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Introduction 

Individuals with Down's syndrome are believed to 

have always existed throughout civilization. However, 

the medical recognition of this disorder did not occur 

until the 19th century. However, it was not until the year 

1866 that the English physician John Langdon Down 

released a detailed account of the condition that would 

subsequently be named after him (Ataman et al., 2012). 

Trisomy 21, characterized by the presence of an 

additional chromosome 21, results in various clinical 

abnormalities known as Down syndrome (Akhtar and 

Bokhari, 2023). Down syndrome (DS) is the most 
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Abstract: Down's syndrome, also known as trisomy 21, is a prevalent genetic condition 

characterized by intellectual disability and developmental delay in children. The current 

study has prioritized the development of precise screening techniques for trisomy 21 in 

the initial stages of pregnancy in order to facilitate prompt diagnosis. This study 

presents an innovative paradigm for categorizing sagittal views in obstetric ultrasound 

examinations, specifically identifying Nuchal Translucency, a crucial component within 

the fetal brain, during the 11th to 14th weeks of pregnancy. The suggested deep learning-

based system effectively detects the presence of the essential cerebral structure known 

as Nuchal Translucency, hence aiding in the diagnosis of Down's syndrome. A dataset 

comprising more than 1100 pre-processed 2D sagittal-view ultrasound images was 

gathered to train, test, and validate the proposed convolutional neural network model. 

The model results were utilized to quantify neurotensin levels and assess the presence 

of Down's syndrome by image classification. The performance of the model was 

assessed by measuring its sensitivity, specificity, and area under the curve metrics. 

These metrics were then compared to those of human experts who had received training 

in prenatal and ultrasound techniques. Notably, the suggested model attained an 

outstanding area under the curve score of 0.97. Our study suggests the most common 

non-invasive method for screening pregnant women for fetal abnormalities is 

ultrasound, which examines the unborn organs. The application of deep learning and 

machine learning techniques has significantly enhanced the diagnosis. In order to detect 

or anticipate conditions like Down syndrome, it assesses the intercranial structures of 

the developing embryo during the early stages of pregnancy. Developing an improved 

iteration of this model could serve as the foundation for an effective automated system 

for diagnosing Down's syndrome in its early stages within a clinical environment. 
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frequently occurring autosomal aneuploidy that may be 

survived, and it is a genetically intricate condition that is 

linked to the ability of humans to survive beyond the 

normal term of pregnancy (Antonarakis et al., 2020; Shafi 

et al., 2024). The disorder frequently results in many 

anomalies in individuals, including intellectual incapacity 

and hereditary predisposition to congenital heart illness 

(Antonarakis et al., 2020; Ataman et al., 2012). Down 

syndrome is the most common autosomal aneuploidy, 

and it is also the most common genetic disorder in 

neonates. The sentinel trait is easily identifiable and may 

be verified using cytogenetic analysis (Akhtar and 

Bokhari, 2023). Trisomy 21 is a well-known example of 

aneuploid mutations, which are extensively recorded in 

various congenital malformation monitoring systems. 

One such system is the European Surveillance of 

Congenital Anomalies (EUROCAT), a network of 

approximately 40 registries based on population data, 

established in 1979 (Sperling et al., 2023). During the last 

thirty years, there have been notable progressions in the 

diagnosis and prenatal identification of Down syndrome. 

From 1990 to 2021, antenatal screening services have 

become more readily available, allowing pregnant 

women to acquire more accurate information about their 

pregnancies at an early stage without having to undergo 

invasive procedures such as Chorionic villus sampling 

(CVS) or amniocentesis (Alfirevic and Neilson, 2004; 

Russo and Blakemore, 2014). Consequently, antenatal 

screening became mandatory for the detection of Down 

syndrome in numerous countries. As of 2021, a minimum 

of 76.9% of countries offered complete government 

funding for DS diagnostic tests (Sperling et al., 2023). 

The risk of Down syndrome in the developing fetus is 

assessed through ultrasound imaging and a blood test 

usually between the eleventh and thirteenth weeks of 

pregnancy (Crossley et al., 2002; Li et al., 2022). The 

nuchal translucency (NT) is a fluid-filled area at the back 

of the fetal neck that is measured as part of this 

evaluation together with the findings of the blood test and 

the mother's age (Dominic-Gabriel and Roxana-Cristina, 

2018). By taking a holistic view, we may detect an 

increased risk of numerous additional, less frequent, 

chromosomal abnormalities and, with an accuracy of 85 

to 90%, predict the probability of Down syndrome. 

Ultrasounds can also help find abnormalities or structural 

problems with the growing baby (Dominic-Gabriel and 

Roxana-Cristina, 2018). There has been a lot of interest 

in using AI and ML techniques for medical image 

analysis to diagnose diseases, thanks to the encouraging 

findings in the past decade (Barragan-Montero et al., 

2021; Kumar et al., 2023; Bulawit et al., 2023). In recent 

years, convolutional neural networks (CNNs) and other 

Deep Learning (DL) models have shown remarkable 

performance when it comes to quantitatively analyzing 

different kinds of medical images. Images from X-ray, 

CT, and MRI scans are some examples of what can be 

classified (Sarvamangala and Kulkarni, 2022; Yousef et 

al., 2022; Haloi et al., 2023). Using CNNs for US image 

processing has also demonstrated remarkable outcomes in 

numerous previous research projects, particularly in 

identifying and diagnosing a variety of ailments 

(Sarvamangala and Kulkarni, 2022; Kaur, 2023; Reddy 

and Khanaa, 2023). The convolutional and subsampling 

sub-layers that make up a complete convolutional neural 

network (CNN) architecture are shown in Figure 1. The 

mass of units that have the same color is equal. Any 

amount of fully connected layers can be added to the 

network topology after the convolutional layers. The 

question that remains for the DL method is whether or 

not it can successfully automate the capture of the desired 

features, making it an accurate tool for fetal DS 

screening. The primary goal of this research is to find out 

if DS may be diagnosed in early pregnancy using a DL-

based noninvasive approach that can identify fetal 

intracranial characteristics. As a result, the following 

goals have motivated the development of a DL-based 

model for the accurate classification of sagittal views in 

obstetric ultrasound images: In order to find out if AI can 

diagnose fetal intracranial abnormalities in the first 

trimester of pregnancy. To provide a method for 

automatically categorizing sagittal views in obstetric 

ultrasound images. To suggest a new CNN design for US 

image classification using NT. In order to help health 

practitioners, weigh the benefits and risks of sophisticated 

invasive exams before deciding whether to proceed with 

treatment. 

Materials and Methods 

Dataset 

This study's dataset includes 1,120 2D ultrasound 

images collected from various medical facilities (Chen 

and Fajin, 2022). The images in the dataset are of fetuses 

that are 11–14 weeks along in the pregnancy. The initial 

image dataset was optimized to train the suggested CNN 

by applying image processing and computer vision 

techniques. The methods used for data preparation, 

training the models, and assessing their performance are 

detailed in the sections that follow. 

Feature Extraction Phase of the model 

Figure 1 shows that the feature extraction stage is 

critical in CNN. In this step, we look for important 

aspects of an image and pull them out. This phase is 
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crucial since the characteristics will be utilized to detect 

image anomalies. In CNNs, a convolution layer is an 

essential building block for feature extraction. It is 

common for it to incorporate both linear and nonlinear 

processes, such as activation functions and convolution 

(Yamashita et al., 2018). Mathematically, the operations 

in a convolutional layer can be expressed as follows: 

Let X represent the input image with dimensions 

m×m×r. 

K be the number of filters (kernels) in the 

convolutional layer. 

n be the size of each filter (n×n×q), where  

q is either equal to or less than r. 

P denotes the pooling size (p×p). 

 

 
         (1) 

Where Fi is the ith feature map, σ is the activation 

function, (Rectified Linear Unit activation function 

(RELU in this case)) Wi,j,u,v are the weights X j,u,v is the 

input image patch and bi is the bias.  

Pooling or Subsampling Operation  

Pooling or subsampling is a fundamental operation in 

convolutional neural networks (CNNs) that is used to 

downsample the spatial dimensions of feature maps. This 

operation helps reduce computational complexity and 

extract the most relevant information. Typically, max 

pooling or average pooling is employed. In max pooling, 

the feature map is divided into non-overlapping regions, 

and the maximum value within each region is retained, 

discarding the rest. This retains the most salient features. 

A similar process is followed in average pooling, but the 

average value within each region is calculated. It 

provides a smoothed-down version of the features. Both 

max pooling and average pooling contribute to making 

the CNN translationally invariant by focusing on the 

most essential features while reducing the dimensionality 

of the data, aiding in efficient computation and 

preventing overfitting during training. Pooling operation 

can be expressed mathematically as: 

             (2) 

 Where F’
i is the subsamped feature map and ↓P 

represents mean or maximum pooling over p x p 

contiguous portions. 

Fully connected Layer 

We can extract visual features using the convolution 

layer, which gets pooled and down-sampled before 

becoming the network's final output. Be advised that in a 

CNN, the number of clusters is directly proportional to 

the number of nodes contained in each fully connected 

layer. This ensures that a human observer can understand 

all the information relevant to a specific job, like 

clustering because it is all contained within a single layer.  

The operations of the layer can be represented as: 

           (3) 

Where Yk is the output of the kth neuron in the fully 

connected layer, Wk and i are the weights, and f(.) is the 

activation function. 

Probability Calculation 

A wide variety of activation functions can be used to 

create the last completely connected layer of a neural 

network. While other kinds of functions may be better 

suited to certain issues, the linear function is by far the 

most common. To normalize output values and offer 

target class probabilities, CNNs commonly use the 

softmax function. Here, each value ranges from 0 to 1, 

and all of them add up to 1. For the last layer, most 

people choose an activation function that is either linear 

or sigmoid.  

Performance parameters 

The goal is to determine whether a CNN is good 

enough to implement by evaluating and validating its 

performance. AUC of the Receiver Operating 

Characteristic (ROC) is computed as part of the 

evaluation technique. The area under the receiver 

Figure 1. CNN general architecture. 
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operating characteristic (AUC-ROC) curve is useful for 

visualizing CNN classifier performance. Even though it's 

limited to binary classification problems, it can be 

modified to assess problems with more than two classes. 

Sensitivity and specificity are the two main performance 

metrics that can be utilized to construct the AUC-ROC 

curve. The performance measures utilized to evaluate this 

study's proposed CNN model architecture are explained 

in the following subsections.  

 Sensitivity 

A CNN model's sensitivity indicates how effectively it 

can detect positive examples. The terms recall and true 

positive rate (TPR) are synonyms for sensitivity. One 

way to measure a model's efficacy is by looking at its 

sensitivity, which reveals the proportion of positive 

instances that it correctly identified. A CNN model with 

high sensitivity means that it is missing classifying very 

few positive instances to classify them as positive (Reshi 

et al., 2021). So, high sensitivity implies less false 

negatives. The use cases covered in this study make it 

crucial for the model to have high sensitivity as we are 

bound to all true positive instances. The measure can be 

calculated as: 

Sensitivity = (True Positive) / (True Positive + False 

Negative)          (1) 

True Positive 

Images that are anticipated to be risky (or with the 

possibility of Down syndrome) are actually Risky (or 

with the possibility of Down syndrome); in other words, 

the true positive is the total number of images that are 

both predicted to be and actually in risky class. 

False Negative 

Images that actually belong to the Risky class (or with 

the possibility of Down syndrome) are classified in the 

normal class. In other words, the number of images 

classified as normal but risky is represented by the false 

negative. As it may turn out to be a significant failure of 

the model. The model should ideally have a low false 

negative rate. A higher true positive score and a smaller 

false negative score result in higher sensitivity. A lower 

sensitivity would result in a higher false negative and a 

lower true positive value. Models with a high sensitivity 

will be sought for healthcare and diagnostic applications. 

Specificity 

It is common practice to evaluate sensitivity and 

specificity when evaluating the efficacy of a model. 

Specificity refers to the percentage of false negatives that 

the model accurately identifies. This adds to the number 

of what can be called false positives actually negative 

results that were mistakenly labelled as positive. The 

True Negative Rate (TNR) is another possible way to 

characterize this metric. The sum of the specificity (the 

rate of genuine negatives) and the false positive rate 

would always be 1. When it comes to negative outcomes, 

a specificity-rich model will catch most of them, while a 

less specific one can wrongly mark a lot of bad 

occurrences as good (Taye, 2023). Assume for the sake 

of argument that the model provides a 95% specificity 

score in order to illustrate the present study scenario. In 

other words, out of 100 images that should have been 

classed as normal, the model has accurately identified 95 

as normal and labelled just 5 as dangerous, which means 

that there were 5 false positives.  

Specificity = (True Negative)/ (True Negative + False 

Positive)          (2) 

True Negative 

How many images are considered normal and 

probably normal? To rephrase, the true negative is the 

proportion of expectedly normal images that turn out to 

be normal. 

False positives 

The number of typical images labeled as potentially 

dangerous. Put another way, the false positive represents 

the number of images that were wrongly classified as 

dangerous when, in fact, they were normal. The model 

would work best with a true negative rate or extremely 

high specificity. A higher specificity score results in a 

lower false positive rate and a greater true negative score. 

However, more false positives and fewer real negatives 

are the results of a low specificity score (Rustam et al., 

2020). 

AUC-ROC Curve 

The Receiver Operating Characteristic (ROC) curve is 

a visual representation of the performance of a binary 

classification model, commonly using metrics such as 

sensitivity (true positive rate) and specificity (true 

negative rate). The evaluation of model performance 

extends to the calculation of the Area Under the ROC 

Curve (AUC), a numerical measure providing an overall 

assessment. 

I) ROC Curve: The ROC curve is a parameterized plot 

depicting TPR against FPR for diverse classification 

thresholds. Mathematically, it is expressed as: 

                                   (4) 

Where, t signifies the classification threshold. 

II) Area Under the ROC Curve (AUC): The AUC is 

determined by integrating the ROC curve. It represents 

the probability that the model ranks a randomly selected 

positive instance higher than a randomly chosen negative 

instance. Mathematically, AUC is given by: 
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                                  (5) 

where FPR−1 denotes the inverse function of FPR. 

The AUC ranges between 0 and 1, with a higher value 

indicating superior model performance. A value of 0.5 

implies a model performing no better than random 

chance. In summary, the ROC curve visually illustrates 

the trade-off between sensitivity and specificity at 

different classification thresholds, while the AUC 

provides a quantitative measure of the model's overall 

discriminatory power. Since the sensitivity and 

specificity are used to plot the ROC curve. The area 

under the receiver operating characteristic curve (AUC) 

is also used to evaluate the model's performance. Figure 2 

shows three examples of ROC curves along with the 

corresponding AOC values.  

Results 

Image segmentation 

One of the most crucial steps in medical image 

preparation for analysis across modalities is image 

segmentation to extract the ROI. The section of a 2D 

image that is most suitable for assigning a specific class 

is called the ROI, or subset of the image. Expert humans 

are typically enlisted to aid in the ROI extraction process. 

Lately, ML and DL methods have considerably 

simplified this hitherto laborious procedure; these 

methods can handle and analyze massive amounts of 

images to extract structural information. The processing 

and analysis of entire images is impossible with modern 

computers' CPU and memory capacity. However, by 

analyzing only the intended ROIs, the performance and 

speed of the analysis algorithms are much improved. We 

used ROI extraction to remove the parts of the US image 

that aren't relevant to NT classification but could have 

hampered the suggested model's efficiency and 

effectiveness. For the purpose of training the model, each 

image from the original dataset had its ROI containing 

the NT region excised. A bounding box has been used to 

segment each US image based on the features extracted 

from the item detection method. The ROI's pixel 

coordinates of the upper left and lower right corners were 

included in the object detection features. Table 1 shows 

the object detection feature set sample. There are 

examples of both the original and segmented images in 

figure 3. They were all cross-checked to ensure that the 

desired region was captured in each ROI-based image. 

The described ROI extraction process involves 

segmenting ultrasound (US) images using bounding 

boxes obtained from object detection features. Let's 

represent this mathematically: 

Let, I be the original US image. 

B is the bounding box obtained from the object 

detection features. 

ROI be the extracted Region of Interest. 

The bounding box  

B is defined by the pixel coordinates of its upper-left 

corner and lower-right corner represented as follow: 

    ,

 
The ROI extraction process can be represented as: 

Object Detection Features (ODF): The object 

detection features include the pixel coordinates of the 

upper-left and lower-right corners of the bounding box: 

 

                (6)  

Bounding Box Definition: Bounding box B is defined 

using the object detection features: 

) y ,(x left-upperleft-upper

)y ,(x right-lowerright-lower

Figure 2. ROC-AUC Curve A) AUC = 0.5 B) AUC = 0.8 and C) AUC = 1. 
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                 (7) 

ROI Extraction: The ROI can be defined as the portion 

of the original image I where the coordinates (x,y) fall 

within the boundaries of the bounding box B. This can be 

expressed mathematically as follows: 

  
                        (8)      

The notation indicates that the ROI comprises all pixel 

values I(x,y) from the original image I corresponding to 

coordinates (x,y) that lie inside the bounding box B. In 

essence, it represents the selected area of interest 

delineated by the bounding box.  

 

Proposed CNN Model Architecture 

With eleven layers, the suggested CNN achieves its 

impressive speed and accuracy. The model uses an image 

with dimensions of 100 by 400 pixels. A self-defined 

residual block allows the model to extract features at 

various levels. The discriminative information the model 

focuses on can be seen through the visualization of 

feature maps. Model overfitting can be prevented in the 

proposed design by utilizing the dropout technique. We 

started with a learning rate 0.0001 and a batch size of 16. 

Every iteration of training a model consists of 300 

epochs. The model's learnable parameters were fine-

tuned using the well-known Adam optimizer to increase 

the model's accuracy. The model has been penalized for 

training-related misclassification due to mistakes in 

probability computation using binary cross entropy. To 

forecast the DS risk score for every image, the model's  

By)(x,|y)I(x,=ROI 

Figure 3. Original images and corresponding ROIs extraction by the proposed method. 

 



Int. J. Exp. Res. Rev., Vol. 38: 182-193 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v38.017 
188 

output likelihood that can take on values between zero 

and one has been defined. At last, the images are sorted 

into two categories. If the probability score is high, the 

image is considered at high risk of DS; if the score is low, 

the image is considered normal. Figure 4 shows the 

detailed architecture. 

 

The main functional components of the CNN are 

given as:  

Residual Block: A residual block is an integral 

component that facilitates learning residual functions, 

streamlining the training of deep networks. 

Mathematically, the output of a residual block given an 

input x can be expressed as: 

   
                 (9) 

where f(x) denotes the transformation applied by the 

residual block. 

1. Dropout Technique: Dropout serves as a 

regularization technique by randomly setting a 

fraction of input units to zero during training. 

Mathematically, for a given layer with input x, the 

output incorporating dropout can be represented as: 

 
              (10) 

2. Learning Rate and Batch Size: Learning rate (α) and 

batch size are essential hyperparameters. The update 

rule for adjusting model parameters during training 

through gradient descent is given by: 

θnew= θold −α .∇θL  

                  (11) 

θold : Represents the current values of the model 

parameters before applying any updates. 

α (Learning Rate): Determines the size of the step 

taken during each iteration of the optimization 

process. 

∇θL: Represents the gradient of the loss function L 

with respect to the model parameters θ. 

θnew: Denotes the updated values of the model 

parameters after applying the gradient descent update 

rule. 

3. Adam Optimizer: The Adam optimizer amalgamates 

concepts from momentum and Root Mean Squared 

Propagation (RMSProp) to dynamically adjust 

learning rates during training. The update rule for 

Adam is delineated by: 

                               (12) 

                          (13) 

                                       (14) 

Where mt and vt denote moving averages of the 

gradient and its square, α is the learning rate, and ε is a 

small constant to prevent division by zero. 

4. Binary Cross Entropy Loss:  Binary Cross Entropy 

emerges as a widely used loss function for binary 

classification tasks. In a binary classification scenario 

with true labels y and predicted probabilities ŷ the loss 

is articulated as: 

      (15) 

ROC Curve Analysis 

Our suggested CNN model was trained using 1,120 

images taken in the United States. With an AUC score of 

0.97 for the training set and 0.94 for the validation set, 

the suggested CNN performs admirably on both sets of 

data. In Figure 5, we can see a graph that represents the 

presented performance metrics. The specificity (FP rate) 

is shown on the X-axis and the sensitivity (TP rate) on 

the Y-axis of the graph. The ROC curves for the training 

set and validation set are shown in red and green, 

respectively. 

CNN Model Robustness 

The dataset was randomly divided into three equal 

sections, two for training and the other for validation to 

test the CNN model's robustness. To examine how 

variable training set selection on all US images affects 

the proposed model. Through three-fold cross-validation, 

the suggested CNN's robustness was assessed. All images 

were arranged by name in ascending order, with two 

chunks of namespace representing corresponding images 

as the training set and the rest as the validation set. The 

first two halves were used as training sets, and the third 

as cross-validation sets. II) The first component is 

validation and the last two is training. III) The center part 

was validation, and the first and last sections were 

xxfOutput += )(

)(XdropoutOutput =
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Table 1. Sample object detection feature set. 

Image ID Xmin Ymin Xmax Ymax 

0.png 252 376 519 446 

1.png 121 390 449 422 

2.png 109 380 386 409 

3.png 169 393 410 414 

4.png 213 357 416 393 
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training. Table 2 summarizes model performance in 

training and validation sets and shows area under curve 

score graphs. Figure 6 (A), 6 (B), and 6 (C) depict the 

first, second, and third cross-validation scenarios. Results 

indicate AUCs above 0.90 for each training or validation 

set. The findings show that the proposed model performs 

effectively regardless of training and validation set splits. 

Discussion 

CNNs or convents are increasingly used in computer 

vision and image categorization (Sarvamangala & 

Kulkarni, 2022). Image object identification previously 

required manual feature extraction. However, CNNs' 

scalable image classification and object recognition have 

revolutionized the area (Alzubaidi et al., 2021). They find 

image patterns using matrix multiplication and algebra. 

CNNs are computationally costly and often require GPUs 

for training (Lim et al., 2023). CNNs are easier to train 

and have fewer parameters than fully linked networks. 

CNNs start with numerous convolutional and 

subsampling layers before fully connected layers (Taye, 

2023; Zafar et al., 2022). CNNs can classify and evaluate 

medical image data (Nia et al., 2023). Our study 

introduces a multi-layer CNN-based classification system 

for early Down syndrome diagnosis in prenatal care. Our 

model classifies 2D sagittal view ultrasonography (US) 

images as normal or at risk for Down syndrome using 

cutting-edge deep learning techniques for medical image 

analysis. The NT area of the US images is crucial to early 

Down syndrome diagnosis. We contribute to the 

discussion regarding using artificial intelligence, 

particularly deep learning, in medical image analysis for 

disease diagnosis. Numerous studies have shown that 

these technologies can alter radiology and prenatal care 

(Ling et al., 2019). 

Many countries have Down syndrome prenatal 

screening programs. These programs start with a 

screening test and then offer a more invasive diagnostic 

test for 'high risk' results to confirm the diagnosis (Hill et 

al., 2016). Machine learning and deep learning have 

become popular in medical predictive analytics (Ahuja, 

2019). Due to extremely uneven and feature-correlated 

screening data, these technologies have been limited in 

their ability to predict Down syndrome (Ling  et al., 

2019). Down syndrome diagnosis has been a major 

achievement in prenatal medicine in recent decades (Van 

den Veyver, 2016). Different methods have different 

detection rates, acceptability, costs, and downsides. 

While early genetic screening technologies have 

improved, first-trimester ultrasounds remain critical 

(Dominic-Gabriel & Roxana-Cristina, 2018). The 

introduction of the nuchal translucency (NT) 

measurement represents a significant mile-stone in first-

trimester screening (Niknejadi and Haghighi, 2015; 

Roozbeh et al., 2017). Nuchal translucency (NT) 

assessment was a major advance in first-trimester 

screening. Between 11th and 14th weeks of gestation, a 

distinctive, fluid-filled region behind the fetal neck is 

carefully examined. A high NT value is significantly 

connected with fetal Down syndrome and other 

aneuploidies, allowing the diagnosis of 70% of Down 

syndrome cases with a good false-positive rate of 5%  

(Driscoll et al., 2008). Sonologists use calipers 

horizontally on NT linings to estimate NT measurement 

manually or semi-automatically (Nasibeh Roozbeh et al., 

2017). The sonologist's talents and experience determine 

manual estimation. These factors can delay and 

miscalculate measurements (Cho et al., 2015). 

Considering the drawbacks of conventional NT 

measurement and CNNs' exceptional performance in 

medical image processing. We meticulously choose ROIs 

from US images taken throughout 10-14 weeks of 

pregnancy to train our CNN. This ROI, which includes 

the NT region, is rigorously identified using manual 

labeling and object detection. As mentioned, medical 

image databases require high data quality and specificity. 

As CNNs have repeatedly outperformed other deep 

learning methods in medical image processing, our 

findings support this (Snider et al., 2022). Our 

investigation shows that the suggested CNN architecture 

shines when trained on these ROIs, demonstrating its 

versatility and usefulness in medical image analysis for 

DS diagnosis. Sensitivity, specificity, and ROC-AUC 

curve analysis are used to objectively test our CNN 

model. As mentioned previously, these measures are 

critical for assessing the reliability and accuracy of AI 

models in medical diagnostics and emphasise the 

significance of rigorous performance evaluation (Liu et 

al., 2019). Besides model training, our study includes 

testing sets and validation situations. This fits the story of 

AI in medical image analysis, which acknowledges the 

diversity of medical image datasets and the need for 

rigorous validation (Boice et al., 2022). The outcomes of 

our study are promising and support our approach. We 

found that our model regularly obtains AUC values betw- 

Table 2. Performance of validation scenarios 

Scenario I Training set AUC = 0.97 

Validation set AUC =0.92 

Scenario II Training set AUC =0.96 

Validation set AUC =0.90 

Scenario III Training set AUC =0.97 

Validation set AUC =0.93 
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Figure 4. Detailed architectural elements and work flow of the proposed CNN. 

Figure 5. Area Under Curve (AUC) graph. 

Figure 6. (A) AUC for Training and Testing for scenario I of cross-validation; (B) AUC for 

Training and Testing for scenario II of cross-validation (C) AUC for Training and Testing for 

scenario III of cross-validation. 
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-een 0.90 and 0.97 in testing and validation settings. 

These findings support AI's involvement in medical 

predictive analytics and   DS prediction  (Liu et al., 2019; 

Wang et    al.,     2021).  Our   study   advances    prenatal 

by using deep learning and CNNs to better early 

diagnosis and care. Our model's effectiveness and 

reliability demonstrate its potential to address Down 

syndrome screening and medical image analysis 

concerns. We use AI to improve prenatal care and 

discover Down syndrome early, which has great potential 

to improve healthcare for expecting parents and their 

children. 

Conclusion 

Ultrasonography is the most used non-invasive 

pregnancy screening tool for fetal abnormalities by 

evaluating fetal organs. It evaluates the fetus' intercranial 

structures in early pregnancy to diagnose or predict 

diseases like Down syndrome. Predicting Down 

syndrome with NT testing is common and reliable. This 

paper introduces a CNN architecture for US image 

classification to estimate DS probability using NT. 

Predicting Down syndrome in the fetus with NT is 

important. The work trains the CNN model using NT-

based ROI to increase performance. The planned 11-layer 

CNN uses 2D US images. The model extracts different 

feature levels using a self-defined residual block. The 

suggested architecture uses dropout to prevent model 

overfitting. The suggested CNN has good training and 

validation performance with AUC scores of 0.97 and 

0.94, respectively. More training images are needed to 

improve the suggested CNN's performance. An effective 

automated method for early diagnosis of Down syndrome 

in clinical settings might start with the enhanced model 

implementation. Understanding varied clinical contexts 

and model optimizations is needed to adapt the suggested 

framework to diverse application scenarios.   
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