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Introduction 

The cardiology service has become even more crucial 

during the COVID-19 pandemic. The number of heart 

attack-related deaths has been increasing regularly (Fersia 

et al., 2020; Madhual et al., 2023; Deva and Dagur, 2024; 

Ranganathan et al., 2024) and patients with heart 

conditions are at a greater risk of contracting the virus 

(Nishiga et al., 2020). Some individuals require regular 

home heart monitoring. While several heart home 

monitoring systems are already available on the market, 

there is still some uncertainty around the credibility of 

such arrangements for several reasons. Firstly, due to the 

lack of technological support, the real-time ECG cannot 

be tracked efficiently (Güvenç, 2020). Secondly, they are 

expensive and not affordable for common people 

(Simanjuntak et al., 2020). Thirdly, without automatic 

classification, the devices are only considered to be ECG 

recorders (Shahidul Islam et al., 2019; S et al., 2024). 

Lastly, manual beat-by-beat classification is time-

consuming and often susceptible to the observer's 

perception (Shaker et al., 2020). The above issues 

intensify whenever at-risk patients always pay a 

condition like a pandemic arises and the consequences.  
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Abstract: Present research highlights the need for more patient-oriented monitoring 

systems for cardiac health, especially in the aftermath of COVID-19. The study introduces 

a contactless and affordable ECG device capable of recording heart arrhythmias for remote 

monitoring, which is vital in managing the rising incidence of untimely heart attacks. Two 

deep learning algorithms have been developed to design the system: RCANN (Real-time 

Compressed Artificial Neural Network) and RCCNN (Real-time Compressed 

Convolutional Neural Network), respectively, based on ANN and CNN. These methods are 

designed to classify and analyze three different forms of ECG datasets: raw, filtere and 

filtered + compressed signals. These were developed in this study to identify the most 

suitable type of dataset that can be utilized for regular/remote monitoring. This data is 

prepared using online ECG signals from Physionet(ONLINE) and the developed real-time 

signals from Arduino ECG sensor device. Performance is analysed on the basis of 

accuracy, sensitivity, specificity and F1 score for all kinds of designed ECG databases 

using both RCCNN and RCANN. For raw data, accuracy is 99.2%, sensitivity is 99.7%, 

specificity is 99.2%, and F1-Score is 99.2%. For RCCNN, accuracy is 93.2%, sensitivity is 

91.5%, specificity is 95.1%, and F1-Score is 93.5% for RCANN. For Filtered Data, 

accuracy is 97.7%, sensitivity is 95.9%, specificity is 99.4%, and F1-Score is 97.6%. For 

RCCNN, accuracy is 90.5%, sensitivity is 85.8%, specificity is 96.4%, and F1-Score is 

90.9% for RCANN. For Filtered + compressed data, accuracy is 96.6%, sensitivity is 

97.6%, specificity is 95.7%, and F1-Score is 96.5%. For RCCNN, accuracy is 85.2%, 

sensitivity is 79.2%, specificity is 94.5%, and F1-Score is 86.7% for RCANN. The 

performance evaluation shows that RCCNN with filtered and compressed datasets 

outperforms other approaches for telemonitoring and makes it a promising approach for 

individualized cardiac health management. 
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To address the above-mentioned issues, researchers 

like (Emokpae et al., 2021) have suggested low-cost 

techniques based on heart-sensor technology for real-time 

monitoring of heart signals (Swarnalatha et al., 2024; 

Yoo et al., 2020). The heart contracts while it processes 

blood, and eventually, a potential difference between two 

places on the body surface is generated, as measured by 

electrocardiogram electrodes (Zhou and Tan, 2020). The 

noninvasive technique of Electrocardiogram or ECG 

reveals the graphical representation of the heart's 

pathological condition periodically (Tutuko et al., 2021).  

Based on the literature, a real-time ECG device has 

been designed using an AD-8232 ECG sensor (S et al., 

2024). The heartbeat readings are typically taken for a 

defined time interval to eliminate sudden fluctuations, 

and a 1-minute-long signal is subsequently considered 

(Mahmud et al., 2020). The AD8232 is a differential 

amplifier instrument that is responsible for amplifying the 

heart signal amplitude from millivolts (mV) to 3.3 volts 

(Rincon et al., 2020). 

Despite of being amplified through the AD8232, the 

ECG signals are not strong enough to sustain interference 

from various types of noise that can ultimately alter the 

signal's morphology. These noises include baseline 

wander, power frequency noise, electrode impedance 

interference, muscle noise, myoelectric noise, and 

respiratory interference (Zhou and Tan, 2020). Such 

altered morphology reduces the accuracy of predicting 

the rhythm class. To suppress both high and low-

frequency noises, researchers have employed techniques 

such as adaptive filtering, Gaussian filtering, and 

bandpass filtering by selecting appropriate high and low 

cut-off frequencies (HCF and LCF) (Limaye and 

Deshmukh, 2016). In this work, a bandpass filter with 30 

Hz HCF and 1 Hz LCF was chosen to achieve a good 

signal-to-noise ratio (SNR) value. 

Due to regular monitoring and real-time solutions, 

healthcare data is increasing and the available storage 

space is becoming limited. Worldwide, more than 300 

million ECG recordings are done each year (Tutuko et 

al., 2021). This raw data is structured or unstructured and 

requires a lot of computation time, processing power, 

storage, response speed, and bandwidth, making the 

system complex (Shaker et al., 2020). Therefore, an 

efficient data reduction technique must be designed. 

Various solutions have been proposed in the literature, 

and compression in the frequency domain gives better 

results while removing redundancy and retaining 

information (Li et al., 2021). The frequency domain 

techniques used in the literature include Discrete Wavelet 

Transform (DWT), Fast Frequency Transform (FFT), 

Discrete Cosine Transform (DCT), and more (Acharya et 

al., 2017). DCT is a simple technique with low 

complexity, giving a high compression ratio and less 

distortion on 1-D ECG signals. 

To experiment with ECG data, we used an online 

open-source physionet. However, the data available from 

each class is often imbalanced and unequal in quantity. 

To bring balance to the databases, we have reduced the 

number of signals in each class until they are equalized. 

Unfortunately, this process has also reduced the total 

number of signals available from each class, potentially 

affecting the classification accuracy of deep learning 

methods. To overcome this issue, we have applied data 

augmentation techniques to increase the size of the 

dataset, which will also improve the chances of detecting 

any arrhythmia (Pan et al., 2020). By at least tripling the 

size of the dataset, we divided it into training, testing, and 

validation datasets for automatic arrhythmia 

classification. 

The heart mostly suffers from three kinds of 

irregularities i.e., Cardiovascular diseases (CVD), 

myocardial infarction and arrhythmias (Alqahtani et al., 

2022). Arrhythmias are irregularities in the heart signals' 

normal rhythm that can be further classified into 

morphological and rhythmic arrhythmias (Yoo et al., 

2020). When the morphology of each irregular heartbeat 

is considered, it is called morphological arrhythmia. 

Rhythmic arrhythmia is a set of irregular heartbeats (Yoo 

et al., 2020). In the proposed work, rhythmic arrhythmias 

have been encountered as these are the most common. 

These arrhythmias can further be put into the routine, i.e., 

non-life threatening and serious, i.e., life-threatening 

arrhythmias. The serious arrhythmias eventually lead to 

heart attacks and other CVDs but the routine arrhythmias 

occur many times a day and are not fatal. Basically, the 

category of arrhythmia is decided through the classes of 

consecutive heartbeats (Shaker et al., 2020). It depicts 

that a person can suffer from one or more kinds of 

arrhythmia at a particular interval of monitoring 

(Alqahtani et al., 2022).  The origin of these arrhythmias 

is from any of the two heart chambers, i.e., Atrial and 

ventricular chambers. Arrhythmias like Atrial Fibrillation 

(AFIB), Atrial Flutter (AF), etc., are related to the Atrial 

chamber and arrhythmias like Ventricular Flutter (VF), 

Ventricular Ectopy Beat (VEB), Ventricular Fibrillation 

(VFIB) etc. are originates in Ventricularchamber. Among 

these arrhythmias, some are considered life-threatening 

like AFIB, AF and VFIB. If Classification is done for 

these major groups of arrhythmias it escorts to detect of 

irregularity in the overall heart. The Supra-vetricular is 

related to the upper ventricular or the Atrial region and 
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the database covers all arrhythmias related to this region. 

For classification, there are mostly two techniques 

suggested by the researchers i.e. Machine learning (ML) 

and Deep learning (DL). The ML and DL collectively 

come under artificial intelligence (AI). 

Artificial intelligence (AI) has revolutionized the way 

we manage big data and solve complex problems. 

Machine learning (ML) relies on handcrafted feature 

selection and extraction, which can be time-consuming 

and computationally intensive. Furthermore, it struggles 

to classify imbalanced datasets found online (Nurmaini et 

al., 2020). However, deep learning (DL) models, which 

are based on neural networks, are a powerful tool that can 

extract and select intrinsic features from neurons 

independently (Liu et al., 2021). They can also project 

output using a high number of feature sets. Therefore, in 

our proposed work, which aims to incorporate big data 

solutions for in-home setups, we have included 

compression and automatic classification using DL 

methods. 

Many algorithms can be used in deep learning. By 

adding more layers between the input and output, the 

performance of the model can be improved. However, 

this comes at the cost of increased processing time and 

complex computations. It is important to find a balance 

between the number of layers in the network and the 

processing time and complexity. The goal is to include as 

many layers as needed to achieve good performance 

without sacrificing efficiency. In the literature algorithms 

like Long Short-Term Memory (LSTM), Artificial Neural 

Network (ANN) (Aslam et al., 2021), Convolution 

Neural Networks (CNN)(Acharya et al., 2017; Kumar et 

al., 2024; Niu et al., 2019; Simanjuntak et al., 2020; 

Yıldırım et al., 2018; Zhou & Tan, 2020) Deep Belief 

Network (DBN), RNN (Recurrent Neural 

Network)(Elamir, 2022), and Multilayer Perceptron 

(MLP) (Ebrahimi et al., 2020) etc. are used for DL 

implementation. The accuracy of Artificial Neural 

Networks (ANN) can be limited by the number of layers 

used for processing. To address this, deep learning 

methods increase the number of layers employed in the 

ANN model. The back-propagation algorithm, which is 

based on gradient descent, adjusts the weights to achieve 

the required classification. While ANN supports fault 

tolerance and parallel processing, it has limitations in 

terms of network interpretability and hardware 

dependency (Aslam et al., 2021). On the other hand, 

Recurrent Neural Networks (RNN) are typically used for 

sequential data, but they cannot learn from unprocessed 

data. Therefore, they must be trained using encoded 

features from inputs, rather than raw features (Xiong et 

al., 2018). The CNN algorithm can perform well on real-

time devices with low memory capacity (Nurmaini et al., 

2020). It can effectively analyze short rhythms and 

examine their morphological attributes. The algorithm 

uses a convolution window to identify morphological 

patterns and creates local features of the signal. A matrix 

of tunable parameters is applied for the transformation, 

which scans the signal from left to right and top to 

bottom. This transformation is applied uniformly to every 

part of the signal encountered, allowing for non-varying 

translation and pattern learning (Nurmaini et al., 2020). 

Reducing the number of layers in the algorithm can 

increase its training efficiency while also decreasing its 

computational complexity (Nurmaini et al., 2020). 

CNN, which stands for Convolutional Neural 

Network, combines convolution and pooling layers to 

classify inputs. Before the output layer, a flattened layer 

is included to change the matrix dimension of the last 

layer into a 1-column matrix. With CNN, the inputs are 

convolved with a stride, which calculates the stride 

matrix's dot multiplication. The pooling layer can be of 

two types: Maxpooling and Average pooling. Max 

pooling selects the maximum number from each feature 

map's convolved output. The final output is the number 

of classes in which the input data is to be classified. 

The large amount of input data often requires a 

significant number of comparisons, which can increase 

the likelihood of type I errors. Therefore, the best-

performing model can be identified using significance 

tests such as analysis of variance (ANOVA), Friedman 

test, etc. In this work, the K-fold Friedman significance 

test is utilized on 30 outputs of classifiers chosen at 

random (Elamir, 2022). The proposed work involves the 

design of two models - Real-time Compressed Artificial 

Neural Network (RCANN) and Real-time Compressed 

Convolution Neural Network (RCCNN). The 

methodology involves  

# The development of a real-time ECG data capturing 

device and the acquisition of ECG data from 18 

volunteers.  

# An algorithm is designed to de-noise and compress 

the database created by combining real-time data and 

online data to achieve a good signal-to-noise ratio and 

Compression Ratio. 

# To achieve novelty, three different datasets were 

created - one with raw signals, the second with filtered 

signals and the third with filtered plus compressed 

signals. 

# Finally, the Classification of raw, de-noised, and 

compressed datasets was implemented through ANN and 

CNN. The goal is to obtain the finest classification 
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scheme for arrhythmias and determine the dataset type 

that can work suitably for telemedicine applications. 

The proposed algorithm shows that the raw signals 

provide almost the same classification performance as the 

compressed signals. However, in clinical applications, 

pre-processed data is required. Therefore, it is 

recommended to use filtered or filtered plus compressed 

data. Although these types of data show slightly lower 

accuracy than the raw dataset, they still perform better 

than many classification algorithms in the literature that 

only classify raw signals. 

The paper is organized into four sections. The first 

section is the introduction, followed by the methodology 

section that describes the tools and techniques used. The 

third section is the result section, which explains the 

major findings. Finally, the fourth section concludes the 

work and elaborates on the proposed future work. 

Methodology 

The system comprises a wearable heart sensor 

accompanied by an appropriate group of algorithms to 

classify the heart rhythms in the correct cluster finally. 

These algorithms include the most suitable denoising, 

compression, and classification techniques according to 

the dataset. Consequently, the methodology of the 

proposed RCCNN model comprises various strides, 

which are well explained in Figure 1. A brief description 

of each block is given in the next subsections. 

 
Figure 1. Structure of Real-time Classification 

Methodology. 

Table 1. ECG Dataset was obtained from different sources (Goldberger et al., 2000). 

DATA SET DURATION SOURCE 

SPECIFICATION 

Recor

ds 

Digitization 

Resolution 

Durati

on 

Fs: 

Sampling 

frequency 

(Hz) 

Subj

ects 

Chan

nels 

MIT-BIH 

Atrial 

Fibrillation 

(Goldberger 

et al., 2000) 

1080 seconds 

recording 

Open 

SourceMIT-

BH 

(Physionet) 

23 12(bit/sampl

e) 

10-hour 

 

Digitized at 

250 Hz 

23 2 

MIT-BIH 

Malignant 

Ventricular 

Ectopy 

1080 seconds 

recording 

Open 

SourceMIT-

BH 

(Physionet) 

 22  12(bit/sampl

e) 

30mins Digitized at 

250 Hz 

22 2 

Arduino 

AD8232 real 

subjects 

recording 

300 seconds 

recording 

Volunteer 

Data 

All the 18 volunteers were  in the age group 24-47 years and 

showed normal heart-beat pattern  

MIT-BIH 

Normal Sinus 

Rhythm 

 

780 seconds 

recording 

Open Source 

MIT-BH 

(Physionet) 

18  12 

(bit/sample) 

1 hour 128 Hz 18 2 

MIT-BIH 

Supraventricu

lar 

Arrhythmia 

1080 seconds 

recording 

Open 

SourceMIT-

BH 

(Physionet) 

78 12(bit/sampl

e) 

30 

mins 

128 Hz 78 2 
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Data Acquisition 

The proposed work introduces a combination of two 

datatypes i.e., Real-time data taken from Arduino and 

stored for analysis and online data taken from open 

source. Both of them were mixed to check the designed 

algorithm performance. Table 1. depicts the 

specifications of the various datasets used. 

Real-Time Ecg Acquisition Setup 

The Arduino UNO microcontroller and the ECG 

sensor chip AD8232 are small portable units that 

formulate home-based health monitoring systems when 

accompanied by three sensor patches and connecting 

wires (Jain et al., 2024). Later, wires capture the 

biopotential signals from the surface of the skin. The 

setup of the proposed work is shown in figure 2.  

 

Figure 2. Design of Real-Time data acquisition model 

setup. 

The microcontroller unit used in Arduino UNO (R3) 

is based upon ATmega328. It has a speed of 16 MHz 

with a memory of 32 Kb. An operating frequency of170 

µA(micro ampere) (ultra low frequency), common-mode 

rejection ratio is 80 dB with 100 times amplification 

factor and filters available to the signals extracted. 

In this experiment, a total of 18 random volunteers 

participated within the age group of 24-47 years. All the 

volunteers at the monitoring time showed normal 

characteristics of ECG signal and the heartbeat was in the 

range of 50-100 bps. Hence, all the volunteer data was 

placed into a normal sinus rhythm class. A total of 780 

seconds of the signal was retained and later combined 

with 300 seconds of normal sinus signal database from 

Physionet. A sample real-time signal collected is shown 

in figure 3. 

 

 

 
Figure 3. Sample of Real-Time Signal acquired. 
It is a noisy signal affected by both high and low-

frequency noise (as shown in figure 3). The noise 

couldn’t be suppressed wholly by on-device ECG filters. 

For in-home monitoring set up, the automatic 

classification may need signals to be clean enough to get 

classified without imprecision. Therefore, supplementary 

de-noising will be done by applying filtering algorithms 

during processing. 

Filtering 

The signal may be affected by baseline wander, power 

frequency noise, power line impedance, electrode 

impedance interference, muscle noise, myoelectric noise, 

and respiratory interference. These noises constitute of 

both high and low-frequency noise and get reduced 

through low and high pass filters, respectively. So, the 

proposed work envisioned a  Butterworth Bandpass filter 

with Low and High cut-off frequencies 1 Hz and 30 Hz 

correspondingly instead of using two different filters. A 

second-order Butterworth Bandpass filter was used. It can 

be more clearly depicted mathematically by the following 

Eq.1. 

𝐺2(𝑊) = 𝐻(𝑗𝑤) =
𝐺0

2

1+(
𝑗𝑤

𝑗𝑤𝑐
)

2𝑛 , 𝑛 = 2      (1)                              

Where,  𝐺0 is defined as DC gain, n is the filter 

order,  𝑤   is the angular gain and  𝑤𝑐  is the cut-off 

frequency. The output filtered signals and their 

respective raw signals are shown in the result section.  

The home monitoring system has fabricated the 

problem of big data management due to the need to 

store huge amounts of medical data.  If the dimensions 

of the data are reduced without compromising the 

signal's fidelity, it may reduce vast storage size and 

transmission bandwidth. It is introduced here to 

compress the online and real-time signals through a 

common method. 
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Compression 

The designed algorithm compresses the signals after 

disposing of redundant disturbances through 

compression. A frequency domain-based predesigned 

compression algorithm is suitable for ECG signals as it 

utilizes the signal's spectral and energy distributions 

(Jha and Kolekar, 2021). The predesigned compression 

algorithms are already performing remarkably. In lieu 

of designing a new algorithm, we have trialed on these 

techniques. The discrete cosine transform (DCT) 

compression scheme is encountered out of these. The 

DCT is a lossy and orthogonal Fourier transform-based 

technique that uses only positive components. Its 

transform coefficients contain most of the signal 

information with reduced redundancy. It possesses high 

energy compaction and decorrelation of the transform 

coefficients. It divides the original signal into subparts 

and calculates DCT on them. Thresholding and 

quantization of these ‘N’ transform coefficients is done 

later. Mathematically DCT can be explained through 

the under given Eq.2 as 

                                            𝑋(𝑛) =

√(
1

𝑁   
) ∑ 𝑥(𝑖) 𝑐𝑜𝑠 [

𝛱𝑛

2𝑁
(2𝑗 + 1)]                                          𝑁−1

𝑖=0 (2) 

In the decompression phase, the inverse of DCT i.e., 

IDCT, will be applied and it is given by Eq.3 

𝑥(𝑖) = √(
1

𝑁   
) ∑ 𝑋(𝑛) cos [

𝛱𝑛

2𝑁
(2𝑗 +𝑁−1

𝑖=0

1)]                                               (3) 

The compressed signals are either stored for automatic 

classification or can be sent to the practitioner. The 

databases were balanced by lowering the number of 

signals in each database and making them equal to the 

database with the lowest number of signals. However, it 

reduces the size of the total available combined database. 

Thus, before classification, we have introduced data 

augmentation to enhance the size of the final database. 

Data Augmentation 

Data augmentation is the technique that can be 

implemented on shorter strides to obtain more data by 

overlapping regions common between two consecutive 

strides or samples. It helps by making the data up to six 

times the original (Kim and Jeong, 2021). It reduces 

overfitting during classification(Niu et al., 2019) and 

increases data artificially by generating new data points. 

The proposed work uses a sliding windows technique and 

the data is implemented starting from one-third of the 

previous recording. It converts the data in the form given 

in the Table 2. 

Table 3 shows the data duration change before 

augmentation, i.e., raw data, and after suitably 

augmenting it. It shows that before augmentation, the 

total duration of data was 4320sec, including all the 

databases and real-time data. After applying 

augmentation, the data's total duration is 14122 sec, 

which is more than thrice of the original duration of the 

data. It increases the classification accuracy as no rhythm 

has been missed to detect. Finally, the whole database is 

parted into trained, test and validation signals for 

classification 

Classification 

The database was classified using two techniques, i.e., 

ANN and CNN. CNN is a feedforward network with a 

hierarchal structure. Normally, it is made up of an input 

layer, convolution layers, pooling layers, learning filters 

instead of fully connected layers as in ANN, and an 

output layer. It applies operation on each sub-reason (Liu 

et al., 2021). The proposed sequential model of CNN 

consists of two-layer CNN. It has to have two-layers of 

each i.e., Batch normalization, max-pooling, dropout, 

Dense or fully connected layers and a single flattened 

layer to change the output into a single-column matrix. 

The convolution layer does feature categorization through 

convolution and the dimensions are reduced through 

pooling by down sampling. The convolution operation 

extracts the higher features and reduces noise 

Table 2. Data Augmentation. 

 

Data Set 

Duration of data before Augmentation 

applied 

Duration of Augmented data 

 

TRAIN TEST 
VALID

ATION 
TOTAL TRAIN TEST 

VALID

ATION 
TOTAL 

Atrial Fibrillation 863sec 108sec 94sec 1065sec 2849 sec 359 sec 320 sec 3528sec 

Malignant Ventricu

lar   Ectopy 

883sec 108sec 93sec 1084sec 2879 sec 315 sec 334 sec 3528sec 

Normal Sinus Rhyt

hm 

877sec 108sec 94sec 1079sec 2873 sec 356sec 309 sec 3538sec 

Supraventricular 

Arrhythmia 

876sec 108sec 108sec 1092sec 2837 sec 383sec 308 sec 3528sec 

TOTAL 3499sec 432 sec 389sec 4320  

sec 

11438 sec 1413 sec 1271 sec 14122  

sec 
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(Simanjuntak et al., 2020). In the convolution layer, each 

sub-reason of input does convolution with the applied 

filter kernel and extracts features from the input layer (X. 

Liu et al., 2021). For the ith feature map in the kth layer, 

Eq. 4 is given. 

  𝑐𝑖
𝑘= θ(  ∑ 𝑥ℎ

𝑘−1 ∗ 𝑤ℎ𝑖
𝑘 + 𝑏  𝑖 

𝑘 
ℎ∈𝑀𝑖

)                                  

(4) 

Where θ is the activation function and𝑀𝑖 and feature 

maps from the previous layer. 𝑤ℎ𝑖
𝑙  is the weight for the ith 

feature map and hth filter index and 𝑏  𝑖 
𝑘  is the 

corresponding bias.  

Performance Evaluation Matrices 

A combination of performance parameters has been 

used to evaluate the designed algorithm's performance. 

These performance parameters are used at each stage, i.e., 

after filtration, after compression and finally after 

classification. The filtering parameter is SNR(Signal to 

Noise Ratio) = Signal/Noise. The compression 

performance parameters (Jha and Kolekar, 2021) used in 

this paper are as given in eq. 5,6 and 7. The classification 

performance parameters are given in eq, 8, 9,10, 11 and 

12. 

Compression ratio (𝐶𝑅) =
Size of  Original ECG Signal 

Size of  Compressed ECG Signal 
                                           (5)                                              

Percent root-mean-square difference 

(PRD)=100×√
∑ (𝑥(𝑛)−𝑟(𝑛))

2𝑁−1
𝑛=0

∑ ∑ (𝑥(𝑛))𝑁−1
𝑛=0

2𝑁−1
𝑛=0

                              (6) 

Where x(n) is the original ECG signal and r(n) is the 

reconstructed ECG signal. 

Quality score (QS)= 
𝐶𝑅

𝑃𝑅𝐷
                                       (7) 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝐹𝑁
                                (8)                                                                                  

Accuracy is defined as the ratio of the number of 

correctly classified cases. TP is True Positive, and TN is 

True Negative (Swarnalatha et al., 2024). 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                     (9) 

In eq. 9, FN is a false Negative. Sensitivity is a True 

Positive Rate, sometimes also termed as Recall value. 

The fraction defines the capability of the model to predict 

true positive rates within the class correctly. 

Specificity =
𝑇𝑁

𝐹𝑃+𝑇𝑁
                                               (10) 

In eq. 10, TN is true Negative, FP is False positive 

and TN is True negative. Specificity is defined as the 

capability of the model to calculate true negative samples 

out of the true positive and false negative samples within 

the class.  

F − measure = 
2× 𝑃 × 𝑅

𝑃+𝑅
                                         (11), 

In eq. 11, P and R are the Precision and Recall, 

respectively. It calculates the poise between recall and 

precision and gives better results for imbalanced classes 

(Haloi & Chanda, 2024).  

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                        (12) 

Precision gives positive predictivity by calculating the 

fraction of true positive observations and the total 

predicted positive samples.  

Results and Discussion 

The proposed work aims to get a suitable dataset for 

remote ECG monitoring through ANN or CNN. The first 

dataset considered was raw, the second was filtered and 

the third was compressed. To get the second type of the 

dataset, we have applied the Butterworth Bandpass filter 

on each database. The signals from each category are 

shown in figure 4.  

 

 
 

 

 



Int. J. Exp. Res. Rev., Vol. 45: 01-14 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.001 
8 

 
Figure 4. Illustrating raw and filtered signal samples 

from AFIB, MVE, NSR, SA and Real-Time databases. 
Figure 4 depicts the performance of the applied filter 

on the raw data-set from all arrhythmia categories. After 

this process, the second set of datasets, i.e., the filtered 

dataset, is obtained. Further, to get the third type of the 

dataset, which is the compressed form of the filtered 

database acquired in the last step, DCT of each database 

signal has been computed. The performance of the DCT 

compression scheme was calculated by average mean 

squared error (MSE), average percentage root means 

square difference (PRD) and average compression ratio 

(CR) i.e., 0.165, 0.261 and 2.6, respectively. The 

compressed form of the filtered output from the previous 

stage is shown in Figure 5. 

 

[A]AF 

 
[B] MVE 

 

 
[C]NSR 

 
[D] SVA 

 
[E] Real-Time Signal 

Figure 5. Compressed output from all the databases. 

ANN and CNN are applied to check the accuracy of 

all three datasets. The confusion matrixes in figure 6 are 

calculated after analyzing true positive, true negative, 

false positive and false negative results through both 

methods. 
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Table 3 depicts the comparative performance of each 

of the methods used on the unprocessed or raw, filtered 

and compressed form of the signal. As in the confusion 

matrix, the accuracy, sensitivity, and performance factors 

are calculated through TP, TN, FP, and FN values. It is 

evident from Table 3 that, from all three datasets, CNN's 

performance is better than that of ANN. Hence, the 

designed CNN can classify arrhythmia databases more 

accurately.  

Table 3. Classification results of all the three datasets using 

ANN and CNN. 

 RAW DATA 
FILTERED 

DATA 
COMPRESSED 

DATA 

 ANN CNN ANN CNN ANN CNN 
Accuracy 0.932 0.992 0.905 0.977  0.852 0.966 
Sensitivity 0.915 0.997  0.858 0.959 0.792 0.976 
Specificity 0.951 0.992  0.964 0.994 0.945 0.957 

Precision(P) 0.955 0.991 0.967 0.994 0.958 0.955 
Recall (R) 0.915 0.993  0.858    0.959 0.792 0.976 

F1 0.935  0.992  0.909 0.976 0.867 0.965 

      

 
1. Raw Data 

 
2. Filtered Data 

 
3. Compressed Data 

Figure 7. All three datasets have comparative curves 

of ANN and CNN for Accuracy and Loss. 

Figure 6. Confusion matrixes of ANN and CNN on all the data sets. 
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Table 4. Description of the performance of different methods. 

Referenc

e  

Method Database Performance CR 

ACC.  

% 

SEN. 

% 

SPE. 

% 

PREC. 

% 

F1 -

SCORE 

Simanjunta

k et al., 

2020 

CNN and ELM MIT-BIH arrhythmia 

dataset 

97.50 NC NC NC NC NC 

Emokpae 

et al., 2021 

Deep CNN MIT-BIH arrhythmia 

dataset 

98 97.7 97.4 90 NC  NC 

Zhou 

andTan, 

2020 

Deep NN, FFT Real-time 83.67% NC NC NC 83.83 1:32 

Rincon et 

al., 2020 

DNN 8.528 short single-lead 

ECG records  

90 NC NC NC NC NC 

Li et al., 

2021 

Automatic 

tuning 1-D CNN 

MIT-BIH arrhythmia NC 91.55%  98.65% 91.73% 92.14 0.2 

Niu et al., 

2019 

multi-

perspective 

CNN 

MIT-BIH arrhythmia 

dataset 

96.4 NC NC NC 76.6 

89.7 

NC 

Niu et al., 

2019 

CNN + focal 

loss 

MIT-BIH arrhythmia 

database+ MIT-BIH 

arrhythmia dataset 

98.41% 

± 0.06 

98.41% 

± 0.06 

NC 98.37% 

± 0.06 

98.38% ± 

0.05 

NC 

Yıldırım et 

al., 2018 

1DCNN MIT-BIH arrhythmia 

database 

95.2 93.52 99.61  92.52 92.45 NC 

Acharya et 

al., 2017 

CNN MIT-BIH arrhythmia 

database 

92.50 98.09 93.13 NC NC NC 

Hua et al., 

2020 

Sparse binary 

random 

measurement 

matrix, Deep 

Boltzman 

machine 

learning 

MIT-BIH arrhythmia 90,81.8 NC NC NC NC 40% 

Chowdhur

y and 

Cheung, 

2019 

FFT MIT-BIH arrhythmia, 

MIT-BIH NSR, 

European ST-T 

Database, MAC ECG 

Database, 

ANSI/AAMI EC13 

Test Waveforms, ECG 

DMMLD Database 

NC NC NC NC NC 90 

Pandey & 

Janghel, 

2019 

ANN number of subjects is 

452 

83.05 86.67  66.67 NC NC NC 

Swetha 

and 

Ramakrish

nan, 2021 

K-means 

clustering 

optimized fuzzy 

logic control 

algorithm 

 SVT, NSR, MVE, 

VT, AF, Bradycardia 

and tachycardial 

arrhythmia 

91.5% NC NC NC NC NC 

Proposed 

Proposed  

RCANN MIT-BIH AF, SVM, 

MVA, NSR, Real time 

88.4 82.5 96.3 96.7 89 2.6 

 RCCNN 99.0 99.2 98.8 98.8 99 

* AF-Atrial Fibrillation, ANN-Artificial Neural Network, CNN-Convolutional Neural Network, DCNN- Deep CNN, DNN- 

Deep Neural Network, ELM-Extreme Learning Machine, FFT-Fast Fourier Transform, MVE-Malignant Ventricular Ectopy 

beat, NC-Not Calculated, NSR- Normal Sinus Rhythm, SVT-SupravetricularTachycardiya, VT- VetricularTachycardiya. 
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Though it is apparent from Table 4 and Figure 6 & 

Figure 7 that RCCNN performs better than RCANN, 

significant testing was also done on the random 30 

outputs in each set-up to determine the significant 

difference between the two techniques used. When 

applied to raw, filtered and compressed output signals, K-

fold significance always proves the CNN's significance 

over ANN. A relative study of the proposed RCCNN 

with the parallel state-of-the-art algorithms is shown in 

Table 4. 

According to Table 4, we have compared different 

compression and classification algorithms from the 

literature. A few of them have implemented compression 

along with classification in a similar way to the one we 

have applied. However, both techniques are mostly used 

separately. For compression, FFT has achieved 1: 32% 

(Zhou and Tan, 2020) & 90% (Chowdhury and Cheung, 

2019) compression. Meanwhile, the Sparse binary 

random measurement matrix achieved 40% compression 

(Hua et al., 2020). 

For classification, CNN and ANN algorithms are 

compared with other state-of-the-art algorithms with 

similar algorithms but containing different structures. The 

deep CNN used in (Goldberger et al., 2000) achieved the 

highest accuracy i.e., 98.41% ± 0.06, than the other 

methods in literature. But, the proposed method 

performed even better than the best-performing method 

with 99% accuracy when applying CNN on compressed 

data. ANN (Thomas et al., 2015) gives very low accuracy 

i.e., 83 %, compared to the proposed ANN which gives 

88.4% accuracy. K-means clustering optimized fuzzy 

logic control algorithm (Swetha and Ramakrishnan, 

2021) with 91.5% accuracy is also performing lower than 

the proposed method.  

The findings from the methodologies in the literature 

suggest that there is rarely any algorithm exists that 

compares three sets of data for two classification 

algorithms. The proposed algorithm is also solving big 

data problems. In addition, as far as we know, a few 

papers apply data augmentation to increase the data 

points. 

Conclusion 

The literature clearly depicts that an advanced ECG 

processing model for automatic classification of the 

complete database (that contains different types of 

rhythms) is essential to improve the workability of ECG 

monitoring devices. In view of that, current work focuses 

on discovering a type of data set that can be utilized in 

the future for Telemonitoring purposes. The proposed 

low-cost solution (ECG Device) is based on three 

generated signal datasets: first from the raw signals, 

second when the raw signals were filtered through a 

Butterworth Bandpass filter, i.e., filtered signal dataset 

and third when the filtered signals were DCT 

compressed, i.e., filtered plus compressed signal dataset. 

These datasets were derived with the help of online ECG 

dataset from Physionet and real-time data from Arduino 

UNO.  All these datasets were supplied to deep learning 

ANN and CNN methods for the classification accuracy 

test. The proposed algorithm RCANN has used ANN and 

RCCNN has used CNN on the compressed plus filtered 

dataset and achieved the accuracies of 0.88 & 0.99, 

respectively. Accuracies with the other two datasets were 

0.93 & 0.99 (with raw dataset) and 0.91 & 0.98 (with 

filtered dataset) through ANN and CNN, respectively. 

Based on the accuracy achieved in each case, the paper 

aimed to come across the finest performing classification 

methods amongst ANN and CNN and ensured the type of 

dataset suitable for the telemonitoring of ECG signals. 

The final results' evaluation suggests that when applied 

upon filtered plus compressed signals, CNN gives 

equivalent accuracy when applied to the raw signals. In 

addition to this, they also take lesser space as compared 

to others. Hence, the designed RCCNN is suggested for 

use in telemonitoring ECG arrhythmias.  

In literature, the deep CNN (Goldberger et al., 2000) 

achieved the highest accuracy i.e., 98.41% ± 0.06, than 

the other methods. But, the proposed method outperforms 

all the existing methods with 99% accuracy by applying 

CNN on compressed data. ANN (Thomas et al., 2015) 

gives very low accuracy i.e., 83 %, compared to the 

proposed ANN, which gives 88.4% accuracy. K-means 

clustering optimized fuzzy logic control algorithm 

(Swetha & Ramakrishnan, 2021) with 91.5% accuracy is 

also performing lower than the proposed work. The only 

limitation of this work is that the designed work lacks the 

ability of automatic classification of ECG signals, as 

human intervention is still needed. The work shall be 

extended in the future by monitoring the real-time signals 

through the cloud gateway and then applying real-time 

classification.  
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