

challenges like computational complexity and tool

reliance persist. Nonetheless, it represents a crucial step

in preserving academic integrity across diverse linguistic

landscapes, demanding further refinement for sustained

efficacy. Kumari and Kumar (2023) introduce an

extended Lesk and Conceptual Density approach for

Word Sense Disambiguation (WSD), which is crucial in

natural language processing. By leveraging overlap

density and evaluation through BLUE, promising results

are offered, particularly for morphologically rich

languages like Hindi. Ayetiran and Agbele (2016)

propose an optimized variant of Lesk-based algorithms

for Word Sense Disambiguation (WSD), addressing

computational complexity through topic composition.

Leveraging English WordNet enriched with Wikipedia

and Semcor corpus, the algorithm demonstrates superior

efficiency and effectiveness across general and domain-

specific datasets, particularly in knowledge-based

techniques. El-Rashidy et al. (2023) propose an advanced

plagiarism detection system that uses SVM and Chi-

square techniques to leverage selective sentence

similarity features and hyperplane equations. With three

key phases, including document pre-processing and

hyperplane computation, it outperforms recent systems,

achieving top scores on PAN 2013 and PAN 2014

datasets. Kumar et al. (2020) introduce an Adapted Lesk

algorithm-based Word Sense Disambiguation (WSD)

system, employing a knowledge-based approach with

WordNet. The system consists of three units: Input query,

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
95

Pre-Processing, and WSD classifier. By leveraging

context information and the lexical database, the WSD

classifier accurately identifies the sense of polysemous

words. Vrbanec and Meštrović (2020) overview

paraphrase detection techniques, focusing on corpus-

based models, particularly deep learning (DL) models.

Evaluating eight models on three public datasets,

including LSI, TF-IDF, Word2Vec, Doc2Vec, GloVe,

FastText, ELMO, and USE, it explores text pre-

processing, hyperparameters, sub-model selection, and

similarity thresholds. Results indicate DL models'

competitiveness with traditional approaches, suggesting

further development potential. Plagiarism detection

software, often labeled as prevention tools, faces

limitations in capturing the breadth of plagiarism,

including translations and intent. Despite being marketed

as such, these tools primarily function as text-matching

tools among over 25 available options. Concerns like

false positives and negatives persist, while recent legal

rulings reinforce universities' authority to revoke

doctorates based on their criteria (Altheneyan & Menai,

2020). Plagiarism detection software, often labeled as

prevention tools, faces limitations in capturing the

breadth of plagiarism, including translations and intent.

Despite being marketed as such, these tools primarily

function as text-matching tools among over 25 available

options. Concerns like false positives and negatives

persist, while recent legal rulings reinforce Universities'

authority to revoke doctorates based on their criteria

(Weber-Wulff, 2018). The motivation of this work is to

detect plagiarism in the least amount of time with higher

accuracy. Previous techniques have found similarities

between the two documents. It provides high accuracy in

text-matching, whereas it fails when it detects image

plagiarism. This paper uses semantic similarity to find the

distance and relationship between the content. This paper

is organized into four significant fragments. Section 1

will discuss the introduction, followed by the description

of the research methodology in Section 2. In section 3,

we discuss the result. Finally, in section 4, the conclusion

of the paper is presented.

Research Methodology

After an exhaustive study of research articles, we

proposed a modified LESK Algorithm using semantic

similarity for plagiarism detection. For the completeness

of this paper, we have used the simplified LESK

Algorithm with brilliant default word sense (Vasilescu et

al., 2004). The algorithm is used to find the sense

between two words.

function SIMPLIFIED LESK(word, sentence) returns

best sense of word

best-sense <- most frequent sense for word

max-overlap <- 0

context <- set of words in the sentence

for each sense in the senses of word do

signature <- set of words in the gloss and examples of

sense

overlap <- COMPUTEOVERLAP (signature, context)

if overlap > max-overlap then

max-overlap <- overlap

best-sense <- sense

end return (best-sense)

In semantic similarity, it checks the distance and

relationship between the content. In semantic similarity,

we have used WSD (Word Sense Disambiguation), which

checks the sense of the word. The proposed framework

for detection is represented in table 1. The step-by-step

procedure for the proposed plagiarism detection strategy

is discussed as follows:

Step 1:

For the initial simulation, the paper dictionary is set.

The two types of dictionary location are used: (i) Local

and (ii) Global. The college database (DB) creates the

local dictionary, and the universal web repository is

shared globally.

Step 2:

For our proposed framework, the data is collected

from the World Wide Web (WWW) and is placed in the

local DB.

Figure 1. Framework for Proposed Plagiarism

Detection.

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
96

Step 3:

The Universal Language Translator (ULT) is applied,

where it is possible to change the exact word by changing

the language and publishing it in national journals,

articles, and magazines. Using this, it is changed to a

unique language (English) before checking for

plagiarism.

It can be observed that the number of characters and

words is different. For this reason, we use a universal

language translator in our work.

Step 4:

The text normalization has been applied to the result

of a ULT. Text normalization converts documented text

into plain text by removing all the non-alphanumeric

characters, regular expressions, word suffixes, and

whitespace characters into a single space. The

canonicalization process converts the ULT text data into

standard, shared, or canonical form for delegated text

normalization.

If we observe, before normalization, the text had

unwanted characters. Normalization removed all the

unwanted characters and removed the numbers.

Step 5:

Semantic Analysis is challenging for natural language

processing. It is used to analyze the relationship between

two sets of documents. The text must check the domain

space and determine whether two words are similar.

While using the WSD to find the sense in the plain text

and the improved LESK algorithm to get an accurate

result in less time, we already know word sense

disambiguate in the introduction, types of WSD, and its

applications. In this semantic analysis, we divided the

document into three phases to get a better result: (i)

heading, (ii) body, and (iii) references.

(i).The document’s heading is used to check with another

document (cluster) if it is related to each other or not.

For example, if the document heading is “Network

Security and its applications in modern society,” the

document that forms a cluster is stored in the Network

related clusters in serial order (N1). It is easier to

check the documents only with these clusters.

(ii).The document’s body can only be checked with other

related documents, i.e., related clusters using the

LESK algorithm, which will have been explained in

detail.

(iii).References to the document are not considered

because most authors and research scholars may have

a standard reference, which is neglected during

plagiarism detection.

Improved LESK Algorithm

Based on Vasilescu et al. (2004), the Improved LESK

algorithm is proposed using a dynamic window. For that,

we separated the text document (all the words), gave

them a sense, and saved them in an array. As the

algorithm moved forward, the context of the window also

increased. The algorithm also took care of the missing

target words. Hence, the number of ambiguities is

calculated by counting the senses.

(i).Word <− senses (calculate how many words are in a

sense)

Sample 1: French Sentence

Dans les siècles qui ont aucune trace ces îles étaient le foyer de millions d’oiseaux heureux, la station

balnéaire de cent fois plus de millions de poissons, des lions de mer, et d’autres créatures dont les noms ne

sont pas si communs ; la résidence marine, en fait, d’innombrables créatures prédestinées à partir de la

création du monde à mettre en place un magasin de richesse pour l’agriculteur britannique, et un.

ULT Result Conversion: English Language

In ages without record, these islands were the home of millions of happy birds, the resort of a hundred

times more millions of fishes, sea lions, and other creatures whose names are not so common.

Sample 2: Before Normalization

Last Thursday, G. Gordon Liddy had the so-called confidential witness live on his radio show. CW, who

discovered foster’s body in Fort Marcy Park, Va., just across the Potomac River from Washington, at 5:45

p.m. on July 20, 1993, said several times with emphasis that he told the FBI that foster’s hands were palms

up, thumbs out and there was no gun in either hand.

After Normalized:

Last Thursday, G Gordon Liddy had the so-called confidential witness live on his radio show. CW, who

discovered foster’s body in Fort Marcy Park, Va, just across the Potomac River from Washington, at five

forty-five pm on July twentieth, nineteen ninety-three, said several times with emphasis that he told the

FBI that foster’s hands were palms up, thumbs out and there was no gun in either hand.

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
97

(ii).Sense_Count <− number of senses (calculate the sense

count of the word)

(iii).Instance_Count <− Context window of size n,

(whereas n = determined dynamically, calculate the

output for every target word. The context window is

dynamic. If, in any case, the given sense overlaps the

target sense, then Instance_Count + = 1. The context

window is the number of left and right words in the

target words.

(iv).For every target word, the context vector is generated.

(v).Determine plagiarism rate.

Step 6:

The result is compared with the local database, and

the simulation is stopped.

Modified SVM Classifier

The proposed system utilizes two paths to determine

sentence similarity. The first path relies on traditional

word-level comparison, as discussed earlier. The second

path involves the use of a modified SVM classifier (Haloi

et al., 2023). However, the first path’s initial “word-level

comparison” did not yield satisfactory results in

identifying text similarity. Instead, it involves

constructing an SVM classifier that can detect several

types of lexical, syntactic, and semantic similarities. The

development process of the SVM classifier consists of

four main stages: extraction of negative and positive

instances, computation of sentence similarity features,

selection of relevant features, and construction the

classifier. In the initial stage, the system extracts “Non-

plagiarized” and “Plagiarized” cases from training

documents to create a supervised training database. The

second stage system calculates sentence similarity

features for each case, encompassing several lexical,

syntactic, and semantic text similarities. These features

are then recorded along with their corresponding class

labels. In the third stage, the system employs a filter

feature selection technique using the Chi-square

algorithm to rank the features and select the most

discriminative ones. It detects efficient text plagiarism,

covering diverse lexical, syntactic, and semantic

plagiarism types. Finally, in the fourth stage, the system

constructs the hyperplane equation using the modified

SVM classification algorithm. It eliminates the need for

extensive experimentation to find the optimal weighting

coefficients for incorporating the features effectively. By

adopting this systematic approach, the proposed system

aims to detect text plagiarism precisely, emphasizing the

importance of feature selection and SVM classification.

Positive Feature Extraction

The algorithm is designed to extract features from

positive sentence pairs, where ‘Pz’ is the plagiarized

passage and ‘Ps’ is the source passage. It seems to involve

pre-processing steps and extracting features from each

sentence pair. The pseudo-code representation of the

algorithm is as follows:

Algorithm 1

function extract_features(Pz, Ps):

Segment pz into sentences

 sentences_ Pz = segment_into sentences(Pz)

Segment ps into sentences

 sentences_ Ps = segment_into_sentences(Ps)

Pre-process source sentences

 processed_sentences_ Ps = preprocess(sentences_Ps)

Initialize feature sets

 feature_set = []

Loop through each sentence in sentences_pz

 for sentence_ Pz in sentences_ Pz:

Pre-process plagiarized sentence

 processed_sentence_ Pz = preprocess(sentence_ Pz)

Calculate shared unigrams

 shared_unigrams = calculate_shared_unigrams(processed_sentence_ Pz, processed_sentences_ Ps)

Calculate Meteor score

 meteor_score = calculate_meteor_score(processed_sentence_ Pz, processed_sentences_ Ps)

Add the feature set for this sentence pair to the feature_set list

 feature_set.append({‘shared_unigrams’: shared_unigrams, ‘meteor_score’: meteor_score})

Return the feature set for all positive sentence pairs

 return feature_set

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
98

• Plagiarized_sentence: The actual plagiarized

sentence extracted from the plagiarized passage ‘Pz’.

• source_sentence: The corresponding source sentence

extracted from the source passage ‘Ps’.

• shared_unigrams: A list of unigrams that are shared

between the plagiarized sentence and the

corresponding source sentence.

• meteor_score: The similarity score between the

plagiarized sentence and the corresponding source

sentence calculated using the Meteor metric or any

other chosen similarity metric.

The process’s second step is constructing semantic

matrices using semantic similarity between words. It

calculates the semantic similarity between words using

seven WordNet similarity metrics. The dimension of the

semantic matrix is equal to the number of words in the

joint matrix, and each cell in the semantic matrix

corresponds to a word in the joint matrix. The semantic

similarity metrics mentioned earlier (such as Path Length,

Wu-Palmer Similarity, Leacock-Chodorow Similarity,

Resnik Similarity, and Jiang-Conrath Similarity) can be

used to quantify the similarity between any two words in

the dataset based on their meanings as represented by the

WordNet synsets. A high-level explanation: Path

Similarity Metric (PSM) is based on the shortest path

length between two synsets in the WordNet hierarchy.

The shorter the path length, the more closely related the

synsets are in meaning. The path similarity metric is a

normalized measure that ranges from 0 to 1, where 0

indicates no similarity, and 1 indicates identical meanings

(i.e., the same synset).

PSM(A, B) =
1

𝑑+1
 (5)

Here, ‘d’ is the shortest path length between synsets A

and B in the WordNet hierarchy. Wu-Palmer Similarity

(WUP) is based on the depth of the Least Common

Subsumer (LCS) and the depth of the two synsets being

compared.

𝑊𝑈𝑃𝑆𝑀 (𝐴, 𝐵) =
2∗𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝑆 (𝐴,𝐵))

𝑑𝑒𝑝𝑡ℎ(𝐴)+𝑑𝑒𝑝𝑡ℎ(𝐵)
 (6)

Leacock-Chodorow Similarity (LCH) is based on the

shortest path length between two synsets and the depth of

the WordNet hierarchy.

𝐿𝐶𝐻𝑆𝑀 (𝐴, 𝐵) = −𝑙𝑜𝑔
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒+1

2∗𝑑𝑒𝑝𝑡ℎ(𝐴,𝐵)
 (7)

Resnik Similarity (RES) is based on the information

content of the Least Common Subsumer (LCS).

𝑅𝐸𝑆𝑆𝑀 (𝐴, 𝐵) = 𝐼𝐶 (𝐿𝐶𝑆 (𝐴, 𝐵) (8)

𝐼𝐶(𝑐) = log
1

𝑃(𝑐)
 (9)

𝑃(𝑐) =
𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒𝑠(𝑡)

𝑣
 (10)

Where P(c) probability of concept ‘c’ in the corpus,

the corpus that can inferred by ‘c’ and ‘v’ is the total

number of corpus terms, Jiang-Conrath Similarity (JCN)

is based on the information content of the two synsets

being compared, and the information content of their

Least Common Subsumer (LCS).

𝐽𝐶𝑁𝑆𝑀(𝐴, 𝐵) =
1

𝐼𝐶(𝐴)+𝐼𝐶(𝐵)−2∗𝐼𝐶(𝐿𝐶𝑆(𝐴,𝐵))
 (11)

These metrics are used to measure the similarity

between two synsets in WordNet, and they are commonly

used in natural language processing tasks that require

assessing the semantic relatedness between words or

Data structure 1

Data structure for feature set of positive sentence pairs

feature_set = [

 {

 ‘plagiarized_sentence’: ‘…’, # The actual plagiarized sentence

 ‘source_sentence’: ‘…’, # The corresponding source sentence

 ‘shared_unigrams’: […], # List of shared unigrams between the sentences

 ‘meteor_score’: 0.0 # Meteor similarity score between the sentences

 },

 {

 ‘plagiarized_sentence’: ‘…’,

 ‘source_sentence’: ‘…’,

 ‘shared_unigrams’: […],

 ‘meteor_score’: 0.0

 },

 # Add more dictionaries for other positive sentence pairs as needed

]

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
99

concepts. In the third step of the process, the algorithm

computes semantic similarity measurements between two

sets of words, namely A and B. It utilizes three measures

of semantic similarity: cosine measure, dice measure, and

Jaccard measure. Cosine similarity measures the cosine

of the angle between two vectors in a high-dimensional

space. It ranges from -1 (completely dissimilar) to 1

(completely similar). In semantic similarity, the vectors

represent the word embeddings or semantic

representations of the sets A and B. The Dice similarity

coefficient measures the similarity between two sets. It is

the ratio of the size of the intersection of the two sets to

the average of their sizes. It ranges from 0 (completely

dissimilar) to 1 (completely similar). For semantic

similarity, this measure can be calculated using the

semantic matrix. The Jaccard similarity coefficient is also

used to measure the similarity between two sets. It is the

ratio of the size of the intersection of the two sets to the

size of their union. Like the Dice measure, it ranges from

0 (completely dissimilar) to 1 (completely similar). The

Jaccard measure can also be calculated using the

semantic matrix. The semantic similarity evaluates the

degree of similarity between the word sets A and B based

on the semantic matrix, providing insights into their

semantic relationship in the context of plagiarism

detection or any other relevant natural language

processing task.

List of dictionaries to represent the detected

plagiarism segments and their properties. Each dictionary

in the list will represent a segment and contain

information such as the start and end positions of the

segment in the document and the segment’s similarity

score.

Algorithm 2

function detect_plagiarism(suspicious_document, source_document):

 # Step 1: Identify filter seeds for potential plagiarism segments

 filter_seeds = generate_filter_seeds()

 # Step 2: Apply filter seeds to identify potential plagiarism segments

 suspicious_segments = filter_plagiarism_segments(suspicious_document, filter_seeds)

 source_segments = filter_plagiarism_segments(source_document, filter_seeds)

 # Step 3: Merge adjacent detected seeds to form larger segments

 suspicious_segments = merge_adjacent_segments(suspicious_segments)

 source_segments = merge_adjacent_segments(source_segments)

 # Step 4: Apply adaptive behavior (adjust parameters if required)

 adjust_parameters()

 # Step 5: Filter segments to remove false positives

 filtered_suspicious_segments = filter_segments(suspicious_segments)

 filtered_source_segments = filter_segments(source_segments)

 # Step 6: Apply extension techniques to improve recall and granularity

 extended_suspicious_segments = extend_segments(filtered_suspicious_segments,

suspicious_document)

 extended_source_segments = extend_segments(filtered_source_segments, source_document)

 # Step 7: Compare extended segments to find the best-plagiarized segments

 best_plagiarized_segments = compare_segments(extended_suspicious_segments,

extended_source_segments)

 # Step 8: Return the best-plagiarized segments

 return best_plagiarized_segments

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
100

Data Structure 2

Data structure for detected plagiarism segments

plagiarism_segments = [

 {

 ‘start_position’: 0, # Start position of the segment in the document

 ‘end_position’: 50, # End position of the segment in the document

 ‘similarity_score’: 0.85 # Similarity score of the segment (e.g., cosine similarity)

 },

 {

 ‘start_position’: 100,

 ‘end_position’: 130,

 ‘similarity_score’: 0.91

 },

 # Add more dictionaries for other detected segments as needed

]

Step 1: Feature Extraction

function extract_features(document):

 # Extract relevant features from the document

 features = []

 # … Feature extraction process as discussed earlier …

 return features

Step 2: Feature Selection

function select_features(features):

 # Select the most effective subset of features

 selected_features = []

 # … Feature selection process as discussed earlier …

return selected_features

Step 3: SVM Training

function train_svm_classifier(train_data, labels, selected_features):

 # Train the SVM classifier using the selected features

 svm_model = SVM.train(train_data[:, selected_features], labels)

 return svm_model

Step 4: Hyperplane Equation

function get_hyperplane_equation(svm_model):

 # Obtain the hyperplane equation from the trained SVM model

 hyperplane_equation = svm_model.coefficients

 return hyperplane_equation

Step 5: Plagiarism Detection

function detect_plagiarism(suspicious_document, source_document, svm_model, selected_features,

threshold):

 # Extract features from suspicious and source documents

 suspicious_features = extract_features(suspicious_document)

 source_features = extract_features(source_document)

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
101

Result and Discussion

The proposed algorithm has worked for all types of

English letter language papers. The simulation is run

under the Python and Oracle 11g environments. The

result is evaluated using simple text files in different

cases. However, during the testing phase, we noticed that

Plagiarism detection tools were not giving the exact

result. While evaluating the plain text, we modified it by

different senses and references, but it does not give the

exact result. In the testing phase, we checked sentence to

sentence to make it easier to detect the plagiarism rate.

TEST CASE 1

Here, we copied the text from sentence to sentence by

copying it exactly from another text document. So, we

took plain text with 80% copied and 20% not copied.

Then, we noticed that it gave an 80% plagiarism

detection rate, summarized in Table 1.

Figure 2 represents a copied and self-analysis text.

The higher percentage of the copied text shows that the

plagiarism rate is much higher.

TEST CASE 2:

Here, we copied the text, sentence to sentence, by

copying exactly from another text document. In this case,

we have taken 30% of the copied text, and the original

text changes 50% of the sentence, but the sense remained

constant, and 20% of the text is not copied, i.e., the self-

analyzed text. Table 2 represents the 60% plagiarism

detection rate, which means it does not give an accurate

plagiarism rate.

Figure 3 represents the comparison of copied text and

changed text sense, where changed text sense has a

higher percentage of plagiarism.

TEST CASE 3:

In this case, we have taken 10% of the copied text,

and the original text changes 70% of the sentence, but the

 Calculate similarity scores using the SVM classifier and hyperplane equation

 suspicious_score = SVM.predict(suspicious_selected_features, svm_model)

 source_score = SVM.predict(source_selected_features, svm_model)

 Determine if the documents are plagiarized or not based on similarity scores

 if suspicious_score > threshold and source_score > threshold:

 return “Plagiarized”

 else:

 return “Not Plagiarized”

Table 1. Plagiarism detection rate at copied and

self-analysis text.

Text Data Detection Rate

Copied text 80%

Self-Analysis text 20%

Plagiarizes detection rate 80%

Table 2. Plagiarism detection rate at copied,

changed text and self-analysis text.

Text Data Detection

Rate

Copied Text 30%

Changed text, but the sense is the

same

50%

Self-Analyzed text 20%

Plagiarism rate 60%

0%

20%

40%

60%

80%

Copied text Self-Analysis text

P
er

ce
n

ta
g
e

(%
)

Figure 2. The plagiarism detection rate of copied and self-analysis.

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
102

sense remained constant, and 20% of the text is not

copied, i.e., self-analyzed text. Then we noticed that it

gives nearly a 55% plagiarized detection rate, which

means ‘t’ does not give an accurate plagiarism rate. From

this case, we can say that plagiarism can also calculate

the senses with the help of WSD, which is summarized in

Table 3.

Figure 4 explains the exact meaning of getting a high

plagiarism rate. At the same time, copied and self-

analyzed text gets minor plagiarism during the detection.

To find the accuracy of the proposed method, we

compared the result with a different research paper. As

we saw in test case 1 for self-analyzed text, the accuracy

for plagiarism detection was 80%.

Table 3. The plagiarism detection rate of the original text but senses is changed.

Text Data Detection Rate

Copied Text 10%

Changed text, but the sense is the same 70%

Self-Analyzed text 20%

Plagiarism rate ~55%

Table 4. Comparison of different research papers with the proposed method.

Work Accuracy (%)

Sánchez-Vega et al. (2013) 75.9 %

Chong et al. (2010) 70.53 %

Vani & Gupta (2017) 83.16 %

Proposed System 80 %

0%

10%

20%

30%

40%

50%

60%

P
er

ce
n

at
g
e

(%
)

Copied Text Changed test but sense are same Self-Analysed text

Figure 3. The plagiarism detection rate of copied, changed text and self-

analysis text.

0%

10%

20%

30%

40%

50%

60%

70%

80%

P
er

ce
n
ta

g
e

(%
)

Copied Text Changed test but sense are same Self-Analysed text

Figure 4. Graphical Representation of Test Case 3.

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
103

Table 4 represents the comparison of the proposed

model with Vani & Gupta (2017), Chong et al. (2010),

and Sánchez-Vega et al. (2013). The proposed model

uses the self-analyzed text, which gave 80% accuracy

higher than Chong et al. (2010) and Sánchez-Vega et al.

(2013). While comparing with Vani & Gupta (2017), the

proposed system will provide nearly the same accuracy

rate.

Evaluation Based on Dataset

The experiments described in the text were conducted

on three datasets from the PAN Workshop series: PAN

2012, PAN 2013, and PAN 2014. Each dataset contains

suspicious and source documents, and the authors applied

various obfuscation strategies on paragraphs of different

lengths of the source documents, which were then

incorporated into the suspicious documents. Below is a

summary of the datasets and their characteristics:

• PAN 2012 Dataset: Data Source: Books available at

Project Gutenberg, Training Set: 1804 suspicious

documents and 4210 source documents, and Test Set:

3000 suspicious documents and 3500 source

documents.

• PAN 2013 Dataset: Data Source: ClueWeb 2009

corpus, Total Documents: 3653 suspicious documents

and 4774 source documents.

• PAN 2014 Dataset: Data Source: ClueWeb 2009

corpus (same as PAN 2013), Training Set: Same as

PAN 2013 (3653 suspicious documents and 4774

source documents), and Test Set: Introduced an

additional test set.

The datasets were used for evaluating plagiarism

detection algorithms, and they are publicly available as

part of the PAN Workshop series. The training sets are

used to train the plagiarism detection models, while the

test sets are used to evaluate the performance of the

models on unseen data.

Table 5 evaluates the effectiveness of the proposed

system for text plagiarism detection. The experiments use

three datasets created from the documents of PAN 2012,

PAN 2013, and PAN 2014. These experiments aim to

assess the proposed system's performance in detecting

different types of text plagiarism. The First Dataset

contains positive and negative cases extracted from the

documents of PAN 2012. The purpose is to construct the

proposed system for plagiarism detection. The proposed

system is constructed and trained on this dataset. Dataset

content extracting cases from the documents of PAN

2012 and PAN 2013. The purpose is to train the proposed

system's Support Vector Machine (SVM). The SVM

classifier of the proposed system is trained on this dataset

to discover several types of text plagiarism. The system's

performance is evaluated on test documents from the

random obfuscation PAN 2013 sub-corpora, complete

PAN 2013 corpus, and complete PAN 2014. The

comparison of results indicates that the proposed system

achieved the highest classification accuracy when trained

on the dataset. It suggests that the proposed system is

more effective in training the SVM classifier.

In summary, Table 6 analyses the significance of each

feature in the constructed training database for text

plagiarism detection. The metrics, such as mean, standard

deviation, and 95% confidence limits, help assess the

features' ability to distinguish between positive

(plagiarized) and negative (non-plagiarized) cases. The

importance of similarity features in discriminative

sentences lies in their ability to accurately differentiate

positive and negative cases. Features with high intra-

similarity (within the same class) and low inter-similarity

(between different classes) are considered discriminative.

The findings from Table 6 show that many sentences

similarity features have mean values close for both

positive and negative cases.

Additionally, the 95% confidence limits of the

positive cases are far from 1 and closer to the mean

values of both positive and negative cases. Relying solely

on these features for decision-making may lead to

confusion and inaccurate classification. Combining

multiple features, particularly those with higher intra-

similarity and lower inter-similarity, is crucial to

enhancing text plagiarism detection's accuracy and

effectiveness. By considering various informative

features, the system can better distinguish between

plagiarized and non-plagiarized text segments, resulting

in more reliable detection outcomes.

The results presented in Table 7 show that most of the

previous systems achieved varying ranks across different

datasets. This variation in performance is attributed to

differences in dataset structures and the types of

plagiarism present in each dataset. On the other hand, the

Table 5. Comparison results on PAN 2012, PAN 2013, and PAN 2014 complete corpus data.

Dataset PlagDet (%) F-measure (%) Recall

(%)

Precision (%) Granularity

PAN 2012 88.44 88.54 86.79 90.54 1.00019

PAN 2013 89.54 89.83 86.79 93.12 1.00034

PAN 2014 92.84 92.52 90.32 95.54 1.00052

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
104

Table 6. Statistical Analysis

Statistical analysis of the constructed dataset The Extracted Cases

Sentence Similarity Feature Negative

N = 42983

Mean ± Standard

Deviation

Positive

N = 42983

Mean ± Standard Deviation

Syntactic with word path similarity 0.5123 ± 0.1190 0.8414 ± 0.151
Dice Semantic with word path similarity 0.5321 ± 0.0785 0.7521 ± 0.202

Jaccard Semantic with word path similarity 0.4231 ± 0.0185 0.8502 ± 0.1414
Cosine Semantic with word path similarity 0.5123 ± 0.1185 0.9083 ± 0.1312
Syntactic with word depth estimation 0.3174 ± 0.1086 0.7327 ± 0.1959

Dice Semantic with word depth estimation 0.2124 ± 0.0145 0.7407 ± 0.1832
Jaccard Semantic with word depth estimation 0.6104 ± 0.1058 0.7673 ± 0.1844
Cosine Semantic with word depth estimation 0.3174 ± 0.0157 0.6574 ± 0.2374

Syntactic with combined word similarity 0.4144 ± 0.0722 0.7781 ± 0.1746
Dice Semantic with combined word similarity 0.3124 ± 0.0988 0.7227 ± 0.1956
Jaccard Semantic with combined word similarity 0.4134 ± 0.1105 0.6908 ± 0.2362

Cosine Semantic with combined word similarity 0.5211 ± 0.1975 0.5092 ± 0.2925
Syntactic with WUP word similarity 0.3123 ± 0.0125 0.7361 ± 0.1832
Dice Semantic with WUP word similarity 0.4214 ± 0.0315 0.4086 ± 0.4094
Jaccard Semantic with WUP word similarity 0.5141 ± 0.0765 0.3562 ± 0.3924

Cosine Semantic with WUP word similarity 0.8124 ± 0.0359 0.9005 ± 0.1089
Syntactic with LCH word similarity 0.3148 ± 0.0421 0.8342 ± 0.1563
Dice Semantic with LCH word similarity 0.5818 ± 0.0512 0.9073 ± 0.1655

Jaccard Semantic with LCH word similarity 0.3289 ± 0.0251 0.7391 ± 0.1834
Cosine Semantic with LCH word similarity 0.5221 ± 0.0321 0.7653 ± 0.1459
Syntactic with RES word similarity 0.4312 ± 0.0612 0.6438 ± 0.2059

Dice Semantic with RES word similarity 0.3276 ± 0.0562 0.7743 ± 0.1454
Jaccard Semantic with RES word similarity 0.3498 ± 0.0663 0.7348 ± 0.1844
Cosine Semantic with RES word similarity 0.3212 ± 0.0432 0.4859 ± 0.287
Syntactic with JCN word similarity 0.3211 ± 0.0123 0.8414 ± 0.151

Dice Semantic with JCN word similarity 0.4331 ± 0.0331 0.7521 ± 0.202
Jaccard Semantic with JCN word similarity 0.3765 ± 0.0447 0.8502 ± 0.1414
Cosine Semantic with JCN word similarity 0.4587 ± 0.0234 0.9083 ± 0.1312

Syntactic with LIN word similarity 0.4377 ± 0.0221 0.5772 ± 0.2796
Dice Semantic with LIN word similarity 0.3786 ± 0.0322 0.6999 ± 0.2294
Jaccard Semantic with LIN word similarity 0.3986 ± 0.0412 0.7409 ± 0.1831

Cosine Semantic with LIN word similarity 0.3753 ± 0.0187 0.7306 ± 0.2085
Hybrid similarity 0.3997 ± 0.0322 0.6173 ± 0.2581
Fuzzy Semantic 0.4689 ± 0.0132 0.7409 ± 0.1998

proposed system consistently maintained its rank and

demonstrated superior performance across the different

datasets. These results indicate that the proposed system

exhibits efficiency and robustness in detecting various

forms of text plagiarism. The success of the proposed

system can be attributed to the support vector machine

(SVM) algorithm's ability to find the hyperplane equation

of the selected 32 features, enabling it to effectively

detect different types of text similarities. The proposed

system's adaptive behaviour has enhanced the Plagdet

score in sub-corpus without negatively affecting the

recall value in the no-obfuscation sub-corpus. These

findings highlight the adaptability and effectiveness of

the proposed system in tackling different challenges

posed by several types of text plagiarism in diverse

datasets.

Discussion

The techniques proposed in this paper hold significant

practical implications for real-world educational settings,

particularly in Word Sense Disambiguation (WSD). By

leveraging the Adapted Lesk algorithm and a knowledge-

based approach using WordNet, these methods offer a

promising avenue for enhancing language understanding

and educational tools. Implementation of these

techniques in educational settings can offer numerous

benefits. Firstly, utilizing widely available resources such

as WordNet facilitates accessibility and reduces

implementation barriers.

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
105

Educational platforms can integrate these methods

seamlessly into their existing infrastructure, allowing

educators and students to benefit from more accurate and

nuanced language analysis. The structured approach

outlined in the manuscript, consisting of input query

processing, pre-processing, and WSD classification units,

provides a clear framework for implementation. The

structured workflow ensures that the system can

effectively handle unstructured queries from users,

process them into structured queries with added linguistic

features, and accurately classify the sense of polysemous

words based on context and lexical data. Despite these

advantages, several potential challenges may arise during

the implementation process. One significant challenge is

adapting the techniques to diverse educational contexts,

each with unique linguistic and pedagogical

requirements. Ensuring the methods are applicable across

various subjects, languages, and educational levels may

require additional customization and fine-tuning.

Integrating these techniques into existing educational

systems may pose technical challenges. Educational

platforms often have diverse architectures and interfaces,

requiring careful consideration to ensure compatibility

and seamless integration. Providing adequate training and

support for educators and students to use these tools

effectively is essential for successful implementation.

Scalability and computational requirements are important

considerations, especially in resource-constrained

educational environments. Ensuring that the methods can

operate efficiently within the constraints of educational

infrastructure, such as limited computing resources and

network bandwidth, is crucial for widespread adoption.

Conclusion

In this research, we thoroughly evaluated the proposed

system for text plagiarism detection using three datasets

constructed from PAN 2012, PAN 2013, and PAN 2014

documents—the experiments aimed to assess the system's

performance in detecting several types of text plagiarism.

The First Dataset extracted positive and negative cases

from the documents of PAN 2012 and served as the

foundation for constructing the proposed plagiarism

detection system. The Second Dataset included cases

extracted from PAN 2012 and PAN 2013 and was

instrumental in training the Support Vector Machine

(SVM) classifier. The SVM classifier's training on this

dataset facilitated the detection of multiple types of text

plagiarism. We evaluated the system's performance on

test documents from the random obfuscation PAN 2013

sub-corpora, complete PAN 2013 corpus, and complete

PAN 2014. The results indicated that when the proposed

system was trained on the Second Dataset, it achieved the

highest classification accuracy. It highlights the system's

effectiveness and superiority in training the SVM

classifier. Metrics such as mean, standard deviation, and

95% confidence limits were instrumental in assessing the

features' ability to distinguish between positive

(plagiarized) and negative (non-plagiarized) cases. The

importance of discriminative sentence similarity features,

characterized by high intra-similarity within the same

class and low inter-similarity between different classes,

was evident. Many sentence similarity features were

observed to have mean values close for both positive and

negative cases, and the 95% confidence limits of positive

cases were closer to the mean values of both positive and

negative cases. It indicated that relying solely on these

features for decision-making might lead to confusion and

Table 7. Comparison of Rank Score.

Comparison of the result of the proposed system on the complete PAN 2014 dataset

Team Plagdet

(%)

F-measure

(%)

Recall

(%)

Precision

(%)

Granularity

Gillam & Notley (2014) 44.08 44.07 29.66 85.74 1.0000

Abnar et al., (2014) 66.38 66.59 84.78 54.83 1.00455

Palkovskii and Belov (2014) 90.78 90.80 88.92 92.76 1.00027

Oberreuter et al., (2014) 89.27 89.30 91.54 87.17 1.00051

Sanchez-Perez et al., (2014) 89.20 89.21 91.98 86.61 1.00026

Glinos (2014) 88.77 89.89 84.51 96.01 1.01761

Shrestha et al., (2014) 86.81 87.05 89.84 84.42 1.00381

Gross & Modaresi, (2014) 85.50 86.84 81.82 92.52 1.02187

PlagLinSVM (2020) 90.01 90.15 90.55 89.75 1.00210

PlagRbfSVM (2020) 88.27 88.40 91.49 85.52 1.00209

El-Rashidy et al. (2023) 92.91 92.95 90.14 95.94 1.00053

Proposed System Using SVM 92.86 92.50 90.84 95.82 1.00087

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
106

inaccurate classification. Thus, combining multiple

features, particularly those with higher intra-similarity

and lower inter-similarity, proved crucial in enhancing

the accuracy and effectiveness of text plagiarism

detection. Looking ahead, we plan to expand the system's

training with a larger data set to evaluate its performance

further. We also foresee potential applications of this

work in detecting plagiarism in documents written in

different languages by leveraging mathematical problem-

solving techniques. We aim to explore the extension of

this approach to detect duplicity in images using Word

Sense Disambiguation (WSD) techniques. The proposed

algorithm's results demonstrated superior performance to

conventional techniques, validating its efficacy in text

plagiarism detection. To enhance future executions, we

aim to reduce time complexity by implementing parallel

computing techniques. The research marks considerable

progress in text plagiarism detection, with the proposed

system showing promising results and potential for

broader applications. As we continue to refine and extend

our approach, we envision a significant contribution to

ensuring the authenticity and originality of digital content

in diverse contexts.

Conflicts of Interest

 The authors declare no conflict of interest.

References

Abdi, A., Shamsuddin, S. M., Idris, N., Alguliyev, R. M.,

& Aliguliyev, R. M. (2017). A linguistic treatment

for automatic external plagiarism detection.

Knowledge-Based Systems, 135, 135-146.

https://doi.org/10.1016/j.knosys.2017.08.008

Abnar, S., Dehghani, M., Zamani, H., & Shakery, A.

(2014). Expanded n-grams for semantic text

alignment.In: CLEF (working notes) 1180:928-938.

Available: http:// ceur- ws. org/ Vol- 1180/ CLEF2

014wn-Pan- Abnar Et2014. Pdf

Agarwal, J., Goudar, R. H., Kumar, P., Sharma, N.,

Parshav, V., Sharma, R., ... & Rao, S. (2013,

August). Intelligent plagiarism detection mechanism

using semantic technology: A different approach.

IEEE, In 2013 International Conference on

Advances in Computing, Communications and

Informatics (ICACCI), pp. 779-783.

 https://doi.org/10.1109/ICACCI.2013.6637273

Altheneyan, A. S., & Menai, M. E. B. (2020). Automatic

plagiarism detection in obfuscated text. Pattern

Analysis and Applications, 23, 1627-1650.

https://doi.org/10.1007/s10044-020-00882-9

Alzahrani, S. M., Salim, N., & Abraham, A. (2012).

Understanding Plagiarism Linguistic Patterns,

Textual Features, and Detection Methods. IEEE

Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), 42(2), 133–149.

https://doi.org/10.1109/tsmcc.2011.2134847

Ayetiran, E. F., & Agbele, K. (2016). An Optimized

Lesk-Based Algorithm for Word Sense

Disambiguation. Open Computer Science, 8(1), 165–

172. https://doi.org/10.1515/comp-2018-0015

Banerjee, S., & Pedersen, T. (2002, February). An

adapted Lesk algorithm for word sense

disambiguation using WordNet. Berlin, Heidelberg:

Springer Berlin Heidelberg, In International

conference on intelligent text processing and

computational linguistics, pp. 136-145.

Basile, P., Caputo, A., & Semeraro, G. (2014, August).

An enhanced lesk word sense disambiguation

algorithm through a distributional semantic model.

In Proceedings of COLING 2014, the 25th

International Conference on Computational

Linguistics: Technical Papers, pp. 1591-1600.

Chong, M., Specia, L., & Mitkov, R. (2010, June). Using

natural language processing for automatic plagiarism

detection. In Proc. of 4th International Plagiarism

Conference, Northrumbia University Newcastle-

upon-Tyne, UK.

El-Rashidy, M. A., Mohamed, R. G., El-Fishawy, N. A.,

& Shouman, M. A. (2023). An effective text

plagiarism detection system based on feature

selection and SVM techniques. Multimedia Tools

and Applications, 83(1), 2609–2646.

 https://doi.org/10.1007/s11042-023-15703-4

En, A. C. M., Karim, A. A., Noor, N. M., & Majid, M. Z.

A. (2023). Plagiarism Experience among Higher

Education Students. International Journal of

Academic Research in Business and Social Sciences,

13(9), 1877–1883.

 http://dx.doi.org/10.6007/IJARBSS/v13-i9/18611

Gillam, L., & Notley, S. (2014, September). Evaluating

Robustness for 'IPCRESS': Surrey's Text Alignment

for Plagiarism Detection-Notebook for PAN at

CLEF 2014. In CLEF 2014 Evaluation Labs and

Workshop—Working Notes Papers, 15-18

September, Sheffield, UK (pp. 951-957). CEUR-

WS. org.

Gipp, B., Meuschke, N., & Breitinger, C. (2014).

Citation-based plagiarism detection: Practicability

on a large-scale scientific corpus. Journal of the

Association for Information Science and

Technology, 65(8), 1527–1540.

 https://doi.org/10.1002/asi.23228

https://doi.org/10.1016/j.knosys.2017.08.008
https://doi.org/10.1007/s10044-020-00882-9

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
107

Glinos, D. G. (2014, September). A Hybrid Architecture

for Plagiarism Detection. In CLEF (working notes),

pp. 958-965.

Gross, P., & Modaresi, P. (2014, September). Plagiarism

Alignment Detection by Merging Context Seeds. In

CLEF (working notes), pp. 966-972.

Haloi, R., Chanda, D., Hazarika, J., & Barman, A.

(2023). Statistical feature-based EEG signals

classification using ANN and SVM classifiers for

Parkinson’s disease detection. Int. J. Exp. Res. Rev.,

31(Spl Volume), 141-149.

 https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.014

Hiremath, S. A., & Otari, M. S. (2014). Plagiarism

detection-different methods and their analysis.

International Journal of Innovative Research in

Advanced Engineering, 1(7), 41-47.

Joshi, M., & Khanna, K. (2013). Plagiarism Detection

over the Web: Review. International Journal of

Computer Applications, 68(15), 17–20.

https://doi.org/10.5120/11655-7163

Kumar, M., Mukherjee, P., Hendre, M., Godse, M., &

Chakraborty, B. (2020). Adapted Lesk Algorithm

based Word Sense Disambiguation using the

Context Information. International Journal of

Advanced Computer Science and Applications,

11(3).

https://doi.org/10.14569/ijacsa.2020.0110330

Kumari, L., & Kumar, S. (2023). Optimizing word sense

disambiguation for Hindi language using extended

Lesk and conceptual density. 8th International

Conference on Computing in Engineering and

Technology (ICCET 2023).

 https://doi.org/10.1049/icp.2023.1493

Mahdavi, P., Siadati, Z., & Yaghmaee, F. (2014,

October). Automatic external Persian plagiarism

detection using vector space model. IEEE, In 2014

4th International Conference on Computer and

Knowledge Engineering (ICCKE), pp. 697-702.

https://doi.org/10.1109/ICCKE.2014.6993398

Manning, C. D., Raghavan, P., & Schütze, H. (2008).

Text classification and naive bayes. Introduction to

Information Retrieval, 1(6).

 https://doi.org/10.1017/CBO9780511809071.014

Maurya, A., & Madhusudhan, M. (2023). Plagiarism in

Research: Problems and its Solutions. Journal of

Advancements in Library Sciences, 10(1), 59–69.

https://doi.org/10.37591/joals.v10i1.3688

Mentari, M., Rozi, I. F., & Rahayu, M. P. (2022). Cross-

Language Text Document Plagiarism Detection

System Using Winnowing Method. Journal of

Applied Intelligent System, 7(1), 44–57.

https://doi.org/10.33633/jais.v7i1.5950

Mozgovoy, M. (2011). Dependency-based rules for

grammar checking with LanguageTool. IEEE, In

2011 Federated Conference on Computer Science

and Information Systems (FedCSIS), pp. 209-212.

Nguyen, Q. H. (2023). AI and Plagiarism: Opinion from

Teachers, Administrators and Policymakers.

Proceedings of the Asia CALL International

Conference, 4, 75–85.

 https://doi.org/10.54855/paic.2346

Oberreuter, G., Carrillo-Cisneros, D., Scherson, I. D., &

Velásquez, J. D. (2014). Submission to the 4th

international competition on plagiarism detection. In

Proc. of 2014 Cross Language Evaluation Forum

Conference, Working Notes Papers of the CLEF

2014 Evaluation Labs, CEUR Workshop

Proceedings.

Palkovskii, Y., & Belov, A. (2014). Developing high-

resolution universal multi-type n-gram plagiarism

detector. Working Notes Papers of the CLEF 2014

Evaluation Labs, 984-989.

Prasanth, S., & Rajshree, R. (2014). A Survey on

Plagiarism Detection. International Journal of

Computer Applications, 86(19).

 https://doi.org/10.5120/15104-3428

Ranjan Pal, A., Kundu, A., Singh, A., Shekhar, R., &

Sinha, K. (2013). Hybrid Approach to Word Sense

Disambiguation Combining Supervised and

Unsupervised Learning. International Journal of

Artificial Intelligence & Applications, 4(4), 89–101.

https://doi.org/10.5121/ijaia.2013.4409

Sanchez-Perez, M. A., Sidorov, G., & Gelbukh, A. F.

(2014). A Winning Approach to Text Alignment for

Text Reuse Detection at PAN 2014. CLEF (Working

Notes), 2014, 1004-1011.

Sánchez-Vega, F., Villatoro-Tello, E., Montes-y-Gómez,

M., Villaseñor-Pineda, L., & Rosso, P. (2013).

Determining and characterizing the reused text for

plagiarism detection. Expert Systems with

Applications, 40(5), 1804-1813.

Sedaghat, S. (2024). Plagiarism and Wrong Content as

Potential Challenges of Using Chatbots Like

ChatGPT in Medical Research. J. Acad. Ethics,

pp.1-3. https://doi.org/10.1007/s10805-024-09533-8

Shrestha, P., Maharjan, S., & Solorio, T. (2014). Machine

Translation Evaluation Metric for Text Alignment.

In CLEF (working notes), pp. 1012-1016.

Slimani, T. (2013). Description and evaluation of

semantic similarity measures approaches. arXiv

preprint arXiv, 1310.8059.

Int. J. Exp. Res. Rev., Vol. 39: 92-108 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007
108

Upadhyay, D. K., Mohapatra, S., Singh, N. K., & Bakhla,

A. K. (2021). Stacked SVM model for Dysthymia

prediction in undergraduates students. IEEE, In 2021

8th International Conference on Signal Processing

and Integrated Networks (SPIN), pp. 1148-1153.

Vani, K., & Gupta, D. (2017). Text plagiarism

classification using syntax-based linguistic features.

Expert Systems with Applications, 88, 448-464.

https://doi.org/10.1016/j.eswa.2017.07.006

Vasilescu, F., Langlais, P., & Lapalme, G. (2004, May).

Evaluating Variants of the Lesk Approach for

Disambiguating Words. In Lrec.

Vrbanec, T., & Meštrović, A. (2020). Corpus-Based

Paraphrase Detection Experiments and Review.

Information, 11(5), 241.

 https://doi.org/10.3390/info11050241

Weber-Wulff, D. (2018). Why does plagiarism detection

software not find all plagiarism? Student Plagiarism

in Higher Education, pp. 62–73.

 https://doi.org/10.4324/9781315166148-5

How to cite this Article:

Devesh Kumar Upadhyay and Keshav Sinha (2024). Enhancing Academic Integrity: An Analysis of Advanced Techniques for

Plagiarism Detection using LESK, Word Sense Disambiguation, and SVM. International Journal of Experimental Research and Review,

39(spl.) 92-108.

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.007

https://creativecommons.org/licenses/by-nc-nd/4.0/

