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Introduction 

IoT devices are data-driven, and the world should 

concentrate more on safeguarding data than anything else. 

The cybersecurity law developed in 2017 contains a 

stipulation regarding personal privacy protection, 

including the personal information of network operators. 

The illegal use of sensitive information, i.e., personal 

information, is prohibited by law (Jain et al., 2023). 

Furthermore, in 2018, the European Union issued 

substantial directives governing how businesses handle 

personal data. These principles require the ethical 

treatment of individual information, creating trust and 

responsibility in data management procedures, and 

making it illegal for business models to gather, exchange, 

or analyze data without the user's permission (Abadi et al., 

2016; Jain et al., 2023). 

 

Beyond legal methods to avoid information leaks, 

effective privacy protection in ML needs the unique 

properties of ML itself (Bettini and Riboni, 2015; Mondal 

et al., 2023). It necessitates building model structures and 

training procedures with privacy protection as a top 

priority, guaranteeing that sensitive personal information 

is inaccessible to unauthorized parties throughout the 

learning process. 

Traditional machine learning techniques have a 

centralized method, with data collectors gathering 

information from numerous sources before being 

examined by data specialists (Feng et al., 2019; Samadder 

et al., 2023). This method is known as centralized learning 

(Fig. 1). First, In the centralized learning paradigm, after 

collecting data, users can hardly have control over the data 
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and don’t know how the data will be used or where it will 

be used (Gupta et al., 2020). Second, in the modern 

environment, scholars have tried computing global models 

using localized data. For instance, federated learning by 

Google has been in use since 2017. Despite giving users 

partial power over their private data, this definition does 

not enable users to mitigate privacy vulnerabilities fully 

(Owusu et al., 2021). 

At the same time, privacy protection in machine 

learning is ensured using differential privacy algorithms 

and their diverse modifications. Differential privacy is 

improved by researchers from three primary perspectives: 

differential privacy based on gradients, function-based 

differential privacy, and label-based differential privacy 

(Truex et al., 2019; Kumar et al., 2023). In all cases, 

differential privacy is based on a shared goal, which is to 

add specific noise in diverse ways and directions when 

zeroing in on the machine learning process (Pei et al., 

2022; Pal et al., 2023).  

For example, Abadi and colleagues used the method to 

define the connection between the relationships and 

stabilize the gradient descent amplifications to maintain 

privacy. The challenge associated with the method was its 

inability to concentrate on complex models. In 

addition, the optimization of the DP-GAN method adds 

noise-protected data to the gradient calculation through the 

Wasserstein distance (Shokri et al., 2015). Despite the 

current use of the generators to improve the quality of the 

training data, the approach has effectiveness issues on 

complex datasets. Moreover, Jain and coworkers further 

used privacy methods, including the new layer of privacy 

reporting and the gradient descent-based global sensitivity 

computing layer. In addition, the addition of the network 

layer, which had limitations on complex networks (Wang 

et al., 2020; Yadav and Singh, 2023). 

Majorly, few authors have creatively developed 

ADLM, a new differential privacy immune mechanism. 

During the training, ADLM dynamically adjusts the noise 

level by boosting the noise in insufficiently correlated 

neurons. Therefore, while this modification led to a 

striking improvement in model accuracy, it reduced the 

accuracy value by reporting 84.8 percent performance in 

the CIFAR-10 dataset (Jain et al., 2022). Furthermore, few 

authors implement a novel deep learning approach for 

semi-supervised learning using knowledge transfer 

techniques (Claerhout et al., 2005). To achieve high model 

accuracy and other robust protections for privacy, train 

several teacher models on different data sets to predict 

their deployment. They add noise to the student model 

while training, and the student model with high accuracy 

needs an accurate teacher model (Bu et al., 2021). 

Although there are many privacy-preserving 

algorithms developed to ensure high levels of data privacy, 

adding noise may actually lead to a decrease in a model’s 

ability to fit data with high accuracy (Miller et al., 2009). 

Such a trade-off between data authenticity and privacy 

security can considerably decrease the performance of 

machine learning models based on the classifications. 

Recently, advanced intelligent data or pattern recognition 

technologies, especially deep learning, have become 

drastically popular. Advanced intelligent data recognition 

technologies, particularly deep learning, have attracted 

significant attention (Zheng et al., 2017). This facilitates 

improved prediction accuracy in differential privacy 

models. Given these insights, this article proposes a novel 

approach to safeguarding privacy through the integration 

of differential privacy with convolutional networks. In 

addition to enhancing privacy protection, this method 

improves data availability; it still protects sensitive 

information in the datasets. In addition, it can restore 

Figure 1. Centralized Learning Process: A Central Server Collects Data 

from Numerous Sources. 



Int. J. Exp. Res. Rev., Vol. 39: 190-199 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v39spl.015 
192 

training in very small sample sizes for large sample sizes 

by a multi-factor of ORd4, which lowers the success of the 

attack. These are the only types of attacks available prior 

to our study and are only usable via equation-solving 

methods, most effective on a simple linear binary model 

(Wang et al., 2020). 

Therefore, the paper contains a literature review in 

Section 2, a comprehensive presentation of our algorithm 

in Section 3, methodology in Section 4, results and 

discussion in Section 5, and a conclusion in Section 6. 

Literature Review 

Following are the privacy challenges and how machine 

learning methodologies are applied to mitigate them: 

Navigating Privacy Challenges 

The quick evolution of data processing has raised 

security fears regarding sensitive information from many 

quarters. In the domain of machine learning, confidential 

data breaches commonly appear in two ways: 

Direct Privacy Disclosure 

These stem from extensive data collection practices by 

untrustworthy data collectors who acquire personal data 

and share or trade data without individuals' consent (Zhu 

et al., 2020). 

Indirect Privacy Disclosure 

This arises from the inadequate generalization ability 

of machine learning models. In a significant advancement, 

they developed ADLM, a novel mechanism for 

differential privacy protection (Jain et al., 2023).  

The adjustment mentioned above uniquely boosted the 

accuracy, which reached an outstanding 84.8% when 

applied to the CIFAR-10 dataset. Furthermore, there is a 

deep learning mechanism that uses knowledge distillation-

based techniques. They designed a novel approach for 

training deep learning models by training multiple teacher 

models with different datasets and combining their 

predictions to introduce noise while training the model. 

Not only does this approach guarantee high model 

accuracy, but it also guarantees strong privacy protection. 

However, having accurate student-teacher models requires 

highly accurate teachers, who need data to train the model. 

However, they developed a novel mechanism for 

differential values called ADLM (Pei et al., 2022). This 

compromise between data authenticity and privacy 

security could ultimately harm the classification accuracy 

of a machine-learning model. 

Advanced intelligent data recognition technologies, 

notably deep learning, have sparked great interest and 

allow for enhanced prediction accuracy in differential 

privacy models. Given these findings, this study presents 

a novel technique for protecting privacy by combining 

differential privacy with convolutional networks. This 

technique not only improves the accuracy of data but also 

increases its availability (Feng et al., 2019). It can 

reconstitute training with small sample numbers while 

reducing the efficacy of attacks with large samples. Early 

model theft attacks are generally based on equation-

solving algorithms (Kairouz et al., 2019). 

Reconstruction Attack 

Adversaries attempt to recreate sensitive details or a 

specific model for individuals from training datasets. 

These initiatives involve techniques, including model 

inversion attacks and model theft (Gupta et al., 2020). 

Model inversion attacks attempt to extract sensitive 

information about people via dynamic analysis or 

similarity evaluations. The model uses data to strengthen 

defences against such breaches, using confidence 

algorithms to detect built-in virtual profiles to disclose 

genuine data. Model-stealing attacks use early methods 

based on equation-solving techniques, but they can be 

expanded to complicated models with predictive 

confidence (Arachchige et al., 2019). 

Member Inference Attack (MIA) 

Attackers seek to check whether a given sample 

correlates with the training dataset. Such inference can 

have serious repercussions, such as diagnostic models 

created with sensitive medical data (Yuan et al., 2013). In 

this case, the attacks are primarily motivated by the 

similarity between data distribution and model structures. 

In addition to the privacy preservation risks, machine 

learning suffers from several security challenges. Unlike 

privacy issues, which can lead to data leaks, security flaws 

can jeopardize the operation and accuracy of machine 

learning models (Jain et al., 2022). Poisoning and anti-

sample attacks are two security concerns that might occur 

during the model training and application stages. 

Machine Learning for Privacy Preservation 

Privacy preservation scenarios are responsible for 

privacy disclosure, require suitable methods to protect 

privacy, and need to consider some scenarios to obtain an 

approach. These two factors play a vital role in executing 

these approaches: the first is reliability, which depends on 

the distribution of training data, and the second is that the 

model outperforms noise (Zhu et al., 2020; Malin et al., 

2004). 

Machine Learning Techniques 

 Machine learning techniques include supervised, 

unsupervised, and reinforcement learning. Training 

approaches include centralized, distributed, and 

collaborative learning models. Each approach handles 

training datasets differently and influences privacy 

concerns (Bonawitz et al., 2019). 
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Classification of Privacy Protection Technologies 

Typical privacy protection methods include DP 

(Differential Privacy), HE (Homomorphic Encryption), 

and SMC (Secure Multiparty Computing). Depending on 

different levels of data privacy we have to ensure a high 

level of security (Zhang et al., 2020). 

To sum up, it takes consistent efforts on multiple 

fronts—regulation, building a better model, and utilizing 

various PPT research—to address privacy concerns in 

machine learning (Cui et al., 2019). 

Proposed Work 

This section provides the details of the proposed work 

and related definitions. The proposed work incorporates 

the properties of the modified differential privacy 

technique and Gaussian distributions. It then determines 

the privacy of each layer in the neural network. It then uses 

the gradient values from stochastic gradient descent to 

calculate the amount of Gaussian noise, preserving 

sensitive data.  

 

Corresponding Terminology 

Microsoft announced differential privacy in 2006. It 

creates a rigorous mathematical framework for analyzing 

privacy. Privacy can be achieved by adding noise to the 

original data while maintaining its integrity. 

Two remarkable things about it are that it is indifferent 

to any particular concept of an attacker and concerned only 

with data privacy. What is formally called differential 

privacy is (ε, δ)-differential privacy, where ε is the level of 

privacy guarantee while δ is the additive error. To put it in 

simple terms, this means that for any two training data 

sets, i.e., D and D', the latter having just one record at most 

different from the former, A produces results complying 

with some criterion. The formula for this is Pr[(A(D′)) = 

R)] ≤( e^(ε))* Pr[(A(D) = R)] + ε, where algorithm A 

satisfies (ε, δ), i.e., differential privacy. If ε is smaller, then 

it indicates better privacy protection. 

How Algorithms Work 

There are two main challenges to deploying the (ε, δ) 

DPP (Differential Privacy Preservation) technique: 

1. Select where to insert the noise. 

2. Effective deployment of resources 

The proposed technique addresses these difficulties by 

incorporating different levels of privacy into neural 

network training. 

Methodology 

The proposed method effectively integrates the 

properties of adjusted DP (differential privacy) and 

Gaussian accumulations. This makes it possible to 

determine the explicit privacy budgets of every layer 

within a neural network model. It uses the gradient values 

from the SGD (Stochastic Gradient Descent) algorithm to 

check how much Gaussian noise should be added. 

Outcomes show that by fine-tuning the value of 

parameters in the modified DPM (Differential Privacy 

Model), our suggested model is good in terms of accuracy, 

efficiency, and privacy.  

The (ε, δ)-DPP (Differential Privacy Protection) 

Figure 2. Model Generation Process Using Machine Learning. 
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technique is implemented and tested for experimental 

purposes. Results focus on the privacy-preserving 

capabilities of the algorithm while ensuring that data 

utility is also not compromised. The evaluation would also 

involve privacy preservation and model availability to 

ascertain how well the algorithm performed under real-

world conditions. This work aims to evaluate the 

performance of DCGAN (Deep Convolutional Generative 

Adversarial Network). 

To achieve these goals, the proposed algorithm 

generates synthetic data using DCGAN and compares it 

with the original dataset to check for closeness. When the 

similarity is above a certain predetermined threshold, we 

need to fine-tune the model to align perfectly with these 

criteria.  

Through experiments, we strive to prove that our 

algorithm is able to ensure the privacy-utility trade-off. 

Finally, the performance of the algorithm is measured 

through the preservation of privacy and the availability of 

the model. 

For our experiments, we used an Intel (R), Xeon (R), 

CPU E5-2603 V3 @ 1.60 GHz with 8 GB of memory. In 

addition, the system comprises two Titan X GPUs and is 

based on the Ubuntu 16.04. For all of our experiments, we 

used Python with the TensorFlow 1.0 framework, built 

using Bazel 0.3.1. The MNIST dataset used for the 

experiment contains 60,000 training and 10000 testing 

samples. 

Results & Discussions 

Dataset Used 

For experimental purposes, we consider the MNIST 

dataset with 𝐶 = 4(Gradient threshold) and PCA reduced 

to 60 dimensions. The Bork assesses to measure the 

effectiveness and efficiency of functions provided 

different privacy constraint ε along with allowable limit 

bias, i.e., δ, which spends much on variance scale, i.e., σ. 

Experimental work 

 For σ = 8 (Figure 4), our algorithm performs poorly 

against the training set and test set, i.e., larger noise scales 

should undermine training quality while still maintaining 

the privacy of the testing dataset (Jain et al., 2023). 

Table 1. Classification Accuracy and Success Rate on 

Different Size of Data. 

Size of 

Data 

Epoch Accuracy % Attack 

success % 

10000 10 98.52 12.14 

20000 10 92.34 20.74 

30000 10 90.42 26.05 

10000 25 85.18 33.54 

20000 25 56.75 46.98 

30000 25 52.25 41.25 

10000 50 48.74 59.56 

20000 50 22.89 79.52 

For σ set to 4 (Figure 5), the algorithm's performance 

diminished over time, indicating improved balance. 

The most consistent results were produced with σ = 2, 

and the model’s performance was observed. We also 

conducted single-sample label inference attacks to assess 

the robustness of this kind of attack. The results indicated 

a significant (p <0.05) negative correlation between the 

success rate and accuracy of the model classification. 

Overfitting decreased the model’s ability to generalize and 

how well it defended against inference. 

Figure 3. Methodology of the Proposed Work. 
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As expected, increasing the number of training samples 

and epochs led to higher overfitting, reduced classification 

accuracy, and an increased inference attack  

 

success rate. However, we take 10,000 samples for model 

training and perform 10 epochs. The trained model gives 

an effective classification accuracy of 98.75% and a 

13.14% inference attack success rate. 

Comparison between the Proposed and Existing 

Systems 

The proposed technique is compared with the existing 

one. The difference between the proposed model and a 

CNN model based on classification accuracy and 

inference attacks is shown in Table 2. 

 

 
Figure 4.  Outcomes at Variance σ=8 & Level of Privacy Guarantee ε=0.5. 

 
Figure 5.  Outcomes at Variance σ=4 & Level of Privacy Guarantee ε=0.5. 
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Table 2 shows the comparison of classification 

accuracy and inference attacks between the proposed work 

and a CNN-based work (Pei et al., 2022). The proposed 

work outperformed CNN in terms of classification 

accuracy and defence against attacks. With 50 training 

rounds for CNN, its attack accuracy and classification 

accuracy decreased, indicating overfitting. A comparison 

between proposed and existing techniques is shown in 

Figure 7.  

Conclusion and Future Work 

This paper tries to tackle the privacy issue, i.e., is it 

possible to get privacy in machine learning tasks without 

losing classification accuracy? The proposed approach 

addresses this issue by blending tailored differential  

 

 

 

privacy methods with deep learning, which effectively 

preserves private information in the training data. During 

the process of parameter optimization for a network 

model, we inject noise data into an entirely modified DP 

framework. Our experimental results show that there is a 

trade-off between the accessibility of DNN training 

datasets and privacy leakage. This method guarantees high 

classification accuracy without revealing too much 

information. Such an approach can form a solid foundation 

for concepts of privacy regarding users and machine 

learning problems at scale. Collectively, they offer 

significantly more granular control over their own data. 

Going forward, we are going to focus on the efficiency and 

robustness of the technique. 

 

Table 2. Comparison of Classification Accuracy between Proposed and Existing Works. 

Size Data Total Epoch 

Proposed Model 

accuracy (%) 

Success Rate 

of Attacks (%) 

 

Existing (CNN) 

(%) 

Success Rate 

of CNN 

Attacks (%) 

10000 10 98.97 10.75 95.38 95.25 

20000 10 98.52 12.16 95.12 87.56 

30000 10 97.91 12.33 93.65 66.12 

10000 25 97.59 13.75 94.74 78.15 

20000 25 99.02 11.94 95.78 64.22 

30000 25 96.78 12.12 94.77 60.57 

10000 50 97.36 12.28 94.29 65.72 

20000 50 98.22 10.74 93.15 59.87 

30000 50 99.02 11.72 96.46 53.85 
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