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Introduction 

Artificial intelligence is a computer science branch 

that covers machine learning and deep learning concepts. 

With several innovations in numerous domains, machine 

learning has recently grown in importance as a topic of 

study. The discipline is not without its difficulties and 

restrictions, though, including the requirement for a lot of 

data, the possibility of biased algorithms, and the 

difficulty of deciphering and understanding the behavior 

of complicated models. Addressing these issues and 

improving the state of the art in machine learning are the 

main goals of ongoing research. Machine learning 

consists of supervised, semi-supervised and unsupervised 

learning (Mao et al., 2019). The supervised learning 

machine-learning paradigm uses a collection of paired 

input-output training samples to discover the connection 

between a system's input and output. Given that the 

output is viewed as the input's label or oversight, an 
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Abstract: The current research endeavors to evaluate the efficacy of regression-based 

machine learning algorithms through an assessment of their performance using diverse 

metrics. The focus of our study involves the implementation of the breast cancer 

Wisconsin (Diagnostic) dataset, employing both the random forest and gradient-

boosting regression algorithms. In our comprehensive performance analysis, we utilized 

key metrics such as Mean Squared Error (MSE), R-squared, Mean Absolute Error 

(MAE), and Coefficient of Determination (COD), supplemented by additional metrics. 

The evaluation aimed to gauge the algorithms' accuracy and predictive capabilities. 

Notably, for continuous target variables, the gradient-boosting regression model 

emerged as particularly noteworthy in terms of performance when compared to other 

models. The gradient-boosting regression model exhibited remarkable results, 

highlighting its superiority in handling the breast cancer dataset. The model achieved an 

impressively low MSE value of 0.05, indicating minimal prediction errors. Furthermore, 

the R-squared value of 0.89 highlighted the model's ability to explain the variance in the 

data, affirming its robust predictive power. The Mean Absolute Error (MAE) of 0.14 

reinforced the model's accuracy in predicting continuous outcomes. Beyond these core 

metrics, the study incorporated additional measures to provide a comprehensive 

understanding of the algorithms' performance. The findings underscore the potential of 

gradient-boosting regression in enhancing predictive accuracy for datasets with 

continuous target variables, particularly evident in the context of breast cancer 

diagnosis. This research contributes valuable insights to the ongoing exploration of 

machine learning algorithms, providing a basis for informed decision-making in 

medical and predictive analytics domains. 
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input-output training sample is also referred to as labelled 

training data (Verbraeken et al., 2020). Supervised 

learning consists of two things: regression and 

classification.  

A supervised machine learning technique for 

predicting continuous values is regression. The final goal 

of the regression process is to draw the line or curve that 

best fits the data. Regression models map the input 

domain into a real-value domain. Classification is another 

technique of supervised learning used to map the input 

with predefined classes (Choi and Lim, 2020; Mishra et 

al., 2004). 

Regression is of different types, which are discussed 

as follows: 

Simple Linear Regression 

Linear regression (Sudhaman et al., 2022) aims to 

reveal the relationship between two variables. One 

variable is supposed to be independent, while the other is 

supposed to be dependent. Simple regression separates 

the influence of independent factors from the interface of 

dependent variables. This linear regression shown in eq.1 

is also known as the population regression function.  

s = β0 + β1t + ℇ …………………………………(1) 

Where β0 and β1  are estimates and ℇ is the error term. 

Multivariate Linear Regression  

Multivariate linear regression (Maulud and 

Abdulazeez, 2020) is a supervised learning algorithm that 

involves multiple input independent variables and one 

dependent variable.   

s = β0 + β1.t1 + β2.t2 +….. + βn.tn + ℇ ………….(2) 

It is a technique for simulating the interaction between 

several independent variables i.e. t1 to tn and a dependent 

variable s, while assuming a linear relationship. It can be 

applied to both models and anticipate how different 

variables would affect a dependent variable. 

When the relationship between the variables is 

expected to be approximately linear, multivariate 

regression is often used, whereas polynomial regression 

is used when the relationship is expected to be nonlinear. 

However, the method to use is ultimately determined by 

the specific problem and the nature of the data. 

Polynomial Linear Regression 

In this regression, the relationship between the 

independent variable t and the dependent variable s is 

handled (Tabelini et al., 2021) as an nth-degree 

polynomial in t. Polynomial regression (Jie and Zheng, 

2019) can fit a nonlinear relationship between the value 

of t and the associated conditional mean of s. 

s = β0 + β1t + β2t 2 + ⋯ + βℎt ℎ + ℇ ………….…..(3) 

Where h is the polynomial degree 

The analyst can determine the degree of the 

polynomial function based on the complexity of the 

relationship between the dependent and independent 

variables. A degree 2 polynomial, for example, would fit 

a quadratic relationship between the variables, whereas a 

degree 3 polynomial would fit a cubic relationship.  

During training, the polynomial regression model 

employs an optimization algorithm to determine the 

coefficient values that best fit the training data. Ordinary 

least square is the most commonly used algorithm, which 

minimizes the sum of the squared differences between 

the dependent variable's actual value and its anticipated 

value. 

It should, however, be used with caution because 

higher-degree polynomials can overfit the training data, 

resulting in poor simplification of new data. It is used to 

model complex nonlinear relationships between variables 

in many fields, including finance, engineering, and social 

sciences. After training, the polynomial regression model 

will be used to predict new data by inputting the values of 

the independent variable(s) and using the model to 

compute the corresponding predicted value of the 

dependent variable. 

Logistic Regression 

Logistic regression models are commonly used to 

investigate how various predictors impact categorical 

outcomes. For binary outcomes, such as the existence or 

lack of a disease, a binary logistic model is appropriate. If 

the model includes just one predictor variable, it is 

known as a logistic regression model. On the other hand, 

if the model involves multiple interpreters, such as 

categorical and continuous variables, it is mentioned as a 

multivariable logistic regression (Khadhouri et al., 2022). 

 A logistic function (also known as the sigmoid 

function) is used in the logistic regression model to 

convert a linear combination of predictor variables into a 

probability value between 0 and 1. The logistic regression 

equation is as follows: 

T = 1 / (1 + e^(-n))………………………… (4) 

Where: The predicted probability of the dependent 

variable having the value 1 is given by T. 

The direct combination of the predictor variables and 

their coefficients is denoted by n, which can be written 

as: 

n = β0 + β1t1 + β2t2 + ... + βntn……………...(5) 

    Where: β0 is the intercept or bias term; β1, β2, ..., 

βn are the coefficients or weights of the predictor 

variables t1, t2, ..., tn. 
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Formerly trained, the logistic regression model can be 

used to predict new data by inputting the values of the 

predictor variables and using the model to compute the 

corresponding probability of the dependent variable with 

the value 1. To convert the probability value into a binary 

classification decision, a threshold value can be set. The 

threshold value is typically set to 0.5, but it can be 

adjusted to achieve the desired balance of precision and 

recall. 

Ridge Regression 

Ridge regression is a type of regularized linear 

regression that is commonly used in machine learning 

and statistical modelling. It is employed when there are 

many predictor variables (sometimes referred to as 

features) in comparison to the number of observations or 

when the predictor variables have a high degree of 

correlation. 

Ridge regression is a system that comprises adding a 

penalty term to the cost function of ordinary least squares 

(OLS) regression. This cost function minimizes the 

squared difference between the actual and predicted 

values. The added penalty term is based on the L2-norm 

of the regression coefficients, which encourages the 

coefficients to be smaller and helps prevent overfitting of 

the model. 

The ridge regression model is formulated as: 

S = tβ + ε…………………………………….(6) 

Where S is the dependent variable, t represents the 

predictor variable matrix, β represents the vector of 

regression coefficients, and ε stands for the error term. 

The OLS cost function is augmented with a penalty term 

λ||β||^2, where λ is a hyperparameter that controls the 

strength of the penalty and ||β||^2 is the L2-norm of the 

coefficient vector. Ridge regression was first proposed by 

Arthur Hoerl and Robert Kennard (Hoerl and Kennard, 

1970) in 1970. Since then, it has become a popular tool 

for dealing with high-dimensional data in a variety of 

fields, including economics, finance, engineering, and 

bioinformatics. 

Lasso regression 

Lasso regression is another type of regularized linear 

regression that is used to address overfitting and feature 

selection. It stands for "Least Absolute Shrinkage and 

Selection Operator" and was coined by (Tibshirani, 

1996). In this, a penalty term is added to the OLS cost 

function, like Ridge regression. However, instead of 

using the L2-norm of the coefficient vector, lasso uses 

the L1-norm. This leads to a sparse solution where some 

of the coefficients are exactly zero, effectively 

performing feature selection. 

The lasso regression model is formulated as: 

S = tβ + ε……………………………………(7) 

Where S and t is the dependent variable and the 

matrix of predictor variables respectively, β is the vector 

of regression coefficients, and ε is the error term. The 

OLS cost function is augmented with a penalty term 

λ||β||_1, where λ is a hyperparameter that controls the 

strength of the penalty and ||β||_1 is the L1-norm of the 

coefficient vector. 

Lasso regression has found applications in various 

fields, including finance, genetics, and computer vision. 

Poisson Regression 

To model count data, a type of generalized linear 

model (GLM) known as Poisson regression is often used. 

This approach assumes that the response variable follows 

a Poisson distribution (Joe and Zhu, 2005) with the 

predictor variables affecting the distribution's mean. 

The Poisson regression model can be expressed as: 

log(E(S | T)) = β0 + β1T1 + β2T2 + ... + βkTk….(8) 

where E(S | T) is the expected value of S given T and 

S is the response variable T is a vector of predictor 

variables, is a vector of coefficients, and The natural 

logarithm (log) function is the link function used in 

Poisson regression, which warranties that the predicted 

values are not negative. The Poisson regression model is 

frequently used to represent count data, such as the 

number of events, occurrences, or observations in a 

particular time or region, in disciplines including 

epidemiology, biology, and social sciences. 

Stepwise Regression  

An approach for choosing a selection of predictor 

variables to include in a linear regression model is 

stepwise regression. Depending on the significance of 

each variable, it can be carried out either forwards or 

backwards, adding or eliminating each one one at a time. 

By avoiding overfitting, the objective is to determine the 

most significant predictors. Using a criterion like the F-

test or AIC, the forward stepwise regression approach 

starts with an empty model and adds variables one at a 

time based on their importance. Starting with a complete 

model, the backward stepwise regression approach 

eliminates variables one at a time according to their 

relevance. 

Mathematically, the forward stepwise regression 

(Chen et al., 2014) method can be expressed as follows: 

1. Start with an empty model: S = β0 + ε 

2. For each predictor variable Ti, fit the model: S = β0 

+ βiTi + ε 

3. Choose the variable Ti that results in the highest F-

statistic or lowest AIC value 
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4. Add the variable Ti to the model: S = β0 + βiTi + 

βjTj + ε 

5. Repeat steps 2-4 until no variable can be added to 

the model 

The backward stepwise regression method can be 

expressed as follows: 

1. Begin with a full model: S = β0 + β1T1 + β2T2 + ... 

+ βkTk + ε 

2. For each predictor variable Ti, fit a model without 

that variable: S = β0 + β1T1 + ... + βi-1Ti-1 + 

βi+1Ti+1 + ... + βkTk + ε 

3. Select the variable Ti that yields the lowest F-

statistic or the highest AIC value 

4. Remove the variable Ti from the model: Y = β0 + 

β1T1 + ... + βi-1Ti-1 + βi+1Ti+1 + ... + βkTk + ε 

5. Repeat steps 2-4 until no variable can be removed 

from the model. 

Stepwise regression contains constraints and 

underlying assumptions that should be thoroughly 

examined before using it to choose significant predictors. 

Stepwise regression can either be employed in addition to 

or in place of other variable selection techniques like 

regularization or model averaging. 

Multilevel Regression 

Multilevel regression is a statistical method for 

analyzing data that has an ordered or nested structure, 

such as students nested within schools, personnel nested 

within groups or patients nested within hospitals. It is 

also known as hierarchical linear modelling or mixed-

effects modelling. By modelling the variation at each 

level of the hierarchy and predicting the associations 

between variables at each level, multilevel regression 

takes into consideration the hierarchical structure of the 

data. 

When examining data with nested structures, 

multilevel regression is an effective method that can give  

 

 

important insights into the correlations between variables 

at different levels of the hierarchy (Bosker and Snijders, 

2012). 

Quantile Regression 

    Given the predictor variables, quantile regression 

calculates the conditional quantile function of the 

response variable. It is said that the conditional quantile 

function is: 

Q(s|t) = inf {q: P (s <= q | t) >= τ} …………….(9) 

Where s is the response variable, t is the predictor 

variable (s), τ is the quantile of interest (e.g., τ=0.5 for the 

median), and Q(s|t) is the value of the response variable 

at the τth quantile given the predictor variables. 

The quantile regression (Geraci and Bottai, 2007) 

estimator minimizes the following objective function: 

∑ᵢ [τ – I (sᵢ <= tᵢβ)](ρ(sᵢ - tᵢβ))…………………(10) 

Where (I) is the indicator function, is a vector of 

regression coefficients, and ρ(u)controls how the 

residuals are weighted. Based on the required 

characteristics of the estimator, the function ρ(u) can be 

selected. 

Bayesian Regression 

A statistical technique for simulating relation-nships 

between factors is called Bayesian regression. Bayesian 

regression offers a means to include prior knowledge or 

beliefs about the variables in the model, unlike 

conventional regression techniques. 

Assuming a linear regression model with a regularly 

distributed error structure, response variable y, and 

predictor variable x, we can write: 

s_i = β0 + β1*t_i + epsilon_i ……………….(11) 

Where s_i is the observed response for the ith 

observation, t_i is the corresponding predictor value, β0 

and β1 are the intercept and slope coefficients to be 

estimated, and epsilon_i are the error terms assumed to 

be normally distributed with mean 0 and variance 

sigma^2. 

In Bayesian regression (Emami et al.,2018) we 

specify prior distributions for the model parameters β0, 

β1, and sigma^2, and update them based on the observed 

data using Bayes' theorem.  

Specifically, we have: 

p(β0, β1, sigma^2 | y, x) = p(y | β0, β1, sigma^2, x) * 

p(β0, β1, sigma^2) ……………………………...(12) 

Where, p(y | β0, β1, sigma^2, x) is the likelihood 

function of the data, which specifies the probability of 

observing the data given the model parameters, and p(β0, 

β1, sigma^2) is the prior distribution of the parameters. 

Metrics used in Regression 

Explanation of each metric commonly used to assess 

regression models: 

Mean Squared Error and Root Mean Squared Error  

The MSE is the mean squared error between the 

actual number and the predicted value. A smaller MSE 

(James et al., 2013) indicates a better fit of the model.  

MSE = 1/n * Σ (yᵢ - ȳ)²………………………(13)  

where n signifies the numeral of observations, yᵢ 

signifies the expected value for observation i and ȳ  

signifies the average of the actual values. 

RMSE = √MSE……………………………..(14) 
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The same units are used to express the dependent 

variable and the RMSE (Wang and Lu, 2018) which is 

the square root of the MSE. Both metrics penalize large 

errors more heavily than small errors. 

Mean Absolute Error 

The MAE is the average absolute alteration between 

the expected and real values. Like the MSE and RMSE, a 

lower MAE (De Myttenaere et al., 2016) indicates a 

greater fit of the model. Because it does not square the 

errors, the MAE is less susceptible to outliers than the 

MSE and RMSE. 

MAE = 1/n * Σ |yᵢ - ŷᵢ| ……………………..(15) 

R-squared (R²) and Adjusted R-squared (R²) 

How well the model accounts for the deviation in the 

dependent variable is determined by its R-squared 

(Gelman et al., 2019) value. Values between 0 and 1 

indicate the goodness of fit, with higher values 

suggesting a better fit. The adjusted R-squared penalizes 

the model for having too many variables and is useful for 

relating models with different numbers of predictors. 

R² = 1 - (SSᵣₑₛ / SSᵣₜ) ……………………….(16) 

Where SSᵣₑₛ represents the summation of squares of 

residuals or the difference between anticipated and actual 

values, and SSᵣₜ represents the sum of squares of all the 

values (the change between the actual values and the 

mean of the actual values). 

To account for the numeral of predictors in a model, a 

modified version of R-squared known as adjusted R-

squared is often used: 

Adjusted R² = 1 - [(1 - R²) * (n - 1) / (n - p - 1)]…(17) 

Where p is the numeral of predictors in the model. 

Mean Absolute Percentage Error 

The MAPE is the normal of the total percentage 

differences between the expected and real values 

(Makridakis et al., 2018; De Myttenaere et al., 2016). It is 

expressed as a percentage and is useful for evaluating 

models in which the scale of the variable is important. 

The MAPE is sensitive to small values and can become 

undefined if the actual value is zero. 

MAPE = 100/n * Σ |(yᵢ - ŷᵢ)/yᵢ| ……………..(18) 

yᵢ is the expected value for the ith observation, and nȳ is 

the mean of the actual values. 

Coefficient of Determination 

COD, which represents the square of the correlation 

coefficient between the predicted and actual data, is a 

metric of quality of fit. A better fit is indicated by a 

higher COD value, which ranges from 0 to 1. The COD is 

commonly employed in industries like banking and 

economics even if it is less understandable than R-

squared (Chicco et al., 2021; Schober et al., 2018). 

COD = r² ……………………………………(19) 

where r is the correlation coefficient. 

Akaike Information Criterion and Bayesian 

Information Criterion 

AIC and BIC are measures that compare the quality of 

a model to that of other models. These metrics consider 

both the model's goodness of fit and its complexity. A 

lower value of AIC (Vrieze, 2012) or BIC (Acquah et al., 

2010) indicates a better fit, with AIC being more severe 

in penalizing overfitting. 

They are calculated as follows: 

AIC = -2 ln(J) + 2r …………………………(20) 

BIC = -2 ln(J) + r ln(n) …………………….(21) 

In the formula, J represents the likelihood of the data 

given the model, r is the number of parameters in the 

model, and n is the no. of observations. 

Mean Forecast Error 

The average of the discrepancies between the 

predicted and real values is known as the MFE. In 

contrast to the other metrics, a smaller MFE (De 

Myttenaere et al., 2016) is not always superior because it 

ignores the direction of the errors. 

MFE = 1/n * Σ (yᵢ - ŷᵢ) ……………………(22) 

Methodology 

Here breast cancer datasets have been used for 

research some of which may be more accurate or 

representative of real-world scenarios than others. Here 

are a few examples: 

The SEER Dataset: 

The National Cancer Institute's surveillance, 

epidemiology and end results (SEER) initiative compiles 

information on cancer patients in the country. The SEER 

dataset (Ahmed et al., 2023) contains statistics on patient 

demographics, cancer stage and treatment, as well as 

survival rates for people with breast cancer. 

The TCGA Dataset: 

The full form of TCGA is the cancer genome atlas, it 

is a program that collects genomic data and clinical 

information from multiple cancer types, including breast 

cancer. The TCGA (Dehkharghanian et al., 2023) breast 

cancer dataset includes information on gene expression, 

DNA mutations, and clinical outcomes for breast cancer 

patients. 

The METABRIC Dataset: 

The full form of METABRIC (Chen et al., 2023) is 

the molecular taxonomy of the breast cancer international 

consortium. It is a multi-centre study that collected gene 

expression data, clinical information, and survival 
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outcomes for breast cancer patients. The dataset includes 

information on over 2,000 patients with primary breast 

cancer. 

The ICGC Dataset: 

The International Cancer Genome Consortium 

(ICGC) is a collaborative project that aims to collect 

genomic data and clinical information on multiple cancer 

types, including breast cancer. The ICGC (He et al., 

2023) breast cancer dataset includes information on DNA 

mutations, gene expression, and clinical outcomes for 

breast cancer patients. 

    In our work, the breast cancer Wisconsin dataset 

(Nemade et al., 2023) is taken, which is one of the most 

commonly used breast cancer datasets. This dataset has 

twelve features and 569 instances. Other versions of this 

dataset have additional attributes or slightly different 

attribute names. Id_number, radius, diagnosis, area, 

texture, perimeter, compactness, concave points, 

smoothness, concavity, symmetry, and fractal dimension 

are the features of this dataset. 

Following are the steps for model building: 

Preprocess the Data: 

Data preprocessing is a vital step in machine learning 

because it can increase the precision and dependability of 

the final model. Here the dataset consists of 569 instances 

and 12 attributes, a detailed explanation of each step in 

preprocessing the Breast Cancer Wisconsin (Diagnostic) 

dataset is given below: 

Importing Dataset:  

Importing the dataset is the first stage. A dataset with 

569 instances and 12 columns is obtained from the UCI 

Machine Learning Repository. 

Splitting the Dataset into Labels and Features: 

A label (output variable) in the dataset shows whether 

the mass was malignant or benign, and features (input 

variables) in the dataset are measurements of various 

characteristics of breast mass samples. Features will be 

separated from the label before applying machine-

learning algorithms. 

Handling Missing Values: 

It's essential to figure out whether the dataset contains 

any missing values. There are different approaches to 

handling missing values. Here instead of dropping the 

rows with the missing values are imputed with mean, 

median, and mode. 

 

 

 

 

 

 

 

Encoding Categorical Data: 

Some features are categorical, such as the diagnosis 

(M or B). These are encoded in numerical values before 

applying the machine-learning algorithm. One popular 

method for encoding categorical data is one-hot 

encoding, which creates a new column for each possible 

value of the categorical variable. 

The general architecture of the preprocessing and 

model building is shown in Figure 1. 

Training and Testing: 

Two sets—the training set and the testing set—are 

produced once the data has been preprocessed. The 

testing set is used to evaluate the machine learning 

model's performance, while the training set is used to 

train the model. Here, 80% of the data are used for 

training and 20% are used for assessment. 

Model Building: 

With different machine learning algorithms like 

decision trees, random forests, support vector machines, 

and neural networks, the Wisconsin dataset is typically 

used for classification tasks. But here regression 

algorithms are used to predict continuous variables 

(radius and area of the breast mass). These continuous 

variables are included as features in the dataset and are 

related to the malignancy of the mass. By Using 

regression algorithms, the  radius or area of a   breast 

mass will be predicted. 

Performance Evaluation: 

Instead of using classification metrics like accuracy, 

precision, recall and F1 score, it is important to assess the 

performance of the regression model using suitable 

metrics like mean squared error, R-squared, mean 

absolute error, coefficient of determination and mean 

forecast error. 

Results & Discussion 

We conducted a regression analysis on the breast 

cancer dataset using the different regression algorithms, 

implemented in Python 3.9.4. The analysis was run on a 

Dell XPS 13 laptop with an Intel Core i7-1165G7 

processor and 16 GB of RAM. perimeter, and 

compactness. In Table 2 the target variable is radius. 

Here gradient boosting regression shows less MSE value 

as shown in Figure 2. 
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Table 2. Comparison between different regressions using radius as a target variable 

Target Variable 
Regression 

Type 
MSE R-squared MAE COD MFE 

Radius Linear Regression 0.08 0.78 0.21 0.77 0.00 

Radius Ridge Regression 0.09 0.77 0.21 0.76 -0.001 

Radius Lasso Regression 0.13 0.66 0.27 0.65 0.00 

Radius Elastic Net 0.11 0.71 0.25 0.70 0.00 

Radius Decision Tree 

Regression 

0.15 0.60 0.30 0.59 0.00 

Radius Random Forest 

Regression 

0.07 0.82 0.17 0.82 0.00 

Radius Gradient Boosting 

Regression 

0.05 0.89 0.14 0.88 0.00 

Figure 1. Comparison between different 

regressions using radius as a target variable. 
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Table 3. Comparison between different regressions using perimeter as a target variable. 

Target 

Variable 
Model MSE R-squared MAE COD MFE 

Perimeter Linear Regression 0.24 0.54 0.37 0.53 0.00 

Perimeter Ridge Regression 0.25 0.52 0.38 0.52 0.001 

Perimeter Lasso Regression 0.37 0.29 0.45 0.27 0.00 

Perimeter Elastic Net 0.30 0.42 0.39 0.40 0.00 

Perimeter Decision Tree Regression 0.31 0.40 0.40 0.39 0.00 

Perimeter 
Random Forest 

Regression 
0.15 0.66 0.27 0.65 0.00 

Perimeter 
Gradient Boosting 

Regression 
0.11 0.73 0.23 0.72 0.00 

Table 4. Comparison between different regressions using compactness as a target variable 

Target 

Variable 
Model MSE R-squared MAE COD MFE 

Compactness Linear Regression 0.28 0.46 0.41 0.45 0.00 

Compactness Ridge Regression 0.28 0.45 0.41 0.44 0.00 

Compactness Lasso Regression 0.38 0.30 0.46 0.28 0.00 

Compactness Elastic Net 0.32 0.38 0.43 0.37 0.00 

Compactness 
Decision Tree 

Regression 
0.44 0.17 0.50 0.15 0.00 

Compactness 
Random Forest 

Regression 
0.22 0.63 0.32 0.62 0.00 

Compactness 
Gradient Boosting 

Regression 
0.18 0.69 0.28 0.69 0.00 

Figure 2. Comparison of different regressions with MSE when the target 

variable is a radius. 
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Figure 3. Comparison of different regression with R-squared values 

when the target variable is a radius 

Figure 4. Comparison of different regression with MSE when the target 

variable is a perimeter. 

Figure 5. Comparison of different regression with R-Squared values 

when the target variable is a perimeter. 
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Conclusion 

We have applied six different regression models on 

the breast cancer dataset using various continuous 

variables as the target variable. The Random Forest and 

Gradient Boosting Regression models consistently 

outperformed the other models in terms of their mean 

squared error, R-squared, and mean absolute error. 

For example, when using 'radius' as the target 

variable, the Random Forest Regression model achieved 

an MSE of 0.07, R-squared of 0.82, and MAE of 0.17, 

while the Gradient Boosting Regression model achieved 

an MSE of 0.05, R-squared of 0.89, and MAE of 0.14. In 

contrast, the other models achieved higher MSE and 

lower R-squared values, indicating that they were not as 

effective at capturing the underlying relationships 

between the predictors and target variables. 

We also calculated the Coefficient of Determination 

(Adj R-squared) to account for the number of predictors 

used in each model. This provided a more accurate 

measure of the model's performance, especially when 

comparing models with different numbers of predictors. 

Gradient Boosting Regression models consistently 

achieved higher Adj R-squared values across multiple 

target variables, indicating that they can better capture the 

variation in the data. 
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Figure 6. Comparison of different regression with MSE when the target 

variable is a compactness. 

Figure 7. Comparison of different regression with MSE when the target 

variable is a compactness. 
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