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Introduction 

Air pollution control and management in open-cast 

coal mines is challenging. Mining coal impacts the 

environment and influences the life of the people and 

ecosystem near the mining area (Agathokleous et al., 

2022; Yang et al., 2022; Zipper and Skousen et al., 2021). 

Most of the coal mines are now equipped with continuous 

ambient air quality monitoring systems (CAAQMS) 

installed within 1.5 km of the mining site, which 

monitors air quality continuously and generates huge data 

sets. Massive, complicated data sets from atmospheric air 

quality monitoring stations must be combined with 

contemporary, reliable statistical approaches to simplify, 

minimize ambiguity, and display spatial variation. The 

Air Quality Index (AQI) is important in determining the 

ambient air quality for any location (Kumar, 2022; Wang 

et al., 2022; Wu et al., 2013). It is based on the 

conversion of the concentration of pollutants in non-

dimensional numbers.  

Many studies have used chemometric techniques to 

model the AQI to find the major contributors of air 

pollutants and their spatial variation (Barjoee et al., 2023; 

Diana et al., 2022; Galán-Madruga et al., 2023). 

Chemometrics is the science of linking measured values 

based on chemical measurements or principles with the 

parameter of interest by statistical or mathematical 

applications. The chemometric analysis is done mainly 

for industrial areas and urban cities (Azid et al., 2015; 

Nunes et al., 2019; Rani et al., 2017). In some reported 

studies, industrial chemometric analysis is used to 
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Abstract: This study aims to analyze the regional variation in the source of air 
pollution, identify the percentage contribution of each pollutant, and distribute the mass 
contribution of each source category using multivariate analysis. The nine air 

monitoring sites were successfully divided into three groups using hierarchical 
agglomerative cluster analysis (HACA) (clusters 1, 2, and 3). The collected 
meteorological data is non-parametric data for the years 2020–2021 which includes 
PM2.5, PM10, SO2, NO2, NO, NOx, CO, wind speed, humidity, wind direction, 
temperature, cloud cover, and surface radiation. The most major air pollution sources 
were identified using Factor Analysis (FA). Multiple linear regression (MLR) and 
principal component regression (PCR) were utilized to create an equation model 
explaining the contaminants' impact in each cluster.  However, it was shown that the 

most important pollutants impacting the value of the air pollutant index (API) are 
gaseous pollutants (NOx and SO2) and particulate matter (PM10 and PM2.5). Gas and 
non-gas pollutants have a 65% influence on cluster 1 and meteorological conditions 
have a 35% effect. Cluster 3 is influenced by 65% particle and non-gas pollutants and 
35% weather conditions, compared to Cluster 2 which is 100% affected by gas and 
particulate pollutants because of its spatial location. This study shows the value of the 
multivariate modeling technique in minimizing the time and expense associated with 
monitoring redundant stations and parameters.  
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understand the movement of pollutants (Grabowski et al., 

2021; Vakarelska et al., 2021). Various research has been 

reported in quantifying the respirable silica emerging 

from coal mines (Stacey et al., 2022). Still, there needs to 

be more research on spatial analysis of pollutants 

emerging from the various activities of the mining 

operations using chemometric techniques. In this study, 

various concentrations of air pollutants and 

meteorological parameters were linked to AQI by 

statistical techniques. 

AQI calculation is based on the concentration of 

pollutants and breakpoint concentrations. However 

ambient air quality is mostly influenced by 

meteorological parameters. Most mining industries have 

CAAQMS, which includes monitoring the concentration 

of air pollutants and meteorological parameters. So 

chemometric techniques can be used to develop models 

to calculate AQI and to analyze the air quality in detail. 

This paper focuses on the combined effect of 

pollutants and meteorological parameters on the air 

quality of a location consisting of nine open-cast mines 

working simultaneously under a 330 km2 area. This paper 

also aims to develop model equations to calculate AQI 

using cluster analysis (CA) and classification model 

techniques and Principal Component Method (PCM) 

under Factor Analysis (FA) (Dragović and Mihailović, 

2009; Hooper and Peters, 1989; Huang et al., 2009; Wold 

et al., 1987). Moreover, this study aims to develop an 

equation using multiple linear regression (MLR) and 

principal component regression (PCR) for the calculation 

of AQI, including meteorological parameters that 

influence air quality to a great extent. It also signifies the 

contribution of various statistical techniques in 

chemometric analysis for understanding air pollution in 

coal mines.  

  Study Area 

The research site chosen for this study is situated in 

Singrauli, a region in central India known for its major 

open coal mining area. This mining operation is overseen 

by Northern Coalfield Ltd. (NCL). The study area lies 

between the latitude of 24°14' 06.24" N to 24°05'02.63" 

N and the longitude of 82°30' 54.71" E to 82° 47'56.13" 

E. A population of 1.2 million people resides in the 

vicinity of the coalfield. The area comprises two main 

basins: the Moher Sub-Basin, with a total coal reserve of 

approximately 6.83 Billion Tons (BT), and the Singrauli 

Main Basin, containing around 3.23 BT of coal (Javed et 

al., 2021). Situated in Singrauli Madhya Pradesh, the coal 

mine area experiences an average annual rainfall of 

1119.65 mm, while the temperature varies between 

extremes, ranging from 47.2 degrees Celsius to 4 degrees 

Celsius. Notably, some portions of the mining area 

extend into the Sonbhadra district of Uttar Pradesh, as 

illustrated in Fig. 1. The study includes nine NCL mines, 

their respective Latitude and Longitude coordinates are 

listed in Table 1. In Fig. 1, these mines are represented by 

an asterisk sign. In the mining area's periphery, four 

major power plants play a significant role in the energy 

supply to the state. 

Table 1.  Locations of CAAQMS Station in Singrauli 

coal mining complex. 

Methods 

Data Collection 

The data have been collected from nine continuous 

monitoring networks from the central control room 

ambient air quality and Management Stations 

(CAAQMS) installed at every mine of the Singrauli 

coalfield complex, as shown in Table 1. The data include 

the gaseous and non-gaseous pollutants and 

meteorological data taken annually from January 1st, 

S
l.

 N
o

. 

Project District State 
Latitu

de 

Longitu

de 

1 AMLOHRI 

PROJECT 

Singraul

i 

MP 24° 05' 

56.24" 

N 

82° 36' 

17.50" E 

2 BINA 

PROJECT 

Sonbhad

ra 

MP/U

P 

24° 09' 

05.20" 

N 

82° 46' 

27.40" E 

3 BLOCK-B 

PROJECT 

Singraul

i 

MP 24° 12' 

18.68" 

N 

82° 35' 

30.88" E 

4 CETI 

(DUDHICH

UA) 

Singraul

i 

MP 24° 12' 

24.18" 

N 

82° 40' 

16.59" E 

5 JAYANT 

PROJECT 

Singraul

i 

MP 24° 06' 

56.00" 

N  

82° 39' 

24.00" E 

6 JHINGURD

A PROJECT 

Singraul

i 

MP 24° 11' 

48.10" 

N 

82° 42' 

13.00" E 

7 KAKRI 

PROJECT 

Sonbhad

ra 

UP 24° 10' 

25.83" 

N  

82° 45' 

48.55" E 

8 KHADIA 

PROJECT 

Sonbhad

ra 

MP/U

P 

24° 07' 

20.00" 

N 

82° 41' 

04.20" E 

9 NIGAHI 

PROJECT 

Singraul

i 

MP 24° 06' 

28.23" 

N 

82° 37' 

42.44" E 
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2020, to December 31, 2020. The daily 24-hour average 

data was calculated from the CAAQMS data taken every 

15 minutes for each day from 00:00 hrs. to 24:00 hrs. for 

the year 2020.  

 

  

 
Figure 1. Coal Mining Complex. 

Table 2.  Availability of Meteorological Parameters. 

Sl. 

No. 

Parameters Amlohri Bina* Dudhichua Block-

B 

Jayant Jhingurda Kakri* Khadia Nigahi 

1 DBT(̊C) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

2 RH (%) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

3 WS(m/s) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

4 WD (̊)  ✓ ✓ ✓ ✓ ✓  ✓ ✓ 

5 HR 

(kWh/m2) 

✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ 

6 Rainfall 

(mm) 

✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ 

7 CO (µg/m3) ✓ ✓  ✓ ✓ ✓ ✓  ✓ 

8 NO2 

(µg/m3) 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

9 NO (µg/m3) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

10 SO2 (µg/m3) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

11 PM10 

(µg/m3) 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

12 PM2.5 

(µg/m3) 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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The distance between the stations and the core mining 

sites was approximately 1.5 km. The data included PM2.5, 

PM10, SO2, NO2, NO, NOx, and CO pollutants. The 

PM2.5 & and PM10 were estimated based on the beta ray 

attenuation technique using a beta gauge by absorbing 

energy passing through the filter tape where the 

particulate matter is collected. SO2 measurement was 

based on the Pulse Fluorescence Analyzer. 

Chemiluminescence was the measurement technique for 

NO2, NO, NOx, and non-dispersive infrared for CO. The 

meteorological parameters include temperature, humidity, 

precipitation, wind direction, wind velocity, and solar 

radiation, which were detected by meteorological 

instruments.  

Where DBT (Average Dry Bulb Temperature), RH 

(Relative Humidity), WS (Wind Direction), HR 

(Horizontal Solar Radiation), CC (Cloud Cover), CO 

(Carbon Monoxide), NO2 (Nitrogen Dioxide), NO (Nitric 

oxide), SO2 (Sulphur Di-oxide), PM (Particulate Matter 

with diameters 10 and 2.5 µm). * Only six-month data is 

available for this coal mine. 

Organization of Data 

Daily average data of all mines was used as input data 

for cluster Analysis and Factor Analysis. The data 

obtained have an overall 4.74% of missing values.  The 

missing values are imputed with the help of a hybrid 

method of multivariate imputation with interpolation 

(Junninen et al., 2004) using IBM SPSS 26.0.0.0 64-bit 

edition software.  

Chemometric Analysis 

Hierarchical Agglomerative Cluster Analysis (HACA) 

Cluster analysis is an unsupervised method to handle a 

large amount of data and reduce it into smaller groups of 

factors known as clusters based on data similarities or 

differences. (Isiyaka et al., 2015; Ramson et al., 2016; 

Too et al., 2011). 

The HACA is applied to the daily average data of 

thirteen parameters, including six meteorological 

parameters and the concentration of seven pollutants 

obtained from all nine mines. A dendrogram plot shows 

the degree of homogeneity through Ward’s methodology 

and Euclidean distance measurements (Lu et al., 2012). 

This method has been performed with the help of IBM 

SPSS 26.0.0.0 64-bit edition software.  

The Euclidean distance (Dij) is defined by equation (1): 

Dij = 

√(𝑥𝑖1 − 𝑥𝑗1)2 + (𝑥𝑖2 − 𝑥𝑗2)2 + ⋯ + (𝑥𝑖𝑚 − 𝑥𝑗𝑚 )2                  

(1) 

Where x1,x2,………xm is the number of observations, i 

and j are the two observed data, and the distance has been 

calculated. Whereas in Ward’s methodology, Analysis of 

Variance (ANOVA) is used to analyze distance and 

ensure that the sum of squares between two clusters is 

minimal (Azid et al., 2015).  

Factor Analysis 

Factor analysis is performed to find the relation 

among variables and to reduce the number of factors 

influencing the overall result of the variables (Mutalib et 

al.,2013). It is a descriptive method similar to Principal 

Component Analysis (PCA). In PCA new variables are 

created based on a linear combination of the observed 

variable, whereas FA factors are identified, which are 

linear functions of observed variables. 

FA is defined by the equation (2): 

𝐹𝑖𝑗 =  ∑ 𝐶𝑓𝑗
𝑚
𝑗=1 𝑓𝑗𝑖 + 𝐸𝑓𝑖                     (2) 

Where F is the measured values of the variable, C is 

the factor loading, f is the factor value, E is the error or 

variation, i is the number of samples, j is the number of 

variables and m is the total number of factors.  

The Principal Component Method (PCM) is a widely 

used Factor Analysis (FA) technique. PCM aims to 

capture the essential patterns in the data by first 

identifying the factor with the highest variability and then 

extracting the maximum variability for each subsequent 

factor. Varimax rotation is employed to enhance the 

understanding of the Principal Components (PCs) 

generated by PCM to improve interpretability. The 

eigenvalues resulting from the varimax rotation are a 

preliminary step for Factor Analysis. Factors with 

eigenvalues exceeding 1 are deemed significant and 

termed Varimax Factors (VFs). VFs with loading values 

surpassing 0.75 are considered to exhibit strong factor 

loadings. In this research, we select factors with factor 

loadings greater than 0.75 to serve as principal 

components. (Azid et al., 2015, Juahir et al., 2011). This 

study applies FA (PCM) to 13 variables independently 

using IBM SPSS 26.0.0.0 64-bit edition software. 

Air Quality Index (AQI) 

The Air Quality Index (AQI) is a helpful tool for 

finding air quality information simply. It takes the 

pollution data about different pollutants in the air and 

converts it into a single number, along with labels and 

colors, to make it easy to understand. 

Calculation of AQI for some pollutant p given by 

National Ambient Air Quality standards (NAAQS) 

defined by equation (3): 

𝐼𝑝 =  
𝐼𝐻𝐼−𝐼𝐿𝑂

𝐵𝑃𝐻𝐼 −𝐵𝑂𝐿𝑂
 (𝐶𝑃 − 𝐵𝑃𝐿𝑂 ) + 𝐼𝐿𝑂                     (3) 

Where Ip is the pollutant index, Cp is the rounded 

concentration of pollutant p, and BPHI and BPLO are the 
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breakpoint concentrations that are greater than and less 

than Cp, respectively. IHI and Ilo are the AQI values 

corresponding to BPHI and BPLO. 

This index is computed by looking at the average 

concentrations of specific pollutants over 24 hours at a 

monitoring site. To calculate the AQI, data for at least 

three pollutants must be available, with one of them being 

either PM2.5 or PM10, as per guidelines from the Central 

Pollution Control Board (CPCB). This ensures that the 

index accurately reflects the air quality conditions. For 

this study, the concentration of 5 major pollutants that is 

SOx, NOx, CO, PM2.5, and PM10 were considered for the 

AQI calculation. 

Multiple Linear Regressions (MLR) 

In atmospheric modeling, MLR is frequently utilized 

(Azid et al., 2015; Dominick et al., 2012; Aertsen et al., 

2010) and is a suitable tool for studying the interaction 

between independent and dependent variables by forming 

a linear equation using observed data. The MLR method 

was used in this study to support the relationship between 

the AQI data and the meteorological parameters along 

with pollutant concentration, which was the most 

important among others. MLR is given by equation (4):  

𝑌𝑖 =  𝛽0 + 𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑘 𝑋𝑘𝑖 + 𝜀𝑖                    (4) 

Where i = 1…..n, β0, β1, and βk are regression 

coefficients, X1 and Xk are independent variables and ε is 

the regression error. 

The contribution of each parameter in AQI is 

determined with the help of the coefficient of 

determination (R2), the adjusted value of the coefficient 

of determination (adjusted R2), and the Root mean square 

error (RMSE). The variables from varimax rotation have 

also been taken as independent variables for AQI 

calculation. 

Results and Discussion 

Air Quality Status of the Study Area 

The annual average data of the pollutants were 

compared with the National Ambient Air Quality 

standard. Figure 2 displays the average PM2.5, PM10, SO2, 

and NO2 concentrations over 2020–2021. The variation in 

concentration of CO (8 hrs.) is shown in Figure 3. For 

PM2.5, four of the nine mines are beyond the permissible 

limit. The maximum concentration was found in Bina and 

Block-B. In comparison, PM10 concentrations exceed the 

ambient air quality standard. The concentration of the 

other two pollutants, NO2 and SO2, was below the 

permissible limit for all nine mines. The mean 

concentration of CO was below the desired level except 

for Block-B and Jayant. The Vindhyachal Thermal Power 

Plant has latitude and longitude of 24° 06' 56.00" N and 

82° 39' 24.00" E respectively 6 km southeast of Amlohri, 

and the prevailing wind is from the ESE (East-South-

East) direction. Pollutants from thermal power plants may 

be dragged in this direction. In contrast, Jayant has less 

pollution than the nearby mine because the prevailing 

wind direction is NW (North-West). It was observed that 

the East-South-East (ESE) was the predominant wind 

direction in Amlohri, Bina, Block-B, and Jayant, while 

the West-South-West (WSW) was more prevalent in 

Dudhichua and Khadia. While the wind patterns in 

Jhingurda and Kakri are the same, Nigahi has 

experienced WNW winds for longer periods of the year. 

 However, the trucks, bulldozers, pay loaders, cranes, 

and heavy earth-moving machinery required for the 

transportation and mining of coal run on diesel, which is 

the main producer of gaseous pollutants which include 

SO2, NO, NO2, and CO. Cowherd et al. (2013) 

established a correlation between emissions from heavy 

machinery and the deterioration of air quality, 

particularly in urban areas. 

Similarly, Ghose and Majee (2000) identified that 

diesel combustion engines are prominent sources of 

particulate emissions, releasing pollutants that adversely 

affect human health and the environment.  Incomplete 

fuel combustion of the vehicles moving coal and 

overburden inside the mine, such as trucks, bulldozers, 

payloaders, cranes, and heavy earth-moving machinery, 

are the leading causes of CO pollution. Nie et al. (2022) 

confirm that vehicles moving coal and overburden in 

mines, like trucks, bulldozers, and more, are a major 

source of carbon monoxide pollution due to incomplete 

fuel burning. Machinery operations directly contribute to 

releasing harmful pollutants like CO. Jayant is one of the 

most significant open-cast mines with an annual 

production of 25 million tons of coal. This substantial 

output involves many vehicles dedicated to hauling coal 

and overburden, which may contribute to CO emissions 

within the mine's vicinity. Block-B is positioned in the 

northwest corner and proximate to a populated region.  

 

 
Figure 2. Yearly Mean Pollution concentration of all 

the nine mines in the Singrauli Coal Complex. 
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The movement of vehicle exhaust in the nearby market 

area is drawn towards the Continuous Ambient Air 

Quality Monitoring Station (CAAQMS) due to prevailing 

east-southeasterly winds (ESE winds), which might be 

the reason for excess CO emission for this mine. 

 
Figure 3. The 8 hrs. Concentration of CO for all the 

nine mines. 

The AQI values for the mining complex are shown in 

Fig. 4. The average AQI for the first three coal mines 

(Amlohri, Nigahi, and Khadia) in Cluster-1 is 153. These 

mines produce about 16 million tons of coal per year and 

cover the largest area for mining. In Cluster-2, in the 

northern part of the study area and including mines like 

Block-B, Dudhichua, Jhingurda, and Bina, the air quality 

index is the highest among all clusters at 224. Cluster-3 

has the lowest air quality index among the three clusters, 

with a value of 120. This cluster includes the Jayant and 

Kakri mines, which produce the least amount of Over 

Burden (OB), about 44 million cubic meters per year. 

The variation of AQI is maximum in Dudhichua and least 

in Jayant. 

 

 
Figure 4. Boxplot of AQI values for the year 2019-

2020. 

Spatial Classification of Mines Based on Air Quality 

Parameters 

The similarities and variations in the air quality 

characteristics and meteorological parameters were 

identified using HACA. Those that exhibited a high 

degree of spatial similarity were put together in one 

cluster. Three clusters were created because of this 

process, as shown in Figure 5. 

Cluster 1 is classified as a moderately Polluted site 

because the average value of AQI is 153 during the entire 

year. These areas comprise Amlohri, Khadia, and Nigahi 

located in the southwest corner of the mining complex, 

and share the same elevation level of approximately 194-

251m approximately. Cluster 2 is classified as a severely 

polluted site as the yearly average value of AQI is 224, 

which includes Jhingurda, Bina, Dudhichua, and Block-B 

which lies in the northern part of the mining complex and 

lies at a higher altitude concerning other mines. Cluster 3 

is the least polluted site among the other two as the value 

of AQI is 120 during the entire year. This cluster includes 

the most significant mines, Jayant and Kakri. The mean 

values of different attributes of all three clusters and their 

associated open-cast coal mines are defined in Table 3. 

Similar results were reported by Wang et al. (2018) by 

identification of redundant stations in air quality 

networks. Gouveia et al. (2015) employ wavelet-based 

clustering techniques, offering a potential approach for 

efficient spatial grouping of stations, which resonates 

with the current research's exploratory methodologies.  

 

 

 
Figure 5. Dendrogram Plot showing spatial 

classification for all the monitoring stations. 



Int. J. Exp. Res. Rev., Vol. 36: 433-446 (2023) 

DOI: https://doi.org/10.52756/ijerr.2023.v36.018 
439 

Ignaccolo et al. (2008) analyzed air quality monitoring 

networks using functional clustering, paralleling the 

current investigation's pursuit of extracting meaningful 

patterns from station data. Furthermore, Lizuka's (2014) 

cluster analysis of air monitoring data from the Kanto 

Region of Japan provides a practical contextualization 

and shows the implications of station clustering on real-

world data. 

Table 3. Mean Values of different attributes for all the 

three clusters. 

Characteristics 

(unit) 

Cluster 1 Cluster 

2 

Cluster 

3 

Production (Mt/year) 16 11 15 

Over Burden 

(Mm3/year) 

66 76 44 

Lease Hold Area 

(km2) 

23 17 18 

Green Cover (km2) 8 7 7 

Mining Operation 

(km2) 

11 8 8 

Haul Road (OB) km 9 12 12 

Haul road (Coal) km 10 8 10 

Transportation of 

OB and Coal 

(tons/day) 

12157 15419 11983 

Mt/Year (Million Tons per year), Mm3/Year (Million 

Cubic Meters per Year), Km2 (Square Kilometer) 

Principal Component Analysis 

The factor analysis is mainly used to find the 

eigenvalues. Each of these eigenvalues is related to 

eigenvectors, which correspond to a group of air quality 

parameters that are mostly correlated. The Principal 

Component method was used to visualize patterns and 

correlations between the data and subsequently identify 

potential emission sources. The implementation of 

Principal Component Analysis (PCA) as a multivariate 

analysis technique was reported by Alonso (2019). In his 

study, Alonso examines statistical tools for air pollution 

assessment, emphasizing the role of multivariate and 

spatial analysis in the Madrid Region.  

Similarly, Yadav et al. (2022) employ multivariate 

statistical methods to investigate air quality in an 

industrially polluted city. Their focus on assessing air 

quality's sustainability aligns with the broader objectives 

of the present study. The PCA for the current data gives 

eigenvalues for all three clusters as shown in scree plots 

in Fig. 6. The factors are shown in Table 4. 

 

 

 
Figure 6. Scree Plot for all the three Clusters formed. 

Cluster 1:  

The first variable factor VF1, clarifies 42.2% of the 

differences in cluster 1. It shows strong positive loadings 

with WS (0.919), Temp (0.915), CO (0.918), 

PM10 (0.861), PM2.5 (0.814), SO2 (0.771), and NOx (0.95) 

as depicted in Fig. 7. Similarly, the factor having 

maximum factor loading signifies the accumulation of 

PM10 and PM2.5 in these mines which is largely due to 
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mining activities. This cluster falls into the category of 

moderate pollution. In Cluster 1, Amlohri, Khadia, and 

Nigahi mines handle more OB than Cluster 2 but less 

than Cluster 3, which is around 66 million cubic meters 

per year (Mm3/year) (Table 3). 

Moreover, burning fossil fuels generates gaseous 

pollutants and serves as the primary pollution source in 

open coal mining areas. Coal and overburden are moved 

using rear-loading dumpers. In cluster 1, 88 dumpers with 

a capacity of 190 tons, 63 dumpers with a capacity of 120 

tons, and 17 dumpers with a capacity of 100 tons are used 

for OB transportation. For coal transport from the quarry 

to the coal stockyard, 93 dumpers with a capacity of 100 

tons and 14 dumpers with a capacity of 85 tons. On  

average, these dumpers handle a combined total of 12157 

tons of OB and Coal every day.  The application of factor 

analysis is substantiated by the study conducted by 

Gocheva et al. (2014) this study explored the utilization 

of factor analysis to enhance the understanding of air 

pollution dynamics in a small urban area. Their 

investigation employed a combination of SARIMA 

(Seasonal Autoregressive Integrated Moving Average) 

and factor analysis techniques, showcasing the potential 

of factor analysis in identifying underlying patterns and 

contributors to air pollution. A similar study was done by 

Keresztes (2017) for an in-depth exploration of air 

pollution dynamics, centered around factor analysis, 

conducted within the context of the Ciuc Basin region. 

The findings of this study were to understand the 

complexities of air quality patterns and their underlying 

contributors. 

The presence of a nearby water body influences the 

fluctuations in meteorological conditions and their impact 

on overall pollution. The research conducted by Gang et 

al. (2016) examines the impacts of land use on air quality 

from a spatiotemporal perspective in Wuhan, China; the 

study investigates the important relationship between 

land use patterns and air quality dynamics, offering a 

comprehensive spatiotemporal analysis of these 

environmental interactions. It also highlighted that water 

bodies exhibit a notable mitigating influence on SO2 and 

PM10 pollution. Similarly, in the study area, Govind 

Ballabh Pant Sagar is situated within a 3 km radius of 

these mines, which can influence the local meteorological 

parameters. 

 

 
Figure 7. PCA loading for Cluster-1 

Table 4. Factor Analysis of Different Clusters. 

Varimax 

Rotation 

Cluster-1 Cluster-2 Cluster-3 

Variable VF1 VF2 VF3 VF1 VF2 VF1 VF2 

HR -0.044 0.014 -0.026 -0.092 0.213 0.109 -0.108 

SR -0.174 -0.231 0.867 -0.011 -0.031 0.043 0.877 

TEMP 0.915 0.273 -0.016 0.041 0.152 -0.481 0.416 

WD -0.739 0.034 0.38 -0.067 0.159 -0.014 0.358 

WS 0.919 0.311 -0.131 0.322 0.365 0.148 0.87 

CC 0.618 -0.145 -0.309 -0.006 -0.095 -0.186 -0.006 

NO2 0.666 0.603 0.066 -0.235 0.358 0.732 0.192 

NOX 0.188 0.95 -0.132 0.872 -0.073 0.927 -0.105 

NO 0.521 0.757 -0.196 0.95 -0.187 0.859 0.127 

PM10 0.019 -0.025 0.861 0.822 -0.022 0.347 0.231 

PM2.5 0.814 0.26 0.241 0.181 -0.888 0.628 0.113 

SO2 0.771 0.497 -0.221 0.071 -0.837 0.029 -0.34 

CO 0.918 0.314 -0.137 0.119 -0.167 0.462 0.514 

Variance 5.4902 2.5003 1.9357 2.5648 1.924 3.1642 2.3482 

% Var 0.422 0.192 0.149 0.197 0.148 0.243 0.181 
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Cluster 2: 

In Varimax Factor One (VF1), significant positive 

loadings are observed for NOx (0.872), PM10 (0.822), and 

NO (0.95), accounting for a considerable 33.2% of the 

total variation. Meanwhile, Varimax Factor Two (VF2) 

reveals that PM2.5 and SO2 have the highest loading 

factors, as shown in Figure 8. These mines handle the 

greatest amount of overburden (OB) at 76 million cubic 

meters per year (Mm3/year), which is the highest among 

all three clusters. The average leasehold area is 

comparatively smaller, approximately 17 km2, compared 

to the other clusters, and this factor contributes 

significantly to the overall pollution levels. The vehicles 

transporting soil and coal via haul roads are the primary 

sources of PM10 and PM2.5 emissions (Aneja et al., 2012). 

Within Cluster 2, the mines have the longest average haul 

roads for OB transportation, with a maximum capacity of 

15,419 tons per day from the OB Bench to the OB dump. 

This is achieved using 224 dumpers with a capacity of 

190 tons, 63 dumpers with a capacity of 100 tons, and 15 

dumpers with a capacity of 85 tons. Coal transportation 

involves 84 trucks with a capacity of 100 tons and three 

dumpers with a rear capacity of 85 tons. The movement 

of these heavy vehicles is a significant contributor to 

gaseous pollution in these mines. 

Furthermore, these mines are situated farther from the 

lake than others, resulting in a lesser impact of 

meteorological conditions on overall pollution levels. 

This causes pollutants to be more concentrated in these 

areas due to their elevated geographical location. 

 

 
Figure 8.  PCA loading for Cluster-2. 

Cluster 3: 

Fig. 9 shows strong positive loadings for SR (0.877), 

WS (0.87), NO (0.859), and NOx (0.927), which are 

associated with two varimax factors, VF1 and VF2, at 

this specific location. These factors together explain 42% 

of the overall variance. 

This cluster of mines has the lowest Air Quality Index 

(AQI) compared to the other clusters. The mines in this 

group handle the smallest amount of overburden (OB), 

specifically 44 million cubic meters per year (Mm3/year), 

and possess the largest lease area. 

The transportation of OB and coal via the haul road is 

also minimal, with only 11,983 tons per day. 

Consequently, fewer trucks and dumpers are involved in 

this cluster. For OB transport, 85 dumpers with capacities 

of 190 tons and 17 with capacities of 85 tons are used. 

For coal transportation, 58 trucks with a capacity of 100 

tons each are employed. 

The movement of wind, particularly from the 

southeast direction originating from Govind Ballabh Pant 

Sagar, plays a significant role in dispersing particle 

pollution. This is particularly relevant to these mines as 

they are situated closest to the water body, so the loading 

of WS is higher. 

 

 
Figure 9. PCA loading for Cluster-3. 

Comparison of Multiple Linear Regression and 

Principal Component Regression for modeling air 

pollution.  

To establish the percentage contribution of each 

pollutant and meteorological parameter in calculating the 

air quality index for each of the three clusters, a Multiple 

linear equation model was developed using MLR and 

PCR. Instead of using all 13 parameters, only the 

principal components from the varimax rotation whose 

factor loading is more than 0.75 have been considered. 

Nazif et al. (2019) focus on multivariate analysis to 

understand monsoon seasonal variations and predict 

particulate matter emission using regression and hybrid 

models. Similarly, Ausati et al. (2016) assess the 
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predictive accuracy of various models, including PCR 

and MLR, for PM2.5 levels. 

Proposed equations for the model and comparison: 

 

 

  

Table 5. Model Equation for all three clusters using MLR and PCR. 

Model Equation RMS

E 

R-

sq 

R-

sq(adj

) 

Numbers of 

Parameters 

Cluster-1  

MLR AQI = 114.54 - 0.7546 HR + 0.0092 SR - 1.925 TEMP -

 0.0903 WD - 6.25 WS + 0.3302 CC - 0.375 NO2 

+ 1.063 NOX- 0.704 NO + 0.9294 PM10 - 0.4194 PM2.5 

+ 0.1898 SO2 + 14.99 CO 

28.31 98.6

3 

98.61 13 

PCR AQI = 76.58 - 0.1138 SR - 2.373 TEMP + 8.999 WS 

+ 0.8558 NOX- 0.849 NO+ 0.9379 PM10- 0.4321 PM2.5  

+ 0.491 SO2 

31.32 98.3

2 

98.30 8 

Cluster-2  

MLR AQI = 73.9 - 2.62 NOX + 3.36 NO - 2.35 PM10 

+ 1.299 PM2.5 + 0.142 SO2 + 0.0245 NO2 - 0.278 NOX 

+ 0.682 NO- 0.505 PM10 + 1.2480 PM2.5 + 0.1137 SO2 

+ 5.9767 CO 

43.94 97.2

2 

97.19 12 

PCR AQI = 45.72 - 0.516 NOX + 0.798 NO - 0.594 PM10 

+ 1.2698 PM2.5 + 0.0499 SO2 + 5.9463 CO 

44.99 97.0

7 

97.06 6 

Clsuter-3  

MLR AQI = 26.43 - 0.0185 HR + 0.0042 SR - 0.360 TEMP -

 0.0227 WD + 6.74 WS + 0.0153 CC + 0.464 NO2 -

 0.531 NOX+ 0.653 NO+ 0.5495 PM10+ 0.7766 PM2.5 

+ 0.2454 SO2 + 3.95 CO 

18.92 88.2

1 

87.98 13 

PCR AQI = 21.88+ 8.46 WS - 0.3632 NOX + 0.533 NO 

+ 0.5510 PM10+0.7771 PM2.5 + 0.2420 SO2+ 4.83 CO 

18.98 88.0

6 

87.90 7 

Figure 10. Percentage Contribution of gaseous, non-gaseous, and meteorological parameters. 
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The equations created by MLR and PCR for the three 

clusters in mentioned Tabler 5 appear to have the highest 

R2 value of 0.98. PCR for the same cluster employing 8 

parameters has an R2 value of 0.98. Cluster 2 has the 

second-highest correlation coefficient value of 0.97, 

whereas PCR with 6 parameters offers the same R2 

value, these monitored parameters have a significant 

impact on the level of the air pollution index. The PCR 

and MLR for cluster 3 with 13 and 7 parameters 

respectively have the lowest R2 value, which is 0.88. 

PCR with a lesser number of variables performed well 

with significant values of coefficient of Correlation and 

RMSE. The outcomes signify that some of the variables 

are redundant due to multicollinearity. Hence AQI can be 

calculated with the least parameters effectively for all 

these mining sites. 

Percentage contribution of Gaseous and Non-gaseous 

Pollutants and meteorological conditions affecting the 

AQI of the mining complex. 

Models for the nine mines were created using the 

Principal Component Regression technique. The most 

important factor influencing the value of AQI is shown in 

Fig. 7, 8, and 9. The AQI value is most significantly 

influenced by particulate pollutants, nitrogen oxides, and 

carbon monoxide, followed by temperature, wind speed, 

and surface radiation for clusters 1 and 3. All five 

pollutants have a dominant impact on Cluster 2, but 

meteorological parameters do not affect these mines as 

shown by the AQI equation in table 5. Fig. 10 depicts the 

results as pie charts for gaseous pollutants, particle 

pollutants, and weather conditions. 44% of gaseous 

pollutants, 21% of non-gaseous pollutants, and 35% of 

meteorological conditions impact Cluster 1, respectively. 

In cluster 2, gaseous and non-gaseous pollutants have a 

100% influence on the air pollution index, with no 

contribution from the weather. 65% of secondary gas and 

non-gas pollutants and 35% of climatic conditions impact 

Cluster 3. 

The influence of weather conditions on the air quality 

index (AQI) of mines in clusters 1 and 3 may be mostly 

explained by the distance from water bodies and the 

elevation of the mining regions.  The mines in Cluster 2 

are more distant from the water body and at higher 

elevations. 

Currently, AQI is calculated based on the 

concentration of the pollutants and their breakpoints. The 

AQI equations developed in this study involve a 

concentration of air pollutants and meteorological 

parameters, which influence ambient air quality to a large 

extent. 

Conclusion 

The usefulness of the chemometric technique in 

modeling atmospheric air pollution for a coal mining 

complex has been demonstrated in this study. Based on 

the degree of similarity and difference between the 

monitoring stations, the HACA result correctly divides 

the nine open-cast coal mines into three clusters. PCM 

loading through FA helps in finding the most influencing 

factors. According to MLR's and PCR's explicit equation 

model for AQI, multicollinearity and the repetition of 

factors in modeling can be eliminated. AQI can also be 

influenced by meteorological factors along with 

pollutants at a particular location. The movement of 

vehicles on haul roads inside the mining area is the major 

contributor to gaseous and particulate pollution. Wind 

Speed and Surface radiation play an important role in the 

overall pollution dispersion.  Additionally, such studies 

are key in refining the AQI, enabling a more accurate 

determination of pollution levels in affected regions.   

The future scope of this study is to apply these 

chemometric techniques to various mining regions for 

broader environmental impact assessments, integrating 

advanced predictive technologies for enhanced AQI 

forecasting, and informing policy development for more 

effective air pollution control in mining areas. 
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