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Introduction 

In order to increase farming operations' productivity, 

sustainability and efficiency, smart farming incorporates 

modern technologies (Karunathilake et al., 2023). 

Drones, also known as unmanned aerial vehicles, are 

cutting-edge techniques in contemporary agriculture that 

transform conventional farming methods through smart 

farming. These aerial vehicles, equipped with state-of-

the-art sensors, cameras, and data analytics capabilities, 

enable farmers to manage their fields and crops in 

entirely new ways. By employing UAV technology to 

deliver precise, real-time insights into crop health, soil 

conditions, and overall farm management, smart farming 

has advanced beyond conventional methods (Akkem et 

al., 2023; Dawn et al., 2023; Lachgar et al., 2023). 

Farmers now have access to valuable data that they can 

use to increase crop yields, make educated decisions, and 

promote sustainable agricultural practises thanks to the 

ability of these unmanned devices to collect high-

resolution data across vast agricultural landscapes (El-
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Abstract: Smart farming technologies enable farmers to use resources like water, 

fertilizer and pesticides as efficiently as possible. This paper discusses how 

Unmanned Aerial Vehicle (UAV) pictures can be used to automatically detect and 

count tassels, thereby advancing the advancement of strategic maize planting. The real 

state of affairs in cornfields is complicated, though, and the current algorithms 

struggle to provide the speed and accuracy required for real-time detection. This 

research employed a sizable, excellent dataset of maize tassels to solve this problem. 

This paper suggests using the bottom-hat-top-hat preprocessing technique to address 

the lighting irregularities and noise in maize photos taken by drones. The Lightweight 

weight-stacked hourglass Network (LS-HGNet) model is suggested for classification. 

The hourglass network structure of LS-HGNet, which is mostly utilised as a backbone 

network, has allowed significant advancements in the discovery of maize tassels. In 

light of this, the current work suggests a lighter variant of the hourglass network that 

also enhances the accuracy of tassel detection in maize plants. The additional skip 

connections used in the new hourglass network architecture allow minimal changes to 

the number of network parameters while improving performance. Consequently, the 

suggested LS-HGNet classifier lowers the computational burden and increases the 

convolutional receptive field. The hyperparameter tuning process is then carried out 

using the Sooty Tern Optimisation Algorithm (STOA), which helps increase tassel 

detection accuracy. Numerous tests were conducted to verify that the suggested 

approach is more accurate at 98.7% and more efficient than the most advanced 

techniques currently in use. 
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Ghamry et al., 2023). Smart farming with UAVs 

represents a significant advancement in agricultural 

productivity, efficiency, and environmental stewardship 

by combining technology with the time-honoured practise 

of cultivation. In the end, this approach shapes the future 

of farming (Dhruva et al., 2023).  

What makes deep learning different from other 

machine learning branches is its ability to recognise 

patterns or representations automatically from raw data 

without explicit programming (Thirumalraj et al., 2024). 

Essentially, multiple layers of DL models are composed 

of systematically arranged networks of connected 

neurons or nodes (Meng et al., 2023). The advantages of 

deep learning have revolutionised numerous sectors, such 

as computer vision, natural language processing, 

healthcare, finance, and autonomous vehicles (Salehi et 

al., 2023). Due to deep learning, complicated problems 

that were previously challenging to resolve with 

traditional machine-learning techniques can now be 

resolved (Yuan et al., 2023). 

CNNs process images of crops, fields, and plants from 

various sources. They have the capacity to identify 

diseases, assess crop health, assess growth stages, and 

monitor environmental variables (Zhang et al., 2023). 

CNNs analyse these visual cues and provide farmers with 

pertinent information that helps them make timely 

decisions. Conventional agricultural methods are 

transformed by CNNs used in smart farming through the 

use of computer vision (El-Ghamry et al., 2023). These 

networks enable farmers to make data-driven decisions, 

increase productivity, enhance sustainability, and 

optimise resource usage (Thorat et al., 2023; Aishwarya 

et al., 2023). 

Motivation 

The suggested work offers a revolutionary method for 

transforming the planting of maize by leveraging cutting-

edge smart farming technologies. This study is motivated 

by the recognition of precision agriculture's role in 

optimising the use of resources like water, fertilisers, and 

pesticides in contemporary farming practices. Using 

UAVs to automatically detect and count maize tassels is a 

crucial first step towards intelligent maize planting. 

However, because real-field scenarios are complex, 

current algorithms have difficulty achieving accurate 

real-time detection. This work presents a comprehensive 

strategy that includes a large, high-quality dataset and a 

novel preprocessing method to address image noises. The 

development of LS-HGNet, a more efficient and 

lightweight version of the Hourglass Network, 

significantly improves tassel detection accuracy while 

reducing processing load. Extended convolutional 

receptive field with optimal performance is achieved by 

multiplying the number of skip connections. The 

accuracy of tassel detection is further enhanced by 

hyperparameter tuning with the SHOA. These 

developments culminate in a recommended method that 

achieves an amazing accuracy of 98.78%, surpassing the 

most recent techniques. This study makes a compelling 

case for the creation of clever methods for planting maize 

and emphasises how cutting-edge technologies have the 

revolutionary potential to revolutionise agricultural 

practices, increase crop yield, and promote sustainability. 

Main Contributions 

• Preprocessing Strategy: explains how to fix 

problems like noise and erratic lighting in drone-

captured photos of maize by using the "bottom-hat-

top-hat strategy". 

• Proposed Model: LS-HGNet) is offered in the LS-

HGNet Model as a more successful iteration of the 

hourglass network.  

• SHOA for Hyperparameter Tuning: The accuracy of 

the proposed LS-HGNet classifier in tassel detection 

is increased by using the STOA for hyperparameter 

tuning. 

• Evaluation: In this paper, performance metrics like 

Accuracy (ACC), Specificity (SP), F1-Score (F1), 

Recall (RC), and Precision (PR) are quantified to 

evaluate the overall results. 

Chapter Organisation 

The format of the following is the paper: But Section 

2 offers a much more in-depth examination of pertinent 

data. Section 3 briefly summarizes the suggested 

paradigm, while Section 4 explains the study's findings 

and validation process. Section 5 provides a summary of 

the findings to wrap up the investigation. 

Related Works 

In order to improve the unmanned aerial vehicle 

(UAV) and the dataset data acquisition method, images 

of maize tassels gathered over various eras were first 

obtained, balancing picture quality and acquisition 

efficiency. Moreover, an attention mechanism was 

included to remove undesired elements and reduce noise 

(such as occlusions and overlaps) in the main features. 

Expanding upon YOLOX, this strong detection network 

has shown to be more dependable and suitable for use in 

intricate natural settings. The experiment's results showed 

95.0% for the mean average precision (mAP@0.5), 

supporting the study's hypothesis. When the average 

values of the original model were compared to the 

increases were 1.7%, 1.8, 5.3, and 1.5 for the mAP@0.5, 

mAP@0.5–0.95, mAP@0.5–0.95 (area=small), and 



Int. J. Exp. Res. Rev., Vol. 37: 96-108 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v37spl.008 
98 

mAP@0.5–0.95 (area=medium), respectively. The 

suggested technique successfully satisfied the vision 

system's requirements for resilience and precision in the 

detection of maize tassels. 

The impact of the RetinaNet model on mapping 

variations in plant variety, planting density, brightness, 

and image resolution was investigated in the paper by 

Wang et al. (2013). As compared to the original 

RetinaNet model, the enhanced RetinaNet model 

demonstrated a significant improvement in identifying 

maize tassels. The average precision, recall rate, and 

precision for this study were, respectively, 0.9036, 0.9717 

and 0.9802. Compared to RetinaNet, an enhanced version 

of the original model, increased recall rate, precision, and 

average precision by 4.6%, 1.57%, and 1.84%, 

respectively. The improved RetinaNet model identified 

smaller maize tassels more accurately than well-known 

target detection models like Faster R-CNN, YOLOX and 

SSD. Maize tassel detection deteriorated as the resolution 

decreased for equal-area images with varying resolutions. 

It also investigated how brightness affected detection in 

the different models. As the image's brightness rose, it 

became harder to identify maize tassels, especially for 

smaller ones. This study also examined the different 

models used to identify the tassels on five distinct types 

of maize. Zhengdan958, with R2 values of 0.9708, 

0.9759 and 0.9545 on August 5, 9 and 20, 2021, 

respectively, was the most easily detected tassel. In the 

end, several models were used to recognize corn tassels 

planted at varying densities. Regarding Zhengdan958 

tassel identification, the mean absolute errors at 29,985, 

44,978, 67,466 and 89,955 plants/hm2 were, respectively, 

0.18, 0.26, 0.48 and 0.63. The planting density increased 

with a gradual increase in the detection error. 

Furthermore, this study offered a novel technique for 

small-scale maize tassel identification in farmland, 

enabling high-precision tassel identification. This 

technology would enable high throughput analysis of the 

phenotypic traits of maize. 

Based on YOLOv7 as the original model, Pu et al. 

(2023) proposed an approach to maize tassel detection 

using a Tassel-YOLO model. The model used a 

VoVGSCSP module in the neck section in addition to the 

GSConv convolution, enhanced it to a SIoU loss 

function, and included a global attention mechanism. The 

model's computation cost and model parameters were 

4.11 M and 11.4 G below, in that order, than those of 

YOLOv7. The counting accuracy went up to 97.55%. 

Experimental results show that Tassel-YOLO 

outperformed other widely used object detection 

algorithms in general. As a result, Tassel-YOLO 

provided a unique method for detecting maize tassels 

using UAV aerial photos and successfully met the needs 

for real-time detection, thereby serving as an 

investigation of the YOLO network architecture. 

Following the path of specialists in machine learning, 

the study by Lu et al. (2023) introduced Yolov8's cutting-

edge technology to the study of plants. There were also a 

few simple yet effective adjustments made. The Path 

Aggregation Network (PANet) was designed to 

compensate for the resolution loss caused by the larger 

receptive field by integrating shallow-level information. 

In order to maximize the precision of up-sampled 

features, Content-Aware Re-assembly of Features 

(CARAFE), a lightweight up-sampling operator, was 

combined with the Multi-Efficient Channel Attention 

(Mlt-ECA) technique. The combined technique, dubbed 

Yolov8-UAV, greatly enhanced the ability to recognize 

small objects in images of unmanned aerial vehicles 

(UAVs). Four different plant species were included in the 

datasets that served as the basis for the analysis. Test 

results demonstrated that the proposed method had 

sufficient resilience and was highly competitive even 

against the most advanced counting techniques. In 

addition, a new dataset of cotton bolls with thorough 

bounding box annotations was made available to advance 

multidisciplinary computer vision and plant science 

research. New labels were supplied to correct previous 

errors in publicly available wheat ear datasets, which are 

in line with global research advances. All things 

considered, this research gave practitioners a solid 

approach to dealing with issues pertaining to practical 

implementation. Yolov8-UAV was advised to be used for 

UAV scenarios. Yolov8-N, on the other hand, was a good 

option for general scenes because of its generally good 

accuracy and speed. Two notable datasets with research 

value were supplied in order to promote the application 

of data sources to plant science. To summarise, the 

contribution entailed enhancing Yolov8's application in 

UAV scenarios and releasing two datasets that included 

bounding boxes. 

A brand-new one-stage, single-level feature-based, 

Maize tassel detector without anchor (MT-Det) was 

proposed in the paper by Zeng et al. (2023). It was 

supposed to be simple but effective. Extensive analyses 

revealed that in terms of inference speed and detection 

accuracy, MT-Det performed better than feature pyramid 

detectors and one-level counterparts. In order to tackle 

the problem of notable accuracy decline when making 

direct inferences from high-resolution images, the 

proposed MT-Det improved mean average precision 

(mAP) by 13% and 38%, respectively, on proximal and 
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unmanned aerial vehicle (UAV) high-resolution images 

by incorporating A collection of technologies for hyper 

inference aided by slicing. MT-Det offered a practical, 

high-throughput method for precise and effective maize 

tassel detection and counting in real-world field settings. 

Thermal and multispectral UAV remote sensing 

techniques were employed in the study by Jia et al. 

(2023) to monitor two different kinds of leaf spot 

diseases in maize: Bipolaris maydis is the cause of 

southern leaf blight, while Curvularia lutana causes 

curvularia leaf spot. Four cutting-edge classifiers were 

compared in order to create the best classification model 

to track the occurrence of these diseases: back 

propagation neural networks, support vector machines, 

random forest (RF), and extreme gradient boosting. The 

most helpful features for identifying four phases of the 

maize leaf spot illness including 4, 12, 19 and 30 days 

after inoculation—were identified using recursive feature 

elimination (RFE). The findings demonstrated that the 

multispectral indices most sensitive to the occurrence of 

maize leaf spots were those that comprised the red, red 

edge and near-infrared bands. It was also found that the 

two thermal parameters that were studied— Normalised 

canopy temperature and canopy temperature- were 

essential in identifying whether or not maize leaf spot 

was present. After 19 days of inoculation, healthy and 

leaf spot disease-affected maize could be identified using 

features filtered using the RF algorithm as well as the RF 

classifier, with precision >0.9 and recall >0.95. However, 

the accuracy was significantly lower in the early stages of 

the disease (precision = 0.4, recall = 0.53). It might be 

useful to monitor maize leaf spot disease in its early 

stages by using hyperspectral and oblique observations. 

Tzutalin, D.L. suggested a unique lightweight neural 

network called Tassel LFANet to accurately and 

efficiently detect and count maize tassels in high 

spatiotemporal picture sequences (Tzutalin et al., 2023). 

The structure of this network was robust and efficient. 

The suggested method used a cross-stage fusion strategy 

to balance the variability of various layers, which 

enhanced Tassel LFANet's feature learning performance. 

Tassel LFANet further captured a variety of feature 

representations by utilising multiple receptive fields. It 

also included a novel visual channel attention module to 

increase the adaptability and precision of feature capture 

and detection. Tassel LFANet outperformed an updated 

version of lightweight networks in terms of performance, 

flexibility, and adaptability; it only needed 6.0M 

parameters and produced an F1 measure value of 94.4% 

and a mAP.@5 value of 96.8%, as demonstrated by a 

series of comparative experiments carried out on a newly 

created, extremely informative dataset called MrMT. 

Additionally, the proposed model performed better in 

counting than the TasselNetV3-Seg† model, which is 

based on regression and has an R2 of 0.99, an RMSE of 

2.68, and a mean absolute error (MAE) of 1.80. The 

suggested model satisfied the vision system's needs for 

speed and accuracy in tassel detection in maize. 

Moreover, the suggested approach was resilient and 

unaffected by regional variations, offering vital technical 

assistance for automated counting in the field. 

Research Gap 

Regarding the robustness and adaptability of these 

models to various environmental conditions, there is a 

significant research gap in the field of maize tassel 

detection using different machine-learning models and 

techniques. To detect maize tassels using UAV images, a 

number of studies have proposed sophisticated models 

such as SEYOLOX-tiny, RetinaNet, Tassel-YOLO, 

Yolov8-UAV, MT-Det and others. However, a thorough 

comparison of these models under various environmental 

conditions is still lacking. The existing literature focuses 

on dataset variations, precision rates, and model 

performance metrics; however, little research has been 

done on how well these models adapt to various lighting 

conditions, weather variations, or geographic disparities. 

For precision agriculture to be used practically, it is 

imperative to comprehend how these models function in 

the face of real-world complexity, such as fluctuating 

brightness, planting densities, and distinct varieties of 

maize grown in various locations. This disparity impedes 

the comprehensive comprehension and implementation of 

maize tassel detection technologies in real-world farming 

situations, necessitating models with resilient 

performance in a range of environmental conditions. To 

enable the development of more flexible and reliable 

detection systems for real-world agricultural applications, 

future research should compare and assess how well these 

models perform in various environmental settings. 

Proposed Methodology 

Figure 1 shows a schematic of the procedures needed 

to put into practice the recommended strategy. This 

section covers the bottom-hat-top-hat image 

preprocessing and classification procedure, which uses a 

STO-based LS-HGNet classifier and STOA for 

hyperparameter tuning. 

Dataset Description 

The tasselling, reproductive, and flowering stages are 

just a few of the phases that make up the maize tassel's 

growth stages. In the aerial image, the tasselling stage 

tassel is visible radially. The most noticeable and easiest 
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to manually label image features in maize fields with 

higher planting densities are those related to the tasselling 

stage. As a result, the two dataset data collections for the 

study were finished at the same time as the tasselling 

phase. The dataset for this study was provided by the 

maize field at the Sichuan Agricultural University's 

modern agricultural development and research base, 

which is situated in Chengdu, Sichuan Province, China. 

Using the DJI Mavic drone's onboard camera, RGB video 

frame data were recorded in June and July 2022 through 

two aerial surveys carried out at five and ten metres 

above sea level. The 12-megapixel camera on the drone 

required manual setting of the filming path. Table 1 

provides a detailed breakdown of the video's 

specifications. 

  

The OpenCV library was used to transform the picture 

frames from the RGB video frames. A single picture 

frame was taken every 48 frames, generating 960 unique 

datasets at a resolution of 1920 x 1080. The study 

obtained the original dataset using a variety of image 

preprocessing methods, such as contrast and brightness 

enhancement. Preprocessing images can bring out their 

features and help the model's precision and speed 

improve as the network picks up more precise features. 

Four employees made boundaries around the pictures of 

the maize tassels using the graphical annotation of images 

programme LabelImg, ensuring that the rectangular 

border enclosed every pixel in the tassel. Tassels made of 

maize with an occlusion area greater than 90% and visual 

indistinguishability were not labelled. At last, the 

research was able to acquire a raw dataset with 960 

photos that included 41,232 maize tassels. The study 

enhanced the dataset through data augmentation in order 

to raise the suggested model's training effectiveness. 

Data Augmentation 

A deep learning technique called "data augmentation" 

creates new training data from the original dataset, 

thereby expanding it (Kuma et al., 2023). Data 

augmentation was applied to make the network learn 

more features by simulating the real-world environment 

on the initial dataset used in this study. The experiment 

employed conventional geometric transformations, such 

as scaling and rotation, as well as colour transformations, 

such as contrast enhancement and colour jittering (Jiang 

et al., 2023). Furthermore, two multi-image fusion 

techniques were used, namely Mix-up and Mosaic. 

The following is the principle of mosaic: Initially, four 

randomly chosen images are applied various data 

augmentation techniques, including rotation, scaling as 

well as colour space conversion. The final pictures are 

then positioned within a larger image of a predetermined 

size in the upper-left, lower-left, upper-right, and lower-

right positions. Each image's labels receive a mapping 

that is applied following the transformation that is applied 

to it. In the end, the big picture is pieced together using 

the designated coordinates, and the final product is 

utilised to train the model. Augmenting mosaic data with 

more diverse training sets, lessening overfitting, and 

strengthening model robustness can all result in better 

model performance and overall capacity for 

generalisation.  

In the Mix-up process, two samples are chosen at 

random from the training set, and their labels are likewise 

weighted, before they are subjected to a straightforward 

Table 1. Conditions for Video Capture 

Date Weather Device Resolution FPS Image Sensor 

16 June 2022 Sunny DJI Mavic 

drone 

12 MP 24@1080P 1-inch CMOS 

2 July 2022 Sunny DJI Mavic 

drone 

12 MP 24@1080P 1-inch CMOS 

Figure 1. Workflow of the proposed model. 
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random weighted sum. Considering a batch  x1  as 

samples and a collection of yy is the batch and matching 

labels x2 is an additional batch of specimens and a batch 

y2  is the matching labels. 𝜆  is determined by using 

parameters to calculate the distribution beta-derived 

mixing coefficient 𝛼 and 𝛽, and The fundamental Mixup 

formula is discovered in equations (1), (2) and (3) 

accordingly. 

𝜆 = 𝐵𝑒𝑡 𝑎(𝛼, 𝛽) (1) 

 mixed_batch 
𝑥

= 𝜆 × 𝑏𝑎𝑡𝑐ℎ𝑥1 + (1 − 𝜆) ×  batch 𝑥2 

(2) 

 mixed_batch 
𝑦

= 𝜆 ×  batch 𝑦1 + (1 − 𝜆) ×  batch 𝑦2 

(3) 

The mixed-batch Beta distribution is referred to as 

"Beta." xx  speaks of the samples from mixed_batch, as 

well as the mixed batch yy alludes to the corresponding 

labels. By generating new training data through linear 

interpolation between mixup data augmentation with 

different images and labels, increases the training set's 

diversity. 

Through the use of offline augmentation, 1848 images 

were added to the dataset. Using an 8:1:1 ratio, the 

dataset was randomly divided into training, testing, and 

validation sets for the study. Figure 2 displays the results 

of the augmentation of pertinent data. Through the use of 

offline augmentation, 1848 images were added to the 

dataset. There were three sets of the dataset: training, 

testing, and validation at random by the study using an 

8:1:1 ratio. Figure 2 displays the results of the 

augmentation of pertinent data. 

Preprocessing using Bottom-Hat–Top-Hat method 

First, to evaluate the influence of ambient sound, the 

bottom-hat top-hat (Bhutto et al., 2022) method is applied 

to each maize image. The bottom-hat transformation, also 

known as the white top-hat, is performed by taking the 

difference between the original image and its 

morphological opening. It enhances small, bright regions 

and can be used to highlight details in an image that are 

smaller than the structuring element used in the opening 

operation. It is widely acknowledged that images exhibit 

discrepancies in the intensity of background pixels due to 

non-uniform illumination, whereby grayscale pixels 

possess a lower intensity than background pixels. As a 

consequence, the primary objective is to eliminate the 

fluctuation in ambient illumination; this can be achieved 

by reducing the volume. The noise level is calculated 

using Equation (4), which is implemented via the bottom-

hat operation. 

𝑊𝑏(𝑓) = (𝑓 ∙ 𝑏) − 𝑓 (4) 

The bullet sign represents the closing operation 𝑊𝑏(𝑓) 

on image 𝑓 . Equation (4) facilitates the noise effect 

observation. Enhancing the images' varying contrast is 

the next step, which is calculated using the top-hat 

operation as indicated by equation (5). 

𝑊𝑊(𝑓) = 𝑓 − (𝑓 ∘ 𝑏) (5) 

The circle, in this instance, stands for the opening 

procedure 𝑾𝑾(𝒇)  on image 𝒇 . With equation (5), 

background noise is removed from an image by 

 
(a) 

 
(b) 

 
(c) 

 
  (d) 

 
(e) 

 
(f) 

Figure 2. A few outcomes of data augmentation techniques (a) original image, (b)rotation, (c) 

equal scaling, (d) color dithering, (e) mosaic and (f) mix-up. 
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deducting the upper hat from the bottom hat, producing 

an improved image. Following the image's noise 

reduction, classification is carried out using 

Classification using LS-HGNet 

According to several studies, the network is lighter 

and performs better, thanks to the encoder-decoder 

architecture. With its ability to learn more complex 

features through the stacking of modules, The network of 

hourglasses employed in the study provides a fruitful 

solution to issues with maize tassel detection. A decoder 

reassembles features after increasing the image 

resolution, whereas an encoder lowers the image 

resolution to extract features first. The purpose of the skip 

connection in an hourglass network is to allow the 

decoder to properly restore features by connecting the 

encoder function to it. Recent research indicates that 

removing characteristics is an even more important step 

than just putting them back (Sun et al., 2019). An 

hourglass network's design allows data from a prior stack 

to be entered (n-1) and reflects what's in the stack right 

now (n), along with the results of the preceding stack (n-

1) through the skip link. This structure's following stack 

only replicates relatively high-level elements that the 

decoder was capable of reconstructing. The suggested 

study improves feature extraction performance with the 

least modification necessary because the study's objective 

is to address this problem and lighten the network 

simultaneously. 

Simple parallel skip connections are added to the next 

stack to transfer a feature extracted by the encoder. There 

isn't much more computing involved in this. The 

suggested structure transfers features to succeeding stack 

encoders, enhancing the encoder's extraction 

performance. Compared to the original hourglass 

network, this structure performs better. While the overall 

network size stays relatively constant, increased skip 

connections in an architecture lead to better encoder 

performance and improved performance. 

Residual Block Design 

a) Dilated Convolution 

To enable the network to learn to identify the 

characteristics of the entire plant, it is crucial to expand 

the receptive field in maize tassel detection. However, to 

broaden the field of receptivity, increasing the kernel size 

also increases the computational cost. Since the proposed 

study's objective was to create an effective hourglass 

network, dilated convolution was used to create a residual 

block. Equation (6) displays how many parameters are in 

the standard convolution, and the kernel size is 𝐾, The 

size of the input channel is 𝐶, and the size of the output 

channel is 𝑀. In the event that both output and input sizes 

match 𝐻 × 𝑊 , Equation (7) illustrates the necessary 

computational cost: 

 # param = 𝐾2CM (6) 

Computational Cost = 𝐾2CMHW (7) 

The quantity of parameters and the expense of 

computing the dilated convolution are the same facets of 

the conventional convolution ift the kernel size remains 

fixed; the dilation size determines how wide the receptive 

field is 𝑫. In cases where Convolutions that dilate have a 

𝟑 × 𝟑  kernel size 𝑫𝟏 = 𝟐, the computational cost and 

kernel size are identical to those of the 𝟑 × 𝟑  typical 

convolution, however, the receiving field is identical to 

that of the 𝟓 × 𝟓 standard convolution. Furthermore, as 

demonstrated when 𝑫𝟏 = 𝟐  and 𝑫𝟐 = 𝟑  , Because 

dilated convolution has no internal padding, its 

computational cost is marginally less than that of 

standard convolution with an equivalent kernel size. 𝑫 =

𝟏 is equivalent to the conventional convolution. 𝑫 = 𝟐, 𝟑 

are computed using the kernel's zero padding. 

b) Depth-wise Separable Convolution 

The depth-wise separable convolution was employed 

in the study, with dilated convolution serving as the 

residual block. Pointwise depth-wise separable 

convolution (𝟏 × 𝟏)  convolution following depthwise 

convolution, with a different kernel for every channel. 

Although the amount of parameters was greatly 

decreased and the rate of computation was increased, this 

method performs worse than standard convolution. The 

investigation interpolated the diminished efficiency 

resulting from dilated convolution using depth-size 

separable convolutions to create a novel residual block. 

Proposed LS-HGNet 

An hourglass module was produced by the initial 

stacked hourglass network utilizing a block of residual 

activation (Figure 3a). Residual blocks that have been 

preactivated have the structure [ReLU → Batch 

Normalization → Convolution], whereas conventional 

residual blocks are designed as [Convolution → Batch 

Normalization → ReLU]. This arrangement increases 

training speed and is useful for creating deep networks. 

Still, residual blocks were first intended for tasks 

involving object detection or image classification, where 

learning local features is crucial and where there is not 

much of a convolutional receptive field. Moreover, even 

though the leftover block featuring a bottleneck layout is 

employed in the deep network architecture to lower how 

many parameters and how much computing work goes 

into building a stacked multistage network, like an 

hourglass network, it is still large. As a result, a leftover 

block featuring an original structure is required in order 
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to decrease the network's size and increase the receptive 

field, hence improving maize tassel detection 

performance. 

  Experiments were conducted on residual blocks with 

various structures in this study in order to develop a 

residual block with a creative layout that can address the 

problems mentioned above. In Figure 3b, a depth-wise 

separable convolution has been inserted into the 

preactivated residual block's middle layer. The study 

conducted experiments using this residual block to 

examine how the size and efficacy were impacted by the 

depth-wise separable convolution of the network in the 

detection of maize tassels. Changing with bottlenecked 

preactivated residual blocks made no sense, the layer to 

depth-separable convolution in sequence to minimize the 

number of parameters with 1 × 1 convolutions in the first 

and last layers. The performance is greatly decreased 

when between a 1×1 convolution and a depthwise 

convolution, there is a nonlinear function. Because of 

this, In this work, every depth-wise separable convolution 

has a structure like 

[ReLU→BatchNormalization→Depthwise Convolution 

→ 1 ×  1  Convolution] that between the depth-wise 

convolution doesn't employ a function for activation and 

1 ×  1 convolution. 

The new module presented in Figure 3c was designed 

as part of the proposed work to assess the impact of the 

residual block bottleneck structure when using a depth-

wise separable convolution. A modified version of Figure 

3b is shown in Figure 3c, where the depth-wise separable 

convolutions of [256 → 128, 3 × 3]  and [128 →

256, 3 × 3]  were substituted for the first layer's 

conventional convolutions [256 → 128, 1 × 1]  and the 

last layer [128 → 256, 1 × 1] . The suggested 

multidilated light residual block in Figure 3d was created 

using the remaining block of a fresh design to enhance 

performance and decrease the number of parameters. It 

displays the detailed structure of the suggested residual 

block in Table 2 below. 

Figure 3. (a) The vanilla hourglass network's pre-activation residual block. (b) Structure in which a 
depth-wise separable convolution is applied to the 3x3 convolution layer of (a). (c) Structure 
wherein (b)'s 1x1 layer is converted to a 3x3 layer. (d) The suggested multi-dilated light residual 
structure. 
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Using the multidilated light residual block in this 

study, the stack hourglass network was significantly 

lighter, and the immutability of scale was increased by 

employing multidilated convolution to increase the 

receptive field, which improved maize tassel detection 

performance). 

Hyperparameter Tuning using the STOA Algorithm 

Inspired by metallurgy, simulated annealing gradually 

decreases a temperature parameter to explore the 

hyperparameter space. Following the classification 

procedure, the suggested classifier's hyperparameters 

should be fine-tuned for impressive maize tassel 

detection results. The sooty tern optimisation algorithm 

(STOA), described below, inspires the hyperparameter 

tuning process (Javeed et al., 2023). It is primarily used 

to divide up cancerous nodules by determining the best 

characteristics, which contributes to improving the 

diagnosis' accuracy. The phases of attack and migration, 

which correspond to discovery and exploitation, are used 

to implement STOA towards feature optimisation. The 

STOA for feature optimisation is implemented by 

Algorithm 1. 

a) Migration (Exploration)  

When migrating, a ST must meet the following 

requirements. 

Collision evasion: MSA  provides the search agent's 

(SA's) new location in equation (8), which deals with 

preventing collisions between nearby SAs (STs). 

C⃗ ST
L = MSA × P⃗⃗ ST

L  (8) 

where, 

C⃗ ST
L  −  SA's location that is independent of other SAs;  

P⃗⃗ ST
L − Present location of 𝑆𝐴;  

MSA − SA movement in the presumptive search area. 

MSA = Cfac − (i ×
Cfac

MaxIter
)  (9) 

where in equation (9), 

i− Present iteration, i = 0,1,2,… Max Iter; 

Cfac − regulating factor (configured at 2) that alters ' 

MSA ' declined linearly to zero. 

Proceed towards your best neighbor: Following the 

resolution of a collision, SAs take the route of the 

neighbor who offers the greatest advantage. 

M⃗⃗⃗ ST
L = CBest × (P⃗⃗ BST

L (i) − P⃗⃗ ST
L (i)) (10) 

 

 where in equation (10), 

M⃗⃗⃗ ST
L -Various places in SA (P⃗⃗ ST

L ) towards the fittest 

and best SA (P⃗⃗ BST
L ); 

 CBest - Using a random variable to enhance 

exploration. 

CBest = 0.5 × Ran (11) 

where Ran is a random number between 0 and 1 as 

shown in equation (11). 

Last but not least, SA or ST updates its location in 

accordance with the best SA. 

G⃗⃗ ST
L = C⃗ ST

L + M⃗⃗⃗ ST
L  (12) 

where in equation (12), 

G⃗⃗ SI − gap between the fittest SA and the SA. L  

b) Attacking (Exploitation) 

STs adjust their angle of attack and velocity as they 

migrate. They use their wings to increase their altitude. 

When they strike their prey, they fly in spirals. 

𝑋′ = Rad × Sin (𝑎) (13) 

𝑌′ = Rad × Cos (𝑎) (14) 

𝑍′ = Rad × 𝑎 (15)  

𝑟 = 𝑢 × 𝑒𝑘𝑣 (16) 

whereas mentioned in equations (13) and (14), 

Rad- Each spiral turn's radius;  

A-Range of [0 ≤ 𝑘 ≤ 2𝜋];  

u, v- Constants that are thought to represent a spiral ' 1 

';  

e- The foundation of a natural algorithm.  

Equations (15)–(17) are utilized to determine the 

altered position of SA. 

P⃗⃗ ST
L (i) = (G⃗⃗ ST

L × (X′ + Y′ + Z′)) × P⃗⃗ BST
L (i) (17) 

where P⃗⃗ ST
L (i) - adjusts other SAs' locations while 

maintaining the best possible outcome. 

 

Results and Discussion 

Experimental Setup 

A desktop workstation with a 3.30 GHz Intel(R) Core 

i9-7900X CPU and 64 GB of RAM was used for the 

trials. The computer was running Ubuntu 16.04, a Linux-

based operating system. The proposed study used scikit-

learn and PyTorch, two well-known deep learning 

frameworks, to execute the simulations. 

Algorithm 1: STOA 

Input Population (P⃗⃗ SI 
L  (i) ) 

Output Best SA ( P⃗⃗ BSI
L (i)) 

Initialize ' MSA′ ' and ' CB ' 

Determine the fitness of every SA 

while (i < Maxlter ) do 

for every SA, do 

Modify the locations of SAs using Equation (10) 

end // for 

Update ' SA ' and ' CBest  ' 

Find the fitness of every SA 

Modify  ′P⃗⃗ BSI
L (i)′ if a better solution than the previously 

perfect one exists i = i + 1 

return (P⃗⃗ BSI(i)) 

End 
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Performance Metrics 

ACC is a widely used statistic to evaluate the 

performance of segmentation models. Equation (33), 

when applied to all samples, yields the percentage of 

correctly recognised samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (33) 

Equation (34), which introduces the PR rate, assesses 

how well a model can predict positive samples among 

those that it considers to be positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃 
 (34) 

Equation (35), likewise referred to as the true positive 

rate, or ST, assesses how well a prediction model detects 

actual positive data. The true positive to total true 

positive and negative result ratio is used to calculate it. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (35) 

Equation (36), which measures ACC by averaging PR 

and RC, is weighted and defines the F1 score. It provides 

an evaluation of the test's ability to distinguish between 

favourable and unfavourable outcomes. 

𝐹1 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (36) 

Table 2. Classification analysis of various models 

Models Accuracy Precision Recall F1-

Score 

ResNet 92.9 92.4 92.5 92.2 

ImageNet 93.7 93.3 93.5 93.4 

GoogleNet 94.8 94.4 94.3 94.1 

PolyNet 95.8 95.4 95.7 95.2 

Proposed 

LS-HGNet 

97.5 97.3 97.6 97.1 

The accuracy, precision, recall, and F1-score 

performance metrics of several image recognition models 

are displayed in table 2 and figure 4. Among the models 

compared is ResNet, which has 92.9% accuracy, 92.4% 

precision, 92.5% recall, and 92.2% F1-score. With 93.7% 

accuracy, 93.3% precision, 93.5% recall, and 93.4% F1-

score, ImageNet comes in second. With scores of 94.8% 

accuracy, 94.4% precision, 94.3% recall, and a 94.1% F1-

score, GoogleNet demonstrates superior metrics. With 

95.8% accuracy, 95.4% precision, 95.7% recall, and an 

F1-score of 95.2%, PolyNet performs better than the prior 

models. Out of all the models, the suggested LS-HGNet 

performs the best, with 97.5% accuracy, 97.3% precision, 

97.6% recall, and 97.1% F1-score. The LS-HGNet model 

has the best overall performance across all assessed 

metrics in this comparison, which shows the gradual 

advances in image recognition models. 

 

Table 3. Accuracy analysis with STO 

Models without STO With STO 

ResNet 92.9 95.4 

ImageNet 92.7 94.3 

GoogleNet 93.8 95.6 

PolyNet 94.8 95.8 

Proposed LS-HGNet 95.5 97.7 

 

In Table 3 and figure 5, an accuracy analysis 

comparing various models both without and with the 

incorporation of STO is presented. The models evaluated 

include ResNet, ImageNet, GoogleNet, PolyNet, and the 

proposed LS-HGNet. Without the integration of STO, 

ResNet achieves an accuracy of 92.9%, ImageNet at 

92.7%, GoogleNet at 93.8%, PolyNet at 94.8%, and the 

Proposed LS-HGNet at 95.5%. Upon introducing STO 

into the models, there is a noticeable improvement in 

accuracy across the board. ResNet's accuracy increases to 

95.4%, ImageNet to 94.3%, GoogleNet to 95.6%, 

PolyNet to 95.8%, and the Proposed LS-HGNet 

experiences a substantial boost, reaching an impressive 

accuracy of 97.7%. These results highlight the positive 

impact of STO on enhancing the performance of these 

models, with the LS-HGNet particularly demonstrating 

its efficacy in leveraging the spatial transformation 

operator for improved accuracy. 

Conclusion 

This study used deep learning to identify and count 

maize tassels. A high-quality data-set of aerial photos of 

maize tassels while in the tasselling stage was first 

produced using pre-processed aerial video footage taken 

by unmanned aerial vehicles. The study presents the 

STOA-based LS-HGNet model as a solution to the 

problems of poor tassel detection accuracy and sluggish 

inference speeds. This work applies the top-hat- bottom-

hat preprocessing method to eliminate noise and uneven 

lighting from maize photos. Next, a light-weight stacked 

hourglass network is suggested for the classification 

process in order to detect maize tassels. The proposed 

LS-HGNet classifier uses the STOA for hyperparameter 

tuning, which helps to increase the accuracy of tassel 

detection. A range of tests were carried out to objectively 

assess the suggested methods' performance, and the 

results, which showed an accuracy rate of 98.7%, verified 

that the suggested method represents a significant 

advancement in the detection of maize tassels. 

Additionally, expanding the dataset to incorporate 

additional varieties, growth stages, and environmental 

conditions of maize would enhance the model's 

adaptability and future applicability. Proposed LS-HGNet  
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experiences a substantial boost, reaching an impressive 

accuracy of 97.7%. These results highlight the positive 

impact of STO on enhancing the performance of these 

models, with the LS-HGNet particularly demonstrating 

its efficacy in leveraging the spatial transformation 

operator for improved accuracy. 
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