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Introduction 

Personal information has been increasingly 

acknowledged for quite some time. The societies based 

on data are constantly spewing out the intimate details of 

ourselves. New technology such as data mining takes 

advantage of personal data and can offer personalized 

services or products in different sectors like web search 

engines or healthcare (Abadi et al., 2016). Advanced data 

mining techniques have the potential to improve medical 

services for patients. However, external knowledge from 

healthcare databases during mining could unintentionally 

compromise patient confidentiality (Jain et al., 2023). 

Although mining electronic medical records holds 

promise for exploring disease relationships and medical 

treatments, it also raises concerns regarding the exposure 

of confidential patient information (Abouelmehdi et al., 

2018). 

Privacy-preserving data mining addresses the problem 

by employing techniques that maintain the data's secrecy 

while providing valuable business insights (Jain et al., 

2024). Classification is one of the basic techniques for 

data mining and is crucial in predictive analytics(Bu et 

al., 2021). The popular model of classification decision 

trees has excellent accuracy, but it may also have privacy 

risks because it requires counting (Bettini et al., 2015; 

Bonawitz et al., 2020). The robust framework known as 

differential privacy is useful in checking individual 

privacy leakages; differential privacy checks against 

breaches of privacy by ensuring that any changes made to 

individual records do not bias calculations based on data 
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Abstract: More accessible data and the rise of advanced data analysis contribute to 

using complex models in decision-making across various fields. Nevertheless, 

protecting people’s privacy is vital. Medical predictions often employ decision trees 

due to their simplicity; however, they may also be a source of privacy violations. We 

will apply differential privacy to this end, a mathematical framework that adds 

random values to the data to provide secure confidentiality while maintaining 

accuracy. Our novel method Dual Noise Integrated Privacy Preservation (DNIPP) 

focuses on building decision forests to achieve privacy. DNIPP provides more 

protection against breaches in deep sections of the tree, thereby reducing noise in final 

predictions. We combine multiple trees into one forest using a method that considers 

each tree’s accuracy. Furthermore, we expedite this procedure by employing an 

iterative approach. Experiments demonstrate that DNIPP outperforms other 

approaches on real datasets. This means that DNIPP offers a promising approach to 

reconciling accuracy and privacy during sensitive tasks. In DNIPP, the strategic 

allocation of privacy budgets provides a beneficial compromise between privacy and 

utility. DNIPP protects privacy by prioritizing privacy concerns at lower, more 

vulnerable nodes, resulting in accurate and private decision forests. Furthermore, the 

selective aggregation technique guarantees the privacy of a forest by combining 

multiple data points. DNIPP provides a robust structure for decision-making in 

delicate situations, ensuring the model's effectiveness while safeguarding personal 

privacy. 
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(Jain et al., 2015). Initially introduced for statistical 

database security purposes, this idea has now become 

common in PPDM, involving clustering, classification, 

and deep learning (Feng et al., 2005; Yavanamandha et 

al., 2023; Mondal et al., 2023; Kumar et al., 2023). In 

recent years, building differentially private tree-based 

models has been a successful endeavor (Claerhout et al., 

2005). However, most existing approaches typically 

overlook the issue of allocating an adequate privacy 

budget, which can sometimes negatively impact the 

overall performance of the model (Gupta et al., 2020; Cui 

et al., 2019).  

This article suggests an alternative construction for 

private trees that represents a more refined approach to 

budget allocation.  

1. Our contributions also encompass creating an 

algorithmic model for budget allocation that allocates 

different budgets to nodes depending on their position 

within the tree based on their position within the tree, 

thereby reducing performance degradation due to 

improper budget allocation.  

2. We suggest a method for selective aggregation to 

enhance the generality and prediction accuracy of 

ensemble models, as well as an iterative approach to 

facilitate speedup in the process. 

3. To verify the efficiency of our classification model 

that ensures privacy preservation and individual 

protection, we perform simulation experiments on real 

datasets. 

The paper's structure is as follows: Section 2 contains 

reviews of related works; the remainder of 3 introduces 

the preliminaries; and the remainder of 4 mainly 

describes our proposed DNIPP scheme and the system's 

threat model. Sections 5 discuss the construction of 

private decision trees, the selective aggregation process, 

and the evaluation of the accuracy and efficiency of 

DNIPP. Finally, Section 6 presents the paper's 

conclusion. 

Literature Review 

At present, various techniques are employed to put 

data under data security, such as anonymization 

techniques (Cui et al., 2019). Procedures that make 

generalizations over data to safeguard privacy 

characterize these data anonymization methods. 

Nonetheless, they can't effectively defend themselves 

against attacks because modeling the attacker's 

background knowledge poses a challenge (Miller et al., 

2009). Differential privacy provides a strong and 

practical definition of privacy protection by preventing 

attackers from extracting precise individual information 

from computation results (Jain et al., 2015; Yadav and 

Singh, 2023). This concept has thus gained considerable 

attention in the realm of privacy-preserving data mining 

(PPDM) (Malin et al., 2004).  

While decision trees are renowned for their 

transparency in data mining, this attribute can pose a 

threat to privacy when attackers exploit it to extract 

information (Yang et al., 2018). To solve this problem, 

some decision tree algorithms with differential privacy 

have been proposed. For instance, the SuLQ-based ID3 

algorithm was proposed by (Jain et al., 2015), which used 

differential privacy when evaluating attribute information 

gain by including Laplacian noise in computing query 

results (Sharma et al., 2018). However, its effectiveness 

continuously decreases because it lowers significantly the 

classification accuracy (Li et al., 2015). 

To tackle these problems, DiffP-ID3 and DiffP-C4.5 

were developed with an exponential mechanism for 

selecting splitting attributes to maximize classification 

accuracy while protecting individuals’ privacy at the 

same time (Tayefi et al., 2017). Besides that, some 

approaches use ensemble methods like random forests 

that can help reduce the negative impact of noises on the 

model’s behavior. Freidman and Schuster came up with 

an efficient way to construct a differentially private ID3 

classifier that reveals its efficacy across datasets of 

different sizes. Alternatively, a few authors proposed a 

differentially private random forest algorithm that 

randomly selects split attributes among internal nodes. 

(Feng et al., 2005) devised a differentially private 

ensemble method to enhance model accuracy by reducing 

privacy requirements. Certain methodologies concentrate 

on reducing the randomness inherent in the exponential 

mechanism. Fletcher and Islam proposed an alternative 

by advocating for the use of local sensitivity, as opposed 

to global sensitivity, in calculating the score function's 

sensitivity (Yin et al., 2018). Furthermore, they 

recommended the creation of a random forest with soft 

sensitivity.  

Despite these advancements, the majority of current 

algorithms fail to account for noise tolerance at varying 

depths within trees. They introduced an adaptive budget 

allocation method that continuously allocates privacy 

budgets for queries and provides consistent accuracy 

results. However, this approach causes additional 

spending on privacy parameter calculations, and 

attempting to optimize the allocation for each query is 

still an unsolved problem (Zhu et al., 2020). The main 

goal of this paper is to bridge this gap by developing a 

well-tuned strategy for allocating privacy budgets so that 

they are more effective.   
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This section discusses two techniques employed in 

differential privacy that focus on its foundational concept 

(Zhang et al., 2020). Then, we will discuss the Gini 

Index, which is one of the important metrics used in 

selecting optimal split attributes during tree construction 

(Zheng et al., 2017). 

Differential Privacy 

The differential privacy technique ensures that adding 

or removing any record from a dataset has a negligible 

effect on computation outcomes. Consequently, it 

prevents the extraction of precise individual information 

from the results.  

Definition 1: Differential Privacy 

Differential privacy concerns a randomized 

computation F, where Range(F) encompasses all possible 

outcomes. Given adjacent datasets D₁ and D₂ differing by 

one record (|D₁ΔD₂| = 1), if algorithm F satisfies: 

Pr(F(D1)∈S) ≤ eε⋅ Pr(F(D2)∈S) 

For any subset S of Range (F), F is said to uphold ε-

differential privacy. Here, ε denotes the privacy budget, 

inversely proportional to the level of privacy protection. 

Definition 2: Sensitivity 

The sensitivity of a function f: D→Rd, operating on 

an arbitrary domain (D) and producing a (d)-dimensional 

real number vector, is defined as: 

Δf=max D1, D2  where ∣D1ΔD2∣=1  ∣∣f(D1)−f(D2)∣∣ 1 

 Usually, to achieve (ε)-differential privacy for numerical 

queries, noise drawn from a calibrated Laplace 

distribution is added to the query results. 

Definition 3: Laplace Mechanism 

For a function f: D→Rd, where D is an arbitrary 

domain, the Laplace mechanism ensures ε-differential 

privacy and is defined as: 

F(D)=f(d)+Laplace(εΔf) 

However, for non-numerical queries, the exponential 

mechanism is employed to maintain ε-differential 

privacy. 

Definition 4: Gaussian Mechanism 

For every domain D, given an arbitrary function f: 

D→ 𝑉𝑛, the function F offers ∈-differential privacy, the 

Gaussian noise is as follows- 

𝑃(𝑌) =
1

√2𝜋𝛾
𝑒−(𝑌−𝜇)

2 2𝛾2⁄                                

Definition 5: The Exponential Mechanism 

Suppose we have a random mechanism (M) with 

dataset (D) as input and entity object r∈ Range as output, 

and a score function q (D, r) assigning scores to each 

output, with δq representing its sensitivity, The 

mechanism M maintains ε-differential privacy if: 

M (r, q) ={return r with probability ∝ exp( 2Δq 

εq(D,r))  

We have reformulated this expression using different 

mathematical symbols to provide a fresh and effective 

perspective. 

Gini Index 

When making a decision tree, most decisive thing to 

consider is determining the best split attribute selection 

criteria. CART used the Gini Index as a criterion. This 

index, which measures the "purity" of samples, takes the 

following form: 

Gini(D)=1−∑ i =1npj2 

The symbol pj represents the proportion of the jth 

sample in the sample set. For attribute A, the Gini Index 

can be defined as follows: 

GD, C(a)=∑v=1V∣D∣∣Da=v∣⋅Gini (Da=v, c) 

Where, ∣Da=v∣ means a subset of samples with an 

equaling attribute v, and ∣D∣ is for all instances. We 

calculate this subset's Gini index using the formula Gini 

(Da = v, c). 

Thus, when building decision trees, one should select 

candidate attributes that minimize the Gini index before 

and after division. This approach provides optimal 

attribute selection throughout the tree construction 

process. 

Information Entropy 

In the data analysis domain, entropy becomes an 

important measure to know how uncertain our data is. It 

measures, essentially, how much surprise or randomness 

exists in a dataset. The more we know about a dataset, the 

lower its entropy. Greater dataset uncertainty or 

unpredictability increases entropy. Mathematically, 

entropy can be expressed using the following formula: 

𝐸𝑃 =∑−𝑃𝑗 log2 𝑃𝑗

𝑛

𝑗=1

 

Information Gain (IG)  

The term "Information Gain (IG)" is a pivotal factor in 

the development of decision trees. It stands in an inverse 

relationship with entropy, a measure of uncertainty. The 

process of computing information gain is recursive, 

continuing until the leaf nodes of the decision tree reach 

an entropy value of 0, indicating no further splitting is 

necessary. The calculation of information gain is crucial 

for each decision tree node, computed as: 

IG = Ep - (mi /n) * (Ec)i 

Where: 

Ep is the entropy of the original dataset 

mi is the total number of instances in each of the i-th 

children datasets 

n is the total number of instances in the parent dataset. 

(Ec)i denotes the entropy of i-th child dataset. 
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 One can compute information gain using either Gini 

impurity or entropy, but usually the former produces 

more accurate results. This is what is done in this work 

by introducing a new scheme called DNIPP. 

Proposed Work 

It ensures that malicious investigators cannot extract 

individual privacy information from data sets. Therefore, 

it helps to build decision trees with strong utility 

preservation and privacy preservation as proposed in this 

work. This prevents malicious analysts from extracting 

individual privacy information from the datasets. The 

core idea of the DNIPP scheme is to selectively aggregate 

disjoint subsets into a forest. This strategy mitigates the 

potential performance degradation that a single private 

tree might encounter due to the additional randomness 

introduced for privacy protection. During tree 

construction, data miners continuously submit queries 

along with privacy budgets. Nevertheless, once the 

privacy budget is exhausted, additional queries become 

impractical. Moreover, leaf nodes and internal nodes 

have differing levels of tolerance to noise. Therefore, we 

propose a new budget allocation strategy that assigns a 

larger privacy budget to nodes at deeper levels, partially 

mitigating the problem of excessive noise introduced by 

leaf nodes. The flowchart of the proposed model is shown 

in Figure 1.  

Methodology 

For instance, take a record set named Heart Disease 

Dataset including information on 1024 patients about 

heart disease characteristics. It contains 14 features 

ranging from both numerical and categorical values. Both 

numerical and categorical attributes are present in this 

dataset. The DNIPP scheme proposed in this work 

enables the creation of decision trees with strong utility 

preservation and privacy preservation. It prevents 

malicious analysts from extracting individual privacy 

information from the datasets. The main idea behind 

DNIPP lies in selectively aggregating disjoint subsets 

into a forest which mitigates potential performance 

degradation that could be due to extra randomness 

brought into a single private tree by other means. 

introduced for privacy protection. This work presents a 

novel technique for building highly accurate decision 

forests while ensuring data privacy. Our approach 

prioritizes privacy in leaf nodes, which are particularly 

vulnerable to noise introduced for privacy protection. 

Dataset  

The dataset is considered here as the Heart Disease 

Dataset. The dataset contains information about 1024 

Figure 1. Flowchart of proposed work. 
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patients and their attributes are related to heart disease. It 

has 14 features both in numerical form and categorical. 

This dataset consists of both numerical and categorical 

variables. Numerical variables include Age, Trestbps  

 (resting blood pressure), Chol (serum cholesterol), 

Thalach (maximum heart rate), and Oldpeak (ST 

depression induced by exercise). Categorical attributes 

include Sex, Cp (chest pain type), Fbs (fasting blood 

sugar), Restecg (resting electrocardiographic results), 

Exang (exercise-induced angina), Slope (slope of peak 

exercise ST segment), Ca (number of major vessels 

colored by fluoroscopy), Thal (thallium stress test result), 

and target (presence or absence of heart disease). The 

heart disease dataset is shown in Table 1.  

Table 1. Original Heart Disease Dataset i.e., DB. 
 Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal target 

1020 59 1 1 140 221 0 1 164 1 0.0 2 0 2 1 

1021 60 1 0 125 258 0 0 141 1 2.8 1 1 3 0 

1022 47 1 0 110 275 0 0 118 1 1.0 1 1 2 0 

1023 50 0 0 110 254 0 0 159 0 0.0 2 0 2 1 

1024 54 1 0 120 188 0 1 113 0 1.4 1 1 3 0 

 

Table 2. Noisy Dataset i.e., DB. 
 Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal target noise 

1020 53.19 1 1 140 221 0 1 164 1 0.0 2 0 2 1 -5.80 

1021 60.65 1 0 125 258 0 0 141 1 2.8 1 1 3 0 0.65 

1022 46.95 1 0 110 275 0 0 118 1 1.0 1 1 2 0 -.043 

1023 51.71 0 0 110 254 0 0 159 0 0.0 2 0 2 1 1.711 

1024 55.35 1 0 120 188 0 1 113 0 1.4 1 1 3 0 1.35 

 

Table 3. After Row Sampling First Sample of Dataset i.e., DB1. 

 Age Sex Cp Trestbps Chol Fbs 
Restec

g 
Thalach Exang Oldpeak Slope Ca Thal target 

276 56.41 1 0 132 207 0 1 168 1 0.0 2 0 3 1 

784 54.32 1 2 150 232 0 0 165 0 1.6 2 0 3 1 

856 63.51 0 2 120 211 0 0 115 0 1.5 1 0 2 1 

795 63.40 1 1 128 208 1 0 140 0 0.0 2 0 2 1 

477 58.50 1 2 128 229 0 0 150 0 0.4 1 1 3 0 

796 38.28 1 1 135 203 0 1 132 0 0.0 1 0 1 1 

893 54.33 1 0 128 204 1 1 156 1 1.0 1 0 0 0 

828 43.57 1 2 130 233 0 1 179 1 0.4 2 0 2 1 

179 57.88 0 0 134 409 0 0 150 1 1.9 1 2 3 0 
 

Table 4. After Row Sampling Second Sample of Dataset i.e., DB2. 
 Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal target 

231 56.33 1 1 120 236 0 1 178 0 0.8 2 0 2 1 

241 66.69 1 2 152 212 0 0 150 0 0.8 1 0 3 0 

742 63.99 1 0 130 330 1 0 132 1 1.8 2 3 3 0 

179 57.88 0 0 134 409 0 0 150 1 1.9 1 2 3 0 

170 47.78 1 0 150 247 0 1 171 0 1.5 2 0 2 1 

476 57.10 1 0 165 289 1 0 124 0 1.0 1 3 3 0 

839 45.73 1 0 140 261 0 0 186 1 0.0 2 0 2 1 

819 59.72 0 0 170 225 1 0 146 1 2.8 1 2 1 0 

366 62.27 1 2 112 230 0 0 165 0 2.5 1 1 3 0 
 

Table 5. After Row Sampling Third Sample of Dataset i.e., DB3. 
 Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal target 

319 53.37 0 2 128 216 0 0 115 0 0.0 2 0 0 1 

702 70.46 0 1 160 302 0 1 162 0 0.4 2 2 2 1 

296 64.72 1 0 120 237 0 1 71 0 1.0 1 0 2 0 

262 48.68 1 0 122 222 0 0 186 0 0.0 2 0 2 1 

867 49.97 1 1 110 235 0 1 153 0 0.0 2 0 2 1 

687 55.24 1 0 125 300 0 0 171 0 0.0 2 2 3 0 

419 61.82 0 2 160 360 0 0 151 0 0.8 2 0 2 1 

545 47.57 1 1 110 229 0 1 168 0 1.0 0 0 3 0 

367 46.17 1 1 110 229 0 1 168 0 1.0 0 0 3 0 
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 Modified Dataset  

A sensitive feature like “age” is identified that has to 

be anonymized by dual noise integration which is shown 

in Table 2. 

Three types of sampling have been considered for the 

noisy data in the experimental analysis that is row-wise 

sampling, column-wise sampling, and combined 

sampling. Three samples have been generated for each 

type of sampling. The purpose of generating samples of 

noisy data sets is to feed each sample data set into a 

decision tree classifier. A decision tree is generated for 

each sample of the data set. In this technique, the final 

prediction is done based on aggregation of all the 

predictions generated by all the decision trees. 

 
Figure 2. Decision Tree corresponding to row sampled data DB1. 

 

 
Figure 3. Decision Tree corresponding to row sampled data DB2. 

 

 
Figure 4. Tree corresponding to row sampled data DB3. 
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Results & Discussions 

Experimental Evaluation and Analysis 

This section provides a detailed evaluation of the 

performance and effectiveness of the proposed algorithm 

(DNIPP). We assess the algorithm using several metrics 

such as precision, recall, accuracy, and F1-score. This 

overall analysis gives an insight into what the algorithm 

can do best and some limitations it may have. Moreover, 

experimental studies are performed to show fast 

computation of important parameters, including Gaussian 

noise, information entropy, Gini impurity, information 

gain, and hyperparameter tuning. These experiments 

demonstrate the scalability of the algorithm’s 

computations as well as its computational efficiency. 

At random forest classification various features will 

be assessed by their importance therefore feature 

importance vector will be found by – 

Table 7. Feature Importance Value. 

 
Figure 5. Feature Importance Graph. 

Evaluation Metrics and Criteria 

Accuracy is a vital metric for assessing the 

performance of a classification model, including our 

proposed approach. It indicates the proportion of correct 

predictions made by the model. For our DNIPP 

algorithm, the accuracy score is 0.961089, indicating that 

it correctly classifies 96.11% of the instances. 

This surpasses the accuracy achieved by the baseline 

BDPT method, which stands at 0.78. This significant 

improvement demonstrates the effectiveness of our 

privacy-preserving mechanisms in maintaining high 

accuracy while protecting sensitive data. 

Figure 6 visually compares the accuracy scores 

achieved by different privacy-preserving models. Figure 

6 visually compares the accuracy scores achieved by 

different privacy-preserving models. 

 
Figure 6. Comparison of accuracy between proposed 

and existing systems. 

Various performance metrics, such as F-1 score, 

recall, support, and precision, have been computed to 

evaluate the proposed technique DNIPP. Figure 7 shows 

the comparison among various performance metrics. 

 

 
Figure 7. Comparison of performance matrices. 
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Conclusion & Future Work 

This work introduces a new method of constructing 

decision trees with data privacy. To ensure 

confidentiality, our work focuses on privacy in leaf 

nodes, which are most affected by noise. As trees grow 

deeper and fewer samples are available per node, noise 

introduces itself into leaf nodes, increasing their 

susceptibility to noise distortions. Hence, we propose a 

selective noise integration strategy that adds little noise to 

the leaves while balancing the trade-off between personal 

data protection and accuracy. In addition, our selective 

aggregation technique allows us to choose trees that 

contribute the most positively to the overall performance 

of the forest. This ensures that, despite preserving 

privacy, the aggregated forest remains highly accurate. 

Experimental results indicate that, compared with 

previous methods, this approach achieves an excellent 

balance between privacy and utility. 
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