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Introduction 

The Severe Acute Respiratory Syndrome 

Coronavirus-2 arose as a pandemic virus in late 2019, 

causing millions of morbidity and mortality worldwide 

(Zhou et al., 2020). Structurally, the virus is 60-140 nm in 

size and has a RNA genome. The genome is 27-32kb and 

contains four structural, 16 non-structural, and 14 Open 

reading frame genes (Lu et al., 2002; Brian and Baric, 

2005). The four structural proteins include Spike protein 
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Abstract: Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has 

emerged as one of the worst viral pandemics during the past few years. As reported by 

the World Health Organization, around 77,56 49 520 cases and 70 51 720 deaths were 

reported from all over the world, which includes approximately 3500 patients reported 

during the recent past only. Currently, circulating variants of SARS-CoV-2 are KP.3, 

JN.1, BA.2.86 and KP.2. Mass vaccinations have been provided since the end of 

December 2020, which led to 5.47 billion people vaccinated till date. However, the 

disease continues in small foci all over the world. Development of an effective drug 

target and mutation independent vaccine thus becomes essential research priorities. 

Owing to the unavailability of a specific drug molecule, the present study has focused on 

the development of an effective drug target to treat COVID-19. In-house primers were 

designed for four essential structural genes viz., Spike protein, ORF1ab, Nucleocapsid 

gene, and Envelope gene. Samples of different waves were amplified using these primers 

employing the Polymerase Chain Reaction (PCR) assay. A total number of 86 SARS-

CoV-2 RT PCR positive samples were studied, and results showed the most frequent 

appearance (80.2%) of Envelope (E) protein in all the samples. This suggests that during 

transmission across numbers of human hosts, it is the Envelope protein that was the most 

stable one. The most severe Delta variant showed the presence of E proteins in all the 

samples assayed. Blocking E protein as a new drug target to intervene intracellular 

replication of virus could be an effective drug development strategy. 
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(S), Membrane protein (M), Envelope protein (E), and 

Nucleocapsid (N) protein. The structural proteins are 

responsible for binding and entry of the virus into host 

cells, specifically the Spike protein (Li et al., 2003; 2005; 

Li, 2016). The S protein consists of 2 subunits which are 

S1 and S2, with S1 having the domain (Receptor - 

binding domain, RBD) for binding with the host receptor, 

Angiotensin Converting Enzyme 2 (Wang et al., 2020). 

The Spike protein, which has undergone a number of 

mutations, has been focused on the development of a 

vaccine. Nevertheless, we also need to select a suitable 

drug target against the virus, which has succeeded in 

entering into host cells. Our present studies have focussed 

on the most stable protein, Envelope Protein, which has 

shown its consistent presence in a number of assays we 

have performed. Although other studies have also 

focussed on E protein as the most non-mutated protein 

(Rahman et al., 2021), their studies pertain to available 

sequences of E protein, and no wet lab studies have been 

done. Zhou et al. 2023 have also reviewed the sequences 

of SARS-CoV-2 to develop a suitable drug target. Other 

studies have focussed on all the SARS-CoV-2 proteins 

for developing therapeutic targets (Yan et al., 2022). Of 

the PCR assays performed on 76 COVID-19-positive 

samples during the course of our study, E protein was 

consistently present in even clinical isolates, and realizing 

the fact that the E protein has a 98% conserved sequence 

(Rahman et al., 2021), it could be the most abundantly 

available intracellular viral target to trap through suitable 

drug molecule. Other studies have also deposited 

genomic sequences of SARS-CoV-2 in the database 

(Meredith et al., 2020), and it will make it easy to 

understand the inter-sample variations. However, the 

reported mutations in different samples are very few 

(Harvey et al., 2021).   

Materials and Methods 

The nasopharyngeal swab samples of the patients 

referring to Sharda Hospital, Greater Noida, U.P., were 

taken for the study. The samples which were tested 

positive using the COVID-19 RT-PCR kit (m/s Trivitron 

Healthcare, India) were collected and maintained at -80 

°C until use. The RNA was extracted using a QIA viral 

RNA extraction (m/s Qiagen, CA) kit following the 

manufactures instructions. 60µl of RNA was extracted, 

and of this, 5µl was taken for the amplification process. 

A one-step RT-PCR kit (m/s Ambion, USA) was used 

employing the manufacturer’s protocol (Reaction Mix: 

12.5µl; Enzyme mix of Reverse Transcriptase and Taq 

Polymerase: 1µl, MgSO4:0.5µl, nuclease-free water: 4µl 

and respective forward and reverse primers: 0.5µl each). 

In-house primers were designed for four genes: S gene, N 

gene, ORF1ab, and E gene. These were synthesized 

commercially by Eurofins, India. The PCR cycling 

conditions were as follows: reverse transcription, 55°C 

for 20 minutes, amplification for 50 cycles, each cycle of 

95°C for 3 minutes, 95°C for 15 seconds, and 58°C for 30 

seconds, and final extension 4°C for 30 seconds. After 

amplification, gel electrophoresis was performed using 

2% agarose gel and the image was capture by Gel 

Documentation System USA. 

For the primers and their sequences, which were 

designed in-house, the GISAID (Global Initiative on 

Sharing All Influenza Data; https://gisaid.org/), Germany 

and NCBI, USA was searched for the reference SARS-

CoV-2 genomes, Indian Strain. The genome reported first 

from India was from the state of Karnataka and was 

selected as a reference genome (ID: OM073843) for the 

study. Using the NCBI primer designing software and 

Primer 3 plus software, the primers for Genes Spike (S), 

Nucleocapsid (N), ORF1ab, and Envelope (E) were 

deduced (Table 1). 

Results  

There were 76 positive SARS-CoV-2 samples 

collected from 2020 to 2023. Each sample was 

individually amplified for all four genes, and the 

amplicon sizes were analyzed by Agarose gel 

electrophoresis. The presence or absence of bands for few 

samples are shown in Figures 1 to 7 and summarized in 

Table 2. 

 

 
Figure 1. Agarose Gel showing bands for SARS-COV-

2 genes (sample no. ACVI/COVID/04; L1: DNA 

ladder; L2: amplified with primer for S gene; L3: 

amplified with primer for E gene; L4:  amplified with 

primer for N gene; L5: amplified with primer for 

ORF1ab gene). 
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Table 1. In-house primers designed for the amplification of SARS-CoV-2 positive samples. 

Sl. No. Target Gene Primer type Primer sequence 5’ to 3’ Expected 

size in base 

pair 

1. Nucleocapsid 

(N) 

Forward Primer GGTTCACCGCTCTCACTCAA 519 

Reverse Primer CAAGCAGCAGCAAAGCAAGA 

2. ORF1ab 

(ORF) 

Forward Primer GCCGCTGTTGATGCACTATG 587 

Reverse Primer CTCCAAGCAGGGTTACGTGT 

3. Spike (S) Forward Primer CTGCACTGTTAGCGGGTACA 546 

Reverse Primer GTGCTGACTGAGGGAAGGAC 

4. Envelope (E) Forward Primer TCGTTTCGGAAGAGACAGGT 216 

Reverse Primer AGACCAGAAGATCAGGAACTCT 

 
Figure 2.  Agarose Gel showing bands for SARS-COV-2 genes (sample no. ACVI/COVID/09; L1: 

DNA ladder; L2: amplified with primer for S gene; L3: amplified with primer for E gene; L4:  

amplified with primer for N gene; L5: amplified with primer for ORF1ab gene). 

 
Figure 3.  Agarose Gel showing bands for SARS-COV-2 genes (sample no. ACVI/COVID/10; L1: 

DNA ladder; L2: amplified with primer for S gene; L3: amplified with primer for E gene; L4:  

amplified with primer for N gene; L5: amplified with primer for ORF1ab gene). 
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..  

 
Figure 4.  Agarose Gel showing bands for SARS-COV-2 genes (sample no. ACVI/COVID/25: L1: 

amplified with primer for S gene; L2: amplified with primer for E gene; L3:  amplified with primer 

for N gene; L4: amplified with primer for ORF1ab gene; sample no. ACVI/COVID/26: L5: 

amplified with primer for S gene; L6: amplified with primer for E gene; L7:  amplified with primer 

for N gene; L8: amplified with primer for ORF1ab gene). 

 

 
Figure 5.  Agarose Gel showing bands for SARS-COV-2 genes (sample no. ACVI/COVID/30: L1: 

DNA ladder; L2: amplified with primer for S gene; L3: amplified with primer for E gene; L4:  

amplified with primer for N gene; L5: amplified with primer for ORF1ab gene). 

 

 
Figure 6.  Agarose Gel showing bands for SARS-COV-2 genes (sample no. ACVI/COVID/45: L1: 

DNA ladder; L2: amplified with primer for Orf1ab gene; L3: amplified with primer for S gene; L4:  

amplified with primer for N gene; L5: amplified with primer for E gene). 
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Table 2. Analysis of the bands displayed in the SARS-CoV-2 positive samples. 

Sl. No. Sample code Stain type Bands displayed after amplification employing RT-PCR 

S gene E gene N gene ORF 1ab gene 

1.  ACVI/COVID/01 Wuhan - ✓ ✓ - 

2.  ACVI/COVID /02 Wuhan ✓ ✓ ✓ ✓ 

3.  ACVI/COVID/ 03 Wuhan ✓ ✓ ✓ ✓ 

4.  ACVI/COVID/31 Wuhan - ✓ - - 

5.  ACVI/COVID/32 Wuhan - ✓ - - 

6.  ACVI/COVID/33 Wuhan - ✓ - - 

7.  ACVI/COVID/34 Wuhan - ✓ - - 

8.  ACVI/COVID/35 Wuhan - ✓ - - 

9.  ACVI/COVID/36 Wuhan - ✓ - - 

10.  ACVI/COVID/42 Wuhan - ✓ - - 

11.  ACVI/COVID/43 Wuhan - - - - 

12.  ACVI/COVID/44 Wuhan - ✓ - - 

13.  ACVI/COVID/45 Wuhan - ✓ - - 

14.  ACVI/COVID/46 Wuhan - ✓ - - 

15.  ACVI/COVID/47 Wuhan - ✓ - - 

16.  ACVI/COVID/48 Wuhan - ✓ - - 

17.  ACVI/COVID/49 Wuhan - ✓ - - 

18.  ACVI/COVID/50 Wuhan - ✓ - - 

19.  ACVI/COVID/51 Wuhan - - - - 

20.  ACVI/COVID/52 Wuhan - ✓ - - 

21.  ACVI/COVID/63 Wuhan - ✓ - - 

22.  ACVI/COVID/64 Wuhan - ✓ - - 

23.  ACVI/COVID/76 Wuhan - ✓ - - 

 Total: 23  2 

(8.69%) 

21  

(91.30%) 

3  

(13.04%) 

2 

(8.69%) 

24.  ACVI/COVID/04 Omicron ✓ ✓ ✓ ✓ 

25.  ACVI/COVID/05 Omicron ✓ ✓ ✓ ✓ 

26.  ACVI/COVID/06 Omicron - - - ✓ 

27.  ACVI/COVID/07 Omicron ✓ ✓ ✓ ✓ 

Figure 7. Agarose Gel showing bands for SARS-COV-2 genes (sample no. 

ACVI/COVID/55: L1: DNA ladder; L2: amplified with primer for ORF1ab gene; L3: 

amplified with primer for N gene; L4:  amplified with primer for S gene; L5: amplified 

with primer for E gene). 
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28.  ACVI/COVID/08 Omicron ✓ ✓  ✓ 

29.  ACVI/COVID/09 Omicron ✓ ✓ ✓ ✓ 

30.  ACVI/COVID/10 Omicron ✓ ✓ ✓ ✓ 

31.  ACVI/COVID/11 Omicron - - - - 

32.  ACVI/COVID/12 Omicron - - - - 

33.  ACVI/COVID/13 Omicron - - - ✓ 

34.  ACVI/COVID/14 Omicron ✓ ✓ ✓ ✓ 

35.  ACVI/COVID/15 Omicron - ✓ - - 

36.  ACVI/COVID/16 Omicron - ✓ - - 

37.  ACVI/COVID/17 Omicron ✓ ✓ - - 

38.  ACVI/COVID/18 Omicron - - - - 

39.  ACVI/COVID/19 Omicron - ✓ ✓ - 

40.  ACVI/COVID/20 Omicron - ✓ - - 

41.  ACVI/COVID/21 Omicron - ✓ - - 

42.  ACVI/COVID/22 Omicron - ✓ - - 

43.  ACVI/COVID/23 Omicron - - - - 

44.  ACVI/COVID/24 Omicron - - - ✓ 

45.  ACVI/COVID/25 Omicron - ✓ - - 

46.  ACVI/COVID/26 Omicron - ✓ - - 

47.  ACVI/COVID/27 Omicron - ✓ - - 

48.  ACVI/COVID/28 Omicron - ✓ - - 

49.  ACVI/COVID/29 Omicron - ✓ - - 

50.  ACVI/COVID/30 Omicron ✓ ✓ ✓ ✓ 

51.  ACVI/COVID/39 Omicron - - - - 

52.  ACVI/COVID/40 Omicron - ✓ - - 

53.  ACVI/COVID/41 Omicron - - - - 

54.  ACVI/COVID/53 Omicron - - - - 

55.  ACVI/COVID/68 Omicron - - - - 

56.  ACVI/COVID/69 Omicron - - - - 

 Total: 33  9 (27.77%) 21 (63.63%) 8 (24.24%) 11 

(33.33%) 

57.  ACVI/COVID/37 Delta - ✓ - - 

58.  ACVI/COVID/38 Delta - ✓ - - 

59.  ACVI/COVID/54 Delta - ✓ - - 

60.  ACVI/COVID/55 Delta - ✓ - - 

61.  ACVI/COVID/56 Delta - ✓ - - 

62.  ACVI/COVID/57 Delta - ✓ - - 

63.  ACVI/COVID/58 Delta - ✓ - - 

64.  ACVI/COVID/59 Delta - - - - 

65.  ACVI/COVID/60 Delta - ✓ - - 

66.  ACVI/COVID/61 Delta - ✓ - - 

67.  ACVI/COVID/62 Delta - ✓ - - 

68.  ACVI/COVID/65 Delta - ✓ - - 

69.  ACVI/COVID/66 Delta - ✓ - - 

70.  ACVI/COVID/67 Delta - ✓ - - 

71.  ACVI/COVID/70 Delta - ✓ - - 
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Discussion 

The footprints of the early form of Coronavirus, which 

was supposedly 2000 years old, have been seen in our 

genome (Farhud et al., 2021; Farhud and Mojahed, 2022). 

This suggests how our system has evolved successfully, 

contributing to fitness in spite of these viral epidemics 

(Enard and Petrov, 2020). The Coronavirus during its 

evolution from commonly circulating strains in the form 

of Human coronavirus 229E, Human coronavirus 

NL63, Human coronavirus OC43, Human coronavirus 

HKU1 to the virulent strains in the form of SARS-CoV-1, 

MERS and SARS-CoV-2 has led to the inclusion of 

many mutations in each of the structural and non-

structural proteins (unpublished data, 2023). The SARS-

CoV-2 being a RNA virus adds to the fact that there are 

many possibilities from evolution, ecology and 

epidemiology points of view that change/modify the 

course of the virus's transmission, mutation rate, and 

infective nature (Pybus and Rambaut, 2009). Some of 

these variations remain, while some are lost due to the 

bottleneck effect (Clarke et al., 1993). It has been 

reported in a study done by Ghafari and co-workers that 

with time, there was a drop in the substitution rate of the 

virus by nearly 50% (Ghafari et al., 2022; Markov et al., 

2023). D614G was the first substitution seen in the spike 

protein of the SARS-CoV-2 virus (Volz et al., 2021).  

Along similar lines, we focused on the consistence of 

viral structural proteins in various cases of SARS-CoV-2 

infection, i.e., Wuhan, Delta, and Omicron variants. Of 

the four genes taken for  

the study, it was observed that the appearance of the 

genes was sometimes different in all the samples.  

Interestingly, it was observed that it is the Envelope (E) 

protein that exhibited maximum stability. During the 

entry into the host cell, it is the structural proteins that 

interact with various receptors and proteins present on the 

surface of the cell. Then, the genome takes entry to start 

the process of replication and multiplication (Santos-

Mendoza, 2023). Thus, the structural proteins are of 

utmost importance and the Envelope protein is one part 

of the important structural components and its presence in 

almost 84.21% of the cases justifies this as new drug 

target.  

The present study sensitizes many virological and 

host-virus interactions after observing the persistence and 

depletion of four structural proteins in infection caused 

by three different SARS-CoV-2 strains viz; Wuhan, Delta 

and Omicron strains mainly responsible for the three 

consecutive waves of COVID-19 Pandemic. The 

persistence of E protein in the majority of the clinical 

samples in all three pandemic strains highlights its 

conserved nature, as also reported by other studies 

(Rahman et al., 2021), and also establishes that 

immunological neutralization of this proteins by the host 

system could not be successful. Our observations further 

comprehend the presence of E protein in 91.3 % of 

samples of the Wuhan strain, 63.6 % in the Omicron 

strain, and 95% of samples of the Delta strain. The 

epidemiological data (Shahbaz et al., 2023) suggest that 

of the three strains, Wuhan and Delta caused the most 

severities and mortalities whereas Omicron caused only 

mild morbidity. The strains responsible for severities due 

to COVID-19 could be due to the presence of E protein in 

them and this could be the preferred drug target to reduce 

the severities of infection. For the selection of a particular 

pathogenic protein, to interrupt its replication within the 

host cell, the E protein has emerged as the best choice as 

a drug target and our observations could attract the 

development of a drug target against this viral protein. 

There are in-silico studies and reviews on the possible 

role of E protein as a drug target (Mandala et al., 2020; 

Chernyshev, 2020; Park et al., 2021; Das et al., 2021; Xin 

et al., 2021), however, we report for the first time the 

evidence of wet lab studies on this protein and relate its 

persistence with the corresponding severities caused by 

different strains.  

Conclusion  

Intracellular synthesis of viral proteins causes cell 

damage and deprives the infected organs of their 

essentially required peptides. The foreignness of the viral 

proteins for their antigenic molecular weight sensitizes 

adaptive immunity. However, lighter proteins escape the 

immunogenic response and may prove more pathogenic. 

We report the role of the E protein (75 amino acids) as 

the cause of the severity of COVID-19 and recommend 

72.  ACVI/COVID/71 Delta - ✓ - - 

73.  ACVI/COVID/72 Delta - ✓ - - 

74.  ACVI/COVID/73 Delta - ✓ - - 

75.  ACVI/COVID/74 Delta - ✓ - - 

76.  ACVI/COVID/75 Delta - ✓ - - 

 Total: 20  0 

(0%) 

19 (95.0%) 0 

(0%) 

0 

(0%) 



Int. J. Exp. Res. Rev., Vol. 42: 111-119 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v42.010 
118 

the need for the development of appropriate drug 

molecules against the E protein.  
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