

*Corresponding Author: jayantochowdhury@gmail.com

1

DOI: https://doi.org/10.52756/ijerr.2024.v42.001 Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

 SQL Injection Attack Detection Based on Similarity Matching Between Vectors Extracted From

Design Time and Run-Time Queries

 Jayanto Kumar Chowdhury1*, Dilip Kumar Yadav1 and Chandra Mouli P.V.S.S.R2

1Department of Computer Science and Engineering, National Institute of Technology, Jamshedpur-831014,

Jharkhand, India; 2Department of Computer Science, Central University of Tamil Nadu, Thiruvarur-610005, Tamil

Nadu, India

E-mail/Orcid Id:

JKC, jayantochowdhury@gmail.com, https://orcid.org/0009-0002-1570-1873;

DKY, dkyadav.cse@nitjsr.ac.in, https://orcid.org/0000-0002-1334-7500; CM, chandramouli@cutn.ac.in, https://orcid.org/0000-0001-7909-9733

Introduction

In the digitization world, web applications are mostly

used to perform day-to-day activities in e-commerce,

banking, healthcare etc. Many users use web applications

to perform their tasks and share their valuable personal

and business information over the web. However, there

are security loopholes in the web applications. In most

cases, the cyber-attacks are performed by expert hackers

using various techniques like Injection attacks, Cross-Site

Scripting (XSS), Cross-Site Request Forgery (CSRF),

Broken authentication and Denial of service (DoS) etc.

These are the general intrusion detection techniques

commonly used by hackers. Among the various attacks,

SQL injection attacks are among the most dangerous

threats to web applications. They have been listed among

the top ten vulnerability attacks by OWASP (Open Web

Application Security Project), an international

organization for web application developers. SQLiAs are

critical threats to organizations as well as military and

defence systems. Due to a lack of protective systems,

SQLiA attacks can potentially damage underlying

databases, steal valuable information and compromise

Article History:

Received: 20th Mar, 2024

Accepted: 27th Jul., 2024

Published: 30th Aug, 2024

Abstract: Everyone uses web-based applications to carry out daily business and

personal tasks. These programmes are vulnerable to attack by hackers, who may also

misuse the data. The most serious attack with the greatest damaging potential on digital

platforms is the structured query language injection attack (SQLiA). The backend

databases could be corrupted or destroyed by SQLiA if it manages to breach security

protections. Using SQLiA tactics, hackers can get unauthorized access, steal important

data, and take over the network completely or partially. An automatic SQL injection

prevention and detection technique is needed to safeguard web-based applications from

SQLiA. This research suggests a novel similarity-matching algorithm of vectors

extracted from design time and run-time queries. This technique allocates the weights of

different SQL keywords used in design time and run-time queries and further design

time and run-time vectors have been created from respective queries. The similarity

between the design time and run time vector is determined by calculating the angle

between these two vectors. The angle of deviation between the design time vector and

run time vector is calculated and if the angle of deviation is zero, then it is concluded as

no SQL injection otherwise, it indicates the existence of SQLiA vulnerability. The

proposed algorithm is validated against the GitHub dataset. In the first dataset, out of

1300 injected queries, the proposed method identifies 1219 injected queries; out of 300

normal queries, it identifies 290 normal queries with 93.76% and 96.66% detection

accuracy, respectively. Similarly, for the second dataset, out of 10489 injected queries,

it identifies 10280 injected queries and out of 301 normal queries, it identifies 280

normal queries with 98.01% and 93.02% detection accuracy, respectively.

Keywords:

Database security, dynamic

method, security

vulnerabilities, SQL

injection, web application

How to cite this Article:

Jayanto Kumar Chowdhury, Dilip Kumar

Yadav and Chandra Mouli P.V.S.S.R

(2024). SQL Injection Attack Detection

Based on Similarity Matching Between

Vectors Extracted From Design Time and

Run-Time Queries. International Journal

of Experimental Research and Review, 42,

01-17.

DOI:

https://doi.org/10.52756/ijerr.2024.v42.001

https://doi.org/10.52756/ijerr.2024.v42.001
https://crossmark.crossref.org/dialog/?doi=10.52756/ijerr.2024.v42.001&domain=iaph.in

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
2

individual machines or the entire network. Hackers can

get unauthorized access to web applications and

underlying databases, steal sensitive information and

corrupt the databases. Some reputed organizations

impacted by SQLiAs are Travelocity, FTD.com,

Creditcards.com, Guess Inc. and RIAA.

In most cases, hackers target the free text input fields

present in the web applications to exploit the web

applications and underlying databases. Such text input

fields without proper validations become security threats

or loopholes of any web application. In such cases, expert

hackers use their techniques to enter malicious inputs in

free text input fields to exploit the underlying databases.

Hence, every text input should be thoroughly validated to

avoid SQL injection attacks. Developers may use input

validation and parameterized queries to prevent SQL

injection attacks.

In legacy web applications, developers use string

concatenation techniques to send the actual user inputs

during the use of web applications which is bad

programming practice and always provides a path for

hackers to exploit the web applications. In many cases,

modern developers still use the string concatenation

technique to pass the user inputs to the web applications

and are prone to SQL injection attacks. To overcome

these situations, programmers should use stored

procedures and parameterized queries to pass input

parameters to SQL queries.

The web applications, at times, may display the actual

database-level errors in the web pages. It is due to

inappropriate exception handling, the presence of syntax

errors logical errors etc. Hackers exploit this technique to

gather the initial database schema, table details and role

authorization. It is the entry point for hackers to gather

valuable information about the underlying databases.

Based on this analysis, hackers gain initial knowledge

and further exploit their actions to attack the underlying

databases.

In the case of developed legacy applications or

applications deployed in a production environment,

source code modification is essential to protect those

applications from SQL injection attacks. However, it is a

challenging and time-consuming task to re-engineer any

production application. This is also very difficult to

modify the production application in different locations

of one or many source code files of the application to

protect from SQL injection attacks. To overcome such

situations, we require an automatic tool that acts as a

shield to protect systems from SQL injection attacks in

database-driven applications. Such a shield may perform

as a filter to separate the SQL-injected queries and

safeguard the applications. Informal survey results show

that 97% of such free text input fields are potentially

vulnerable to SQL injection attacks. However, tool

development includes the process of continuous

improvement to keep up with emerging threats and black-

hat techniques, and it is a tedious task. It is possible that a

single tool may not address all types of SQLiA attacks

(Thomas et al., 2009; Abdul Bashah Mat Ali et al., 2011;

Dimitris et al., 2009; Lee et al., 2012; Huang et al., 2003).

Researchers always try to address critical or high-impact

vulnerabilities like SQL Injection. As per the study, 70%

of database-centric applications are under threat due to

SQL injection vulnerabilities.

Based on the literature survey, SQLiA detection and

prevention methods can be categorized as follows:

Detection of SQLiA using Static analysis approach

Identification of SQLiA using Dynamic analysis

method

Combination of static and dynamic approaches

(Ghafarian, 2017)

Machine learning techniques

The static analysis approach analyses the whole SQL

query that exists in the database-driven application. It

verifies the user input type to prevent SQL injection

attacks. It is difficult to prevent if malicious user input

contains the correct input type. This technique does not

apply to emerging and new types of SQLiA attacks.

Dynamic analysis techniques are employed to detect

security loopholes during program executions. Example:

CANDID tool techniques. Based on the literature

available, the dynamic approach seems to be the best fit

for web applications (Thomas et al., 2009; Elia et al.,

2010; Park et al., 2006). Vulnerability Assessment and

Penetration Testing (VAPT) tool may be used to detect

the loopholes, vulnerable codes etc., in existing web

applications so that developers can fix those areas to

strengthen the security issues before exposure to the

external world.

The advantages of dynamic or penetration testing are

as follows:

No impact on the development of the life cycle

Avoidance of static analysis challenges

Source code sanitizing is not necessary

Deployment-security

E-shield (Jamar et al., 2017) devices or honeypots are

currently in use to protect the production system from

SQLiA attacks. A code-based analysis to automatically

detect the existing SQLiA attacks (Su et al., 2006;

Halfond et al., 2008). Recently, machine learning

techniques have been prevalent in SQLiA detection.

Example: Wave accessibility evaluation tool (WAVES

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
3

tool) (Thomas et al., 2009; Zhang et al., 2010; Natarajan

et al., 2012; Jana et al., 2020; Hlaing et al., 2020). The

combined static and dynamic analysis method is more

robust because it can use the functionality of both. A

model is prepared based on various machine learning

algorithms in machine learning techniques. Then, the

dataset is divided into two sets training and test set. The

training set is for training the model, and the test set is for

validation of the model. This hybrid approach can detect

SQL injection attacks.

Related Works

To incorporate a thorough examination of SQL

injection, we have evaluated papers from several

journals, conferences, and data sources. The following is

the organization of various papers:

Huang and others focus on web application

vulnerability assessment to find the loopholes and coding

practices (Huang et al., 2003) prone to SQL injection

attacks. This paper focuses on analyzing the design of

web applications to identify poor coding practices, use of

software testing tools etc to expose the SQLiA

vulnerabilities. This study helps to identify the existing

gaps of web applications and those vulnerabilities can be

fixed further to avoid the SQLiA attacks. But for real-

time applications, this tool cannot detect such SQLiA

attacks that did not surface during source code analysis.

Wassermann and others describe a technique of input

validation approach using static analysis (Wassermann et

al., 2004) method to detect and prevent SQLiA

vulnerability. Similarly, the JDBC checker (Su et al.,

2004) is also using a static analysis approach. Nguyen

and all present a fully automated approach to securely

hardening (Nguyen-Tuong et al., 2005) web applications.

Protection measures to reduce vulnerabilities are

crucial: for instance, in the case of Android malware

detection, new approaches like the Borutashap algorithm

turned out to be effective (Sharma et al., 2023). This

approach puts emphasis on the array needed to protect

digital systems whether from malware or injection

attacks. Buehrer and others describe a technique to detect

the manipulation performed by hackers in SQL queries.

The technique is based on comparing, at run time, the

parse tree (Buehrer et al., 2005) of the SQL statement

before inclusion of user input with that resulting after

inclusion of input. The parse tree comparison is very

efficient and adds about 3 milliseconds overhead to

database query execution time. It is easy to implement as

developers need minimal effort to change the source code

section of database interaction.

Valeur and others focused on an anomaly-based

(Valeur et al., 2005) system which learns the normal

database access by web applications using different

models. These models protect the underlying database

from unknown attacks. Many researchers also focus on

dynamic taint analysis to detect SQLiA vulnerabilities.

Halfond and others describe the AMNESIA tool (Halfond

et al., 2005) which is based on static and dynamic

analysis approaches to detect SQL injection

vulnerabilities. This tool builds a model based on static

analysis to generate legitimate queries. Park and others

present a detection methodology SQL injection using

pairwise (Park et al., 2006) sequence alignment of amino

acid code formulated from a web application parameter

database sent via the web server. The experiment shows

that this method can identify existing SQLiA

vulnerabilities and unknown attacks.

Wasserman and Su use the static analysis technique to

generate finite state automata (Wasserman et al., 2006)

for modelling the set of valid SQL commands for each set

of data access. They present the first formal definition of

command injection attacks in the context of web

applications and gives a sound and complete algorithm

for preventing them based on context-free grammar and

compiler parsing techniques. It cannot handle many

queries, such as those with LIKE. This limitation is an

implementation issue, and it is reasonable to assume that

support for these yet unsupported queries will be

available in the future. However, it is a problem of static

design and it cannot model dynamic queries. The

technique to prevent tautology attacks is very

complicated.

Halfond and others focus on a highly automated

method to protect applications against SQL injection. It is

based on the novel idea of positive tainting (Halfond et

al., 2008) and the concept of syntax-aware evaluation.

Thomas and others suggested an algorithm of prepared

statement replacement to avoid SQLiA vulnerabilities by

replacing SQL statements with prepared statements

(Thomas et al., 2009). Prepared statements have a static

structure, which prevents SQL injection attacks from

changing the logical structure of a prepared statement.

Mitropoulos proposes a novel method to prevent

SQLiA attacks by placing a database driver (Dimitris et

al., 2009) between the application and underlying

databases. It creates SQL signatures that are used to

distinguish between normal queries and injected queries.

The driver neither depends on the web application nor the

underlying databases and due to this reason, it can be

integrated easily with any web application/system. It acts

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
4

as a shield between web applications and the backend

databases to protect from SQL injection attacks.

Elia and others described the experimental evaluation

of five detection tools (Elia et al., 2010) concerning

vulnerabilities that exist in applications, databases and

networks. The results emphasize the shortcomings of

current intrusion detection technologies in identifying

SQL Injection attacks as the analyzed tools have

relatively poor effectiveness and only perform effectively

in certain situations. Web applications employing

database-driven content have become widely deployed on

the Internet, and organizations use them to provide a

broad range of services to people. Along with their

growing deployment, there has been a surge in attacks

that target these applications. One type of attack,

particularly SQL injection, is especially harmful. SQL

injections can give attackers direct access to the database

underlying an application and allow them to leak

confidential or even sensitive information. SQL injection

can evade or detour IDS or firewalls in various ways.

Hence, a detection system based on regular expressions

or predefined signatures cannot prevent SQL injection

effectively. Zhang and others described a tool D-WAV

(Zhang et al., 2010) to detect cross-site scripting and SQL

injection vulnerabilities.

Ali et al. (2011) shared the idea of a new web

scanning tool (MySQL injector) with enhanced features

that can perform penetration testing on PHP applications.

This tool generates the result of penetration testing of any

web application. After analysis of the result, injection

techniques and new hacking techniques can be captured.

Cyber experts can refer to these existing and new hacking

techniques to gather knowledge of protection

mechanisms from SQLiA vulnerabilities.

Lee and others suggested a very simple and effective

way to detect the SQLiA vulnerabilities where it removes

the SQL query attributes (Lee et al., 2012) of web

applications or web pages during page submission and

compares the parameters with the pre-determined ones. It

uses a combination of static and dynamic analysis

approach and experiments show its effectiveness and

simplicity. To detect and prevent SQL injection attacks,

Natrajan and others suggested a SQL-injection-free

(SQL-IF) secure algorithm (Natrajan et al., 2012). The

generated algorithm can be integrated into the runtime

environment while the implementation has been done

through Java. This method also describes several

procedures to avoid SQL injection attacks.

Ghafarian has developed a novel method for

identifying and preventing SQLIA implementation. The

methodology is a hybrid (Ghafarian, 2017) of the static

and dynamic approaches. There are three steps to the

suggested method. It is advised that all database tables be

expanded to include a record with only a few images,

such as a dollar sign, for the initial stage (static). This

needs to be completed before implementation and during

database design. The author suggested creating an

algorithm once and configuring it to work for any query

for the second step (dynamic).

Jana and others focus on a code-based analysis (Jana

et al., 2020; Kumar et al., 2023) approach to detect

injection attacks in a query before execution. This

approach analyses the user input by assigning a complex

number to each input element. Hlaing et al. (2020)

present an approach that detects a query token with a

reserved words-based lexicon (Hlaing et al., 2020) to

detect SQLIA attacks. At first, it creates a lexicon and in

the second step tokenizes the input query statement and

each string token is detected to a predefined words

lexicon to prevent SQLiA. Shreya and others depicted the

existing tools and methods available to detect and prevent

SQLiA vulnerabilities (Chowdhury et al., 2021). Gogoi et

al. (2022) suggested a machine learning-based approach

for the detection of web shells written in PHP language.

The proposed approach analyses the function call and the

use of super global variables commonly used in PHP web

shells using a deep learning technique. Saxena et al.

(2022) described web security flaws like SQLi, XSS,

malicious URLs, phishing attacks, path traversal and

CMDi in detail. They also elaborated on the existing

security methods for detecting these threats using

machine learning approaches for URL classification and

the potential research opportunities for ML and DL-based

techniques in this category, based on a thorough

examination of existing solutions.

SQLi Attack Types

This section emphasizes the most common types of

SQL injection attacks used by hackers. The main

intention is to summarize the different types of SQL

injection attacks to manipulate the data, gather the

database information, access underlying databases and

execute system-level commands to destroy the databases.

Table 1 summarizes some of the SQLiA types.

Table 1. SQLi Attack Types.

Sl.

No.
Type Purpose

1
Illegal or logically

In-correct

Reveal relevant database

information through error

messages generated from the

underlying database

2 Piggybacked
To delete the information from a

database with harmful intention

3 Tautology To get the application access

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
5

without a valid username and

password

4 Union

To disclose sensitive

information using the UNION

operator

5 Stored Procedure

To gain access to the host

operating system by performing

a command execution

6 Alternate encoding

To hide the aggressor’s pattern

via alternate encodings, such as

hexadecimal, ASCII

7
Boolean Injection

or Inference

To bypass the authentication

mechanism to gain access to

database information

I. Illegal / logically incorrect queries: It is a primitive way

to gather database information applied by hackers or

adversaries. In this case, an adversary injects junk inputs

into the regular queries. Due to this, the underlying

database throws error messages containing the database

schema information and reveals other related database

details. Based on this initial information, hackers may

further exploit the database using different types of

SQLiA. The purpose of this attack is to collect the

structure of the database schema.

SELECT * FROM employee WHERE employeeId = ‘mec001199’

AND password = ‘abc@123’AND CONVERT (char, no);

II. Piggybacked queries: A malicious SQL query is

inserted into a normal SQL query. In structured query

language, the database may execute multiple SQL queries

simultaneously if the operator separates the queries ";".

Note that this operator is inserted at the end of each

query. Using this attack the hacker can drop tables gather

table data or even destroy the database. On execution of

Query 2, the table user will be dropped.

SELECT * FROM employee WHERE employee Id =

‘mes001199’AND password ‘abc@12’; DROP TABLE user;

III. Tautology attacks (Qbea'h et al., 2016) bypass the

authentication mechanism to access the database

information. The SQL injection query evaluates as TRUE

by adding one or more SQL commands like (2 = 2 or 1

=1 or –) in the WHERE clause of the SQL statement. The

results of Query 3 will display all the information in the

user table.

SELECT * FROM users WHERE name=‘abcd’ OR 1 = 1;

IV. Union queries: The union injection attacks performed

by the hackers to join the two SQL queries using the

UNION operator. The malicious query joined with the

normal query with the UNION operator.

SELECT * FROM user WHERE id= ‘mes01199 ’UNION

SELECT * FROM previlege WHERE id=‘admin’‘–”AND pass-

word= ‘abc1234’;

All the strings after “—” are considered as comments

and two SQL queries are executed. The result of the

query process shows the administrator’s information on

the DBMS.

V. Stored Procedure: The attacker uses built-in stored

procedures and executes built-in functions with malicious

SQL injection codes.

CREATE PROCEDURE DBO @userName varchar2, @pass

varchar2, AS EXEC(“SELECT * FROM user WHERE id=“‘+

@userName + ”’AND password=“‘+ @password + ”’); GO

This scheme is very vulnerable to attacks such as

piggy-backed queries.

VI. Alternate encoding: The attackers modify the normal

query using alternate encoding such as hexadecimal,

ASCII and Unicode to avoid detection by the defensive

techniques.

SELECT accounts FROM users WHERE username = ‘john’; exec

(char (Ox73687574646j776e))

VII. Boolean Injection / Inference: It is a type of

inferential SQL injection technique where the hackers

inject malicious payload that forces the database to return

a different result set depending on whether the query

returns a TRUE or FALSE result.

SELECT accounts FROM “users” WHERE username = ‘john’OR 1 = 1

Materials and Methods

The proposed system is based on a dynamic analysis

approach and can detect SQL injection attacks in real-

time scenarios. It detects all the SQLiA vulnerabilities

listed in Table 1. The proposed system involves the

following steps:

A. Weight Assignment

B. Extraction of vectors from design time and run-time

queries

C. SQL injection vulnerability detection Engine

A. Weight Assignment

Each SQL keyword has some impact on SQLiA

vulnerabilities. Assignment of a Weight to each SQL

keyword is done depending on its severity. A weight of 5

indicates the highest severity and a weight of 1 indicates

the low severity. The weight has been assigned for each

SQL keyword to identify the severity of the presence of

the keyword in SQL injection queries. The SQL

keywords are then stored as key-value pairs in a dynamic

data table termed as dictionary. The procedure to create

the dictionary is defined in Algorithm 1. The key-value

pair can be visualized as in Table 2.

Algorithm 1. Prepare SQL Keyword HashTable().

Pseudo Code:

HashTable prepare_SQL_Keyword_HashTable()

{

Step 1: Create a hashtable

Step 2: Store all the SQL keywords as key-value (weight) pairs in

this hashtable where value refers to the weight assigned.

}

Step 3: Return the hashtable

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
6

Table 2. List of keywords having their weights two or

above.

Keyword

(key)

Weight

(value)

Keyword

(key)

Weight

(value)

ALTER 5 MODIFY 3

CONNECT 5 NOAUDIT 3

CREATE 5 OR 3

DROP 5 SELECT 3

SHUTDOWN 4 UNION 3

ADD 3 AUDIT 2

ALL 3 NOCOMPRESS 2

AND 3 NOT 2

BETWEEN 3 NOWAIT 2

DELETE 3 NULL 2

INSERT 3 ORDER BY 2

MODIFY 3 UPDATE 2

Table 2 shows a few keywords along with their

weights. The rest of the keywords are assigned the weight

1. A lookup table is required to store all the SQL

keywords along with the corresponding weights. To

accomplish this, a dictionary has to be created using a

hash table. The hash table returned by the Algorithm1 is

used for this purpose. It stores all the SQL keywords as

key-weight pairs. It is used for extracting the weights for

the available SQL keywords in the given design time run-

time query.

B. Extraction of vectors from design time and run-

time queries

The different vectors extracted from design time and

run-time queries are as follows:

i. In the case of real-time application, the DLL

(dynamic link library) extractor is plugged in with the

application. The exposed methods of the extractor are

called before the database interaction source code

snippet. It captures the design time query and sends it to

the dynamic data table to store the design time query

temporarily.

ii. From the same source code snippet, the exposed

method of the extractor captures the run-time query

which consists of all the input parameters and sends to

them to the dynamic data table corresponding to the same

design time query.

iii. For Example, consider the following design time

and run-time query extracted from the query extractor.

Design Time query: SELECT * FROM employee WHERE

emp_name = @val1;

Run time query (Injected query): SELECT * FROM employee

WHERE emp_name = ‘lucia01’ OR 1 >0;

iv. The split function of the string is used to separate

the SQL Keywords that exist in design time and run-time

query and are stored in a temporary location. With the

help of Table 2, the Weight Vector is created for

respective queries after assigning the weights. The

get_Keyword_Count () function of Algorithm 2 is used to

create the count vector. Similarly, the Keyword Vector is

created. After all the above steps, the Design Time

Vector(dv) is created which is the product of the design

time weight and count vector. Similar steps are followed

to create the Run Time Vector(rv), a product of run time

weight and count vector. The resultant Design Time

Vector (dv) and Run Time Vector(rv) with associated

vectors are shown below:

Keyword Vector (Design Time): [select, from, where]T

Count Vector (Design Time): [1, 1, 1]T

Weight vector (Design Time): [3, 1, 1]T

Design time vector(dv) = Count Vector * Weight Vector = [3, 1, 1]T

Keyword Vector (Run Time): [select, from, where, or]T

Count Vector (Run Time): [1, 1, 1, 1]T

Weight vector (Run Time): [3, 1, 1, 3]T

Run time vector(rv) = Count Vector * Weight Vector = [3, 1, 1, 3]T

The above design time and run time vectors are used

in subsection C for further processing.

C. SQL injection vulnerability detection engine

Figure 1 shows the system architecture to detect

SQLiA. A user requests web pages via HTTP web

request from a web server. Web pages are submitted to

the webserver to serve the user request. A web server

uses HTTP (Hypertext Transfer Protocol) and a few other

protocols to process the web requests generated from the

client side over the World Wide Web. The web server is

connected to the internet to serve incoming and outgoing

web requests through a firewall. The underlying Web

server software is responsible for processing the web

request and generating the response to end users or

clients. It can handle multiple requests simultaneously.

The design time query and run-time query can be

discriminated as follows: Assume that a user has to

submit his username and password in a login form. The

user enters the text fields username and password and

presses the submit button.

The code for the submit button might be written as

SELECT * FROM login WHERE user name = @username AND

password = @password. This is termed a design time query.

Assume that the username of the user is “user1” and

the password is “pass1234”. The user provides this

information and presses the submit button. Then the code

for the submit button is transformed as

SELECT * FROM login WHERE user name = ’user1’ AND password

= ’pass1234’.

This is termed a run-time query. The query extractor

extracts design time and run-time queries and stores both

SQL queries in system memory.

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
7

The illustration of the proposed method and generic

steps involved in processing the design time and run-time

queries are as mentioned below:

I. Consider Table 3 for sample design time and run-time

queries. The proposed engine tokenizes each word in the

design time query and forms a keyword vector.

II. A function get_Keyword_Count(string, vector) is

defined in Algorithm 2 to count the occurrences of each

SQL keyword and store it as a count vector. From the

repository of weights i.e., from Table 2, the weight for

each keyword is extracted and stored as a weight vector.

III. Create a keyword vector, weight vector, count vector

and design time vector (dv) as in Table 4 from the given

design time queries of Table 3. Table 4 shows the step-

by-step extraction of the keyword vector, weight vector,

count vector and finally, design time vector i.e., dv. Here,

the weight and count of the keywords are extracted and

stored in the weight and count vector. The weight vector

and count vector's dot product are taken and stored as dv.

The count vector is calculated with the help of Algorithm

2.

IV. Create a keyword vector, weight vector, count vector

and run time vector (rv) as in Table 5 from the given run

time queries of Table 3.

Algorithm 2: get_Keyword_Count(string query,

vector keyword vector)

Pseudo Code:

vector get_Keyword_Count(string query, vector

keyword_vector)

{

Step 0: count_vector = []; count=0

Step 1: For each element i in keyword_vector

Step 2: count the occurrences in the query

Step 3: count_vector[i]=count

Step 4: count = 0

Step 5: Return count_vector

 }

Table 5 shows the keyword vector, weight vector, count

vector extracted for the run-time queries and finally time

vector i.e., rv. Here the weight and count of the keywords

are extracted and stored in the weight and count vector.

The dot product of the weight vector and count vector is

taken and stored as rv. The count vector is calculated

with the help of Algorithm 2.

Figure 1. Skeleton view of the proposed method and its location of operation.

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
8

VI. To find the similarity between dv and rv, they

should be of equal length. If required, the vector dv is

padded with zeros to maintain the same length as that of

rv. The similarity between the dv and rv is determined by

determining the angle between two vectors. This can be

determined using the equation (1) formula.

i. e. θ = cos−1(
𝑑𝑣.𝑟𝑣

|𝑑𝑣||𝑟𝑣|
) ------------(1)

Here The mathematical formula i. e., θ =

 cos−1(
𝑑𝑣.𝑟𝑣

|𝑑𝑣||𝑟𝑣|
) is used to measure the angle of

deviation between design time and run time vector. If the

angle of deviation is zero, then it implies that there is no

SQLiA vulnerability and if the angle of deviation is zero,

then it means that SQLiA vulnerability exists.

Table 6 shows the angle between the design time and

run-time queries. In Table 6, the angle of deviation θ is

non-zero for all the queries i.e., from Q1 to Q10 except

Q5. In the case of Q5, θ is zero, meaning there is no SQL

injection vulnerability. But for others i.e., from Q1 to

Q10 (except Q5), SQLiA vulnerability exists. The

above steps are also depicted in the below flowchart.

In this proposed method, the similarity matching is

calculated based on the angle of deviation. If the angle

between the design time and run-time query is 0 degrees,

it means there is no deviation and it implies the design

time and run-time queries are similar. This indicates that

there are no SQL injection vulnerabilities. On the other

hand, if the angle between design time and runtime query

is a non-zero degree, there is some deviation that

indicates that design time and run-time queries are not

similar. That means SQL injection vulnerabilities exist in

this scenario. This mathematical model to determine the

SQL injection vulnerabilities is unique because till now,

no researcher used this concept for this purpose. This

model can detect all kinds of SQL injection

vulnerabilities. This model can be used in real-time

scenarios and is able to prevent the web application from

SQL injection vulnerabilities.

Figure 2. Flow chart of the proposed method.

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
9

Table 3. Sample design time and run-time queries.

Query

No.
Design time Query Run time Query

Q1 SELECT * FROM employee

WHERE emp_name = @val1

SELECT * FROM employee WHERE

emp_name = ‘lucia01’ OR 1 >0

Q2 SELECT * FROM employee

WHERE emp_name = @val1

SELECT * FROM employee WHERE

emp_name = ‘lucia01’; UNION all SELECT *

FROM employee

Q3 SELECT * FROM employee

WHERE emp_name = @val1

SELECT * FROM employee WHERE

emp_name = ‘lucia01’; EXEC SP_Help

Q4 SELECT * FROM employee

WHERE emp_name = @val1

SELECT * FROM employee WHERE

emp_name = ‘lucia01’; DROP TABLE user

Q5 SELECT * FROM employee

WHERE emp_name = @val1

SELECT * FROM employee WHERE

emp_name = ‘lucia01’

Q6

SELECT * FROM employee

WHERE emp_name = @val1

SELECT * FROM employee WHERE

emp_name = ‘lucia01’; SHUTDOWN

Q7 SELECT * FROM employee

WHERE emp_name = @val1

SELECT * FROM employee WHERE

emp_name = ‘lucia01’ WAITFOR DELAY

’00:00:10:00’

Q8 SELECT * FROM employee

WHERE emp_name = @val1

SELECT * FROM employee WHERE

emp_name = ‘lucia01’ UNION SELECT *

FROM employee

Q9 SELECT * FROM employee

WHERE emp_name = @val1

SELECT * FROM employee WHERE

emp_name= ‘lucia01’ OR 1 =

COVERT(int,(SELECT TOP 1 table name

FROM INFORMATIONSCHEMA.tables))

Q10 SELECT * FROM employee

WHERE emp_name = @val1

SELECT * FROM employee WHERE

emp_name = ‘lucia01’; SELECT DB_NAME()

Table 4. Keyword vector, Weight vector, Count vector and design time vector for design-time

queries are given in Table 3.

Query Keyword vector
Weight

vector
Count vector

Design time

vector(dv)

Q1 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T

Q2 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T

Q3 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T

Q4 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T

Q5 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T

Q6 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T

Q7 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T

Q8 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T

Q9 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T

Q10 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
10

In the form of DLL (Dynamic-link Library), this

algorithm can be integrated with a web application or any

legacy application to detect and prevent SQLiA on a real-

time basis in any particular application. The proposed

method filters the SQLiA and acts as a shield to protect

the web application from SQLiA attacks. It is language-

independent and easily integrates with any third-party

apps without any source code modification of existing

web applications. The .Net framework is used to

implement the proposed algorithm.

Results and Discussion

The proposed method is evaluated on an open-source

data set from GitHub. The results obtained after applying

this procedure are awesome and it is compared with

different existing methods based on the scope and

capabilities. This method uses the mathematical model or

formula to match the similarities between design time and

run-time queries, which is a dynamic analysis method

hence, machine learning parameters like recall, false

positive, F1-score, precision etc, are not applicable in this

scenario. Those measures are applicable in a machine

learning-based approach to calculate the capabilities and

accuracy of machine learning models. However, in this

section, the main focus is on the dataset used for

validation and detection accuracy of the proposed

method. Also focused on the comparison of different

tools/methods capabilities with the proposed method.

This section includes several subsections as follows:

A. Dataset used

B. Validation using opensource GitHub dataset

C. Comparison of different tools/methods with the

proposed method

A. Dataset used

We use GitHub open-source datasets to test the

proposed method. The payloads are available in the raw

Table 5. Keyword vector, Weight vector and Count vector for run-time queries are given in Table 3.

Query Keyword vector Weight vector
Count

vector

Run time

vector(rv)

Q1 [select, from, where, or]T [3, 1, 1, 3]T [1, 1, 1, 1]T [3, 1, 1, 3]T

Q2 [select, from, where, union,

all]T

[3, 1, 1, 3, 3]T [2, 2, 1, 1,

1]T

[6, 2, 1, 3, 3]T

Q3 [Select, from, where, sp

help]T

[3, 1, 1, 2]T [1, 1, 1, 1]T [3, 1, 1, 2]T

Q4 [select, from, where, drop,

table, user]T

[3, 1, 1, 5, 1, 1]T [1, 1, 1, 1,

1,1]T

[3, 1, 1, 5, 1, 1]T

Q5 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T

Q6 [select, from, where,

shutdown]T

[3, 1, 1, 4]T [1, 1, 1, 1]T [3, 1, 1, 4]T

Q7 [select, from, where, wait

for, delay]T

[3, 1, 1, 2, 2]T [1, 1, 1, 1,

1]T

[3, 1, 1, 2, 2]T

Q8 [select, from, where,

union]T

[3, 1, 1, 3]T [2, 2, 1, 1]T [6, 2, 1, 3]T

Q9 [select, from, where, or]T [3, 1, 1, 3]T [1, 2, 1, 1]T [3, 2, 1, 3]T

Q10 [select, from, where]T [3, 1, 1]T [2, 1, 1]T [6, 1, 1]T

Table 6. The angle between design time query and run-time query.

Query padded dv vector rv vector 𝑪𝒐𝒔𝛉 𝛉

Q1 [3, 1, 1, 0]T [3, 1, 1, 3]T 0.742 420

Q2 [3, 1, 1, 0, 0]T [6, 2, 1, 3, 3]T 0.82 34.920

Q3 [3, 1, 1, 0]T [3, 1, 1, 2]T 0.86 30.680

Q4 [3, 1, 1, 0, 0, 0]T [3, 1, 1, 5, 1, 1]T 0.54 57.320

Q5 [3, 1, 1]T [3, 1, 1]T 1 0
0

Q6 [3, 1, 1, 0]T [3, 1, 1, 4]T 0.64 50.210

Q7 [3, 1, 1, 0, 0]T [3, 1, 1, 2, 2]T 0.76 40.540

Q8 [3, 1, 1, 0]T [6, 2, 1, 3]T 0.9 23.840

Q9 [3, 1, 1, 0]T [3, 2, 1, 3]T 0.75 41.410

Q10 [3, 1, 1]T [6, 1, 1]T 0.98 11.480

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
11

format. Data pre-processing is required to convert the raw

format into .csv file and further transform the queries into

design time and run-time queries. The datasets are

extracted from URLs given below.

a. https://github.com/ChrisAHolland/ML-SQL-

Injection- Detector/blob/master/data/burp-suite-

payload.txt

b.

https://github.com/Morzeux/HttpParamsDataset/blob/mas

ter/payloadfull.csv

A. Validation using opensource GitHub dataset

The proposed algorithm is validated against the

GitHub dataset. In the first dataset, out of 1300 injected

queries, the proposed method identifies 1219 injected

queries; out of 300 normal queries, it identifies 290

normal queries with 93.76% and 96.66% detection

accuracy, respectively. Similarly, for the second dataset,

out of 10489 injected queries, it identifies 10280 injected

queries and out of 301 normal queries, it identifies 280

normal queries with 98.01% and 93.02% detection

accuracy, respectively as shown in Table 7. In a few

cases, the proposed system fails to detect the SQL

injection attacks where keywords are not separated with

white space and in case of new keywords which is not

included in the keyword list. This is because this method

is unable to properly extract the design time and run time

vectors in such cases. Since the design time and run time

vector are not distinguished correctly there is a chance of

wrong calculation of the angle of deviation between

design time and run time vector. Hence, there is a scope

for improvement to address the weakness of the proposed

system. The main advantage of the proposed method is

that it can be easily integrated with legacy applications

with minimal source code modification. This method can

be used in the form of DLL (dynamic link library) to call

the exposed methods to extract the design time and run-

time queries from real-time applications. Hence, in a few

places, the source code modification is required to

integrate this application with any web application. This

DLL can be integrated with any web-based application.

Hence the complete source code modification in legacy

application is not required and it can protect the legacy

web application from SQLiA vulnerability. In Table 8

many methods have been depicted and some can detect a

few SQLiA vulnerabilities. Some can detect the

vulnerability partially and fail in some other type of

SQLiA vulnerability. However, the proposed method can

detect and prevent the applications from all types of

SQLiA vulnerability. The working procedure and logic of

the proposed method are very simple and easy to

understand as they work on similarity matching

techniques to design time and run-time queries. Apart

from that, like the machine learning model, the training

dataset is not required hence, model train activity is not

applicable in this method.

B. Comparison of different methods or tools with the

proposed method

The capabilities of different tools/methods are given

in Table 8. Tools like AMNESIA (Halfond et al.,

2005), CSSE (Pietraszek et al., 2005), SQL-Check

(Halfond et al., 2005), SQL-Guard (Buehrer et al.,

2005), SQL-Rand (Park et al., 2006) uses static and

dynamic analysis approach and able to detect almost all

types of SQL injection attacks but fails to detect stored

procedure related vulnerabilities. The tautology checker

(Wassermann et al., 2004; Qbea’h et al., 2016)

successfully detects the tautology attacks vulnerability

but fails for the rest of all types of vulnerabilities. It can

handle tautology attacks very efficiently and can be used

to detect tautology attacks. This tool could not be used

alone to detect all types of SQL injection vulnerabilities.

Tools like JDBC checker (Gould et al., 2004) and Java

Static Tainting (Livshits et al., 2005) use the static

analysis approach to detect SQLiA vulnerability. The

above tools can only examine the queries present in the

application. Hence, for real-life injection scenarios, such

tools are not useful. JDBC checker (Gould et al.,

2004) and SafeQuery objects (Cook et al., 2005) only

minimize the risk of SQLiA by checking the type of SQL

queries. IDS (Valeur et al., 2005) and WAVES

(Huang et al., 2003) are based on machine learning

methods and require a large amount of injected data to

learn the system. The demerits of the machine learning

method are that they need a large amount of data to train

the system and the result will solely depend on the

training and testing data set. The performance of this

mechanism depends on the capability of the training

model and machine learning algorithm. Table 8 shows

the applicability of different SQL injection detection

tools with the types of SQL Injection vulnerabilities. A

particular single tool is unable to detect all types of SQL

injection attacks. Some tools can detect tautology,

piggybacked, and union queries but fail to detect stored

procedure vulnerabilities. Few tools only detect the

queries at the application end but fail to detect them in

real-life scenarios. Table 8 depicts the clear comparison

of different SQL injection detection tools with the

proposed method. The proposed method is able to detect

and prevent all types of SQL injection vulnerabilities and

also has an alert mechanism to notify the users or system

administrator. The working principle of the proposed

method is a very simple mathematical formula i.e., angle

https://github.com/Morzeux/HttpParamsDataset/blob/master/payloadfull.csv
https://github.com/Morzeux/HttpParamsDataset/blob/master/payloadfull.csv

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
12

Table 7. Experimental Result of GitHub Data Set.

Dataset

Name

Dataset URL

Total

No. of

Queries

No. of

Injected

Queries

No. of

Normal

Queries

No. of

Normal

Queries

Detected &

Detection

%

No. of

Injected

Queries

Detected &

Detection%

ML-SQL-

Injection-

Detector/data/

burp-suite-

payload.txt

https://github.

com/ ChrisAHolland/

ML-SQL-

Injection- Detector/

blob/master/data/ burp-

suite

-payload.txt

1600 1300 300
290 &

96.66%

1219 &

93.76%

HttpParams

Dataset/ payload

full

https://github.

com/ Morzeux/

HttpParams Dataset/

Injection

-Detector/ blob/master/

payload full.csv

10790 10489 301
280 &

93.02%

10280 &

98.01%

Table 8. Comparison of different types of methods of SQLiA.

Sl. No. Ref. Method
Tautol

ogy

Incorrec

t

Querie

s

Union

SQLi

A

Piggy

Backed

Stored

Proc.

Inferen

ce

Alt.

Encoding

1 AMNESIA (Halfond

et al.,2005)

• • • • × • •

2 CSSE (Pietraszek et

al., 2005)

• • • • × • ×

3 IDS (Valeur et al.,

2005)

◦ ◦ ◦ ◦ ◦ ◦ ◦

4 Java Dynamic

Tainting (Haldar et

al., 2005)

+ + + + + + +

5 SQL-Check (Halfond

et al., 2005)

• • • • × • •

6 SQL-Guard (Buehrer

et al., 2005)

• • • • × • •

7 SQL-rand (Park et

al., 2006)

• × • • × • ×

8 Tautology checker

(Wassermann et al.,

2004; Qbea’h et al.,

2016)

• × × × × × ×

9 Web App Hardening

(Nguyen-Tuong et al.,

2005)

• • • • × • ×

10 JDBC Checker

(Gould et al., 2004)

+ + + + + + +

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
13

11 Java Static Tainting

(Livshits et al., 2005)

• • • • • • •

12 SafeQuery OB (Cook

et al., 2005)

• • • • × • •

13 Security gateway

(Scott et al., 2002)

+ + + + + + +

14 SecuriFly (Martin et

al., 2005)

+ + + + + + +

15 SQLDOM (McClure

et al., 2005)

• • • • × • •

16 WAVES (Huang et

al., 2003)

◦ ◦ ◦ ◦ ◦ + ◦

17 Proposed Method • • • • • • •

Symbolic Representation: •: Possible, ◦: Partially Possible, ×: Impossible, +: Not Applicable

Table 9. Analysis of functionalities of different detection and prevention mechanisms.

Sl. No.
Detection/Preventio

n Methods

Code

Modification

SQLiA

detection

mechanism

SQLiA

prevention

mechansim

Any other elements

1
AMNESIA (Halfond

et al., 2005)
Not required Self-acting Self-acting Not Applicable

2
CSSE (Pietraszek et

al., 2005)
Not required Self-acting Self-acting Req. PHP interpreter

3
IDS (Valeur et al.,

2005)
Not required Self-acting Based on report IDS knowledge

4
JDBC Checker

(Gould et al., 2004)
Not required Self-acting Code modification Not Applicable

5

Java Dynamic

Tainting (Haldar et

al., 2005)

Not required Self-acting Self-acting Not Applicable

6
Java Static Tainting

(Livshits et al., 2005)
Not required Self-acting Code modification Not Applicable

7
SafeQuery OB (Cook

et al., 2005)
Required

Not

Applicable
Self-acting Developer training

8
SecuriFly (Martin et

al., 2005)
Not required Self-acting Self-acting Not Applicable

9
Security gateway

(Scott et al., 2002)
Not required

Manual

process
Self-acting Proxy filter

10
SQL-Check (Halfond

et al., 2005)
Required

Self-acting

(partial)
Self-acting Key management

11
SQL-Guard (Buehrer

et al., 2005)
Required

Not

Applicable
Self-acting Not Applicable

12
SQLDOM (McClure

et al., 2005)
Required Self-acting Self-acting Developer training

13
SQL-rand (Park et al.,

2006)
Required Self-acting Self-acting Key management

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
14

of deviation between design time and run-time queries. It

works perfectly on all types of SQL injection attacks. It

does not use any machine learning algorithm. Hence

large dataset is not required to train the model.

Due to this reason false positive and false negative

parameters are not applicable in this case. The proposed

method is different from existing methods or tools

because the same SQL injection detection engine is

capable enough to detect as well as prevent web

applications from SQL injection attacks. This method

applies a simple logic to check the similarity between the

design time and run time vectors in terms of the angle of

deviation. During the study of various tools or methods,

we have seen that one single tool cannot detect all types

of SQL injection attacks, but the proposed mechanism

can detect all types of SQL injection vulnerabilities. Also,

this tool can be integrated with any web application to

protect them in real-life scenarios. The existing tools

based on machine learning algorithms require large data

to train and test the model and their performance is based

on the training dataset. The accuracy of such models

depends on training the model in a particular dataset in

various scenarios, which is a very difficult and time-

consuming task. Here, the proposed mechanism used the

dynamic approach and a large dataset is not required to

train the model. It can directly work on test datasets to

identify the SQL injection vulnerability. Like machine

learning models, the false positive and false negative

criteria do not apply to the proposed method. Similarly,

the other criteria like F1-score, precision, recall etc.,

generally used in machine learning algorithms, are not

applicable in this scenario. The accuracy can be measured

in terms of percentage, which can be calculated out of

certain numbers of injected queries and how many of

them are identified by this method. The detailed

comparison of different methods in terms of capabilities

and functionalities is shown in Table 9. The detection and

prevention mechanism of the proposed method is fully

automatic with minimal source code modification and

can be integrated as DLL form with any web application

with minimal change in the source code of the existing

application.

Conclusion and Future Work

The paper proposes a new method to detect SQLiA

attacks by comparing design time and run-time queries. If

there is any deviation in design time and run-time queries

then, it raises an alert and stops the further execution of

the SQL statement. The deviation is calculated in terms

of the angle of deviation between design time and run-

time queries. The performance and capability of the

proposed method are compared with other methods, as

mentioned in Table 7 and Table 8. The angle of deviation

plays a crucial role in identifying the normal and injected

queries. Sometimes, the method fails when there is a new

keyword and if the white space is missing between

keywords. For such cases, the proposed method is unable

to create the correct design time and run time vector,

which fails to calculate the proper angle of deviation

between the two vectors and hence this method fails in

such scenarios. This part can be taken care of during the

data preprocessing phase. This is a small gap that can be

addressed if any researcher uses this technique to

determine SQLiA vulnerability. This method only uses a

dynamic analysis approach to identify SQLiA

vulnerability.

It may be possible that this can be used with other

techniques to produce some hybrid approach for

identifying SQL injection attacks. As the main outcome,

this technique can be integrated with other detection

techniques to build a robust mechanism for detecting and

preventing SQLiA vulnerability. It can be used as a

plugin with any existing application. The proposed

system can detect Illegal queries, Boolean injection,

tautologies, union queries, piggy-backed queries and

stored procedure-related SQLiA attacks. It is fast and can

be integrated into web applications or wherever we want

to use it.

14

Tautology checker

(Wassermann et al.,

2004; Qbea’h et al.,

2016)

Not required Self-acting Code modification Not Applicable

15
WAVES (Huang et

al., 2003)
Not required Self-acting Based on report Not Applicable

16 Web App Hardening

(Nguyen-Tuong et al.,

2005)

Not required Self-acting Self-acting Req.PHP interpreter

17 Proposed Method Required Self-acting Self-acting Not Applicable

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
15

Conflict of Interest

The authors declare no conflict of interest.

References

Ali, A. B. M., Shakhatreh, A. Y. I., Abdullah, M. S., &

Alostad, J. (2011). SQL-injection vulnerability

scanning tool for automatic creation of SQL-

injection attacks. Procedia Computer Science, 3,

453–458.

https://doi.org/10.1016/j.procs.2010.12.076

Buehrer, G., Weide, B. W., & Sivilotti, P.P.A.G. (2005).

Using parse tree validation to prevent SQL

injection attacks. In Proceedings of the 5th

International Workshop on Software Engineering

and Middleware (SEM ’05), pp.106–113.

https://doi.org/10.1145/1108473.1108496

Chowdhury, S., Nandi, A., Ahmad, M., Jain, A., &

Pawar, M. (2021). A Comprehensive Survey for

Detection and Prevention of SQL Injection. In

Proceedings of the 7th International Conference

on Advanced Computing and Communication

Systems (ICACCS, 2021), pp. 434–437.

 https://doi.org/10.1109/icaccs51430.2021.9442012

Cook, W., & Rai, S. (2005). Safe query objects: statically

typed objects as remotely executable queries. In

Proceedings of the 27th International Conference

on Software Engineering, 2005, pp. 97-106.

 https://doi.org/10.1109/icse.2005.1553552

Elia, I. A., Fonseca, J., & Vieira, M. (2010). Comparing

SQL Injection Detection Tools Using Attack

Injection: An Experimental Study. In Proceedings

of the IEEE 21st International Symposium on

Software Reliability Engineering, pp. 289–298.

 https://doi.org/10.1109/issre.2010.32

Ghafarian, A. (2017). A hybrid method for detection and

prevention of SQL injection attacks. In

Proceedings of the Computing Conference, 2017,

pp. 833-838.

https://doi.org/10.1109/sai.2017.8252192

Gogoi, B., Ahmed, T., & Dinda, R. G. (2022a). PHP web

shell detection through static analysis of AST using

LSTM based deep learning. In Proceedings of the

14th Conference on USENIX Security Symposium,

pp. 14.

 https://doi.org/10.1109/icaitpr51569.2022.9844206

Gogoi, B., Ahmed, T., & Dinda, R. G. (2022b). PHP web

shell detection through static analysis of AST using

LSTM based deep learning. In Proceedings of the

2022 First International Conference on Artificial

Intelligence Trends and Pattern Recognition

(ICAITPR), pp. 1–6.

https://doi.org/10.1109/icaitpr51569.2022.9844206

Gould, C., Su, N. Z., & Devanbu, PP. (2004). JDBC

checker: a static analysis tool for SQL/JDBC

applications. In Proceedings of the 26th

International Conference on Software Engineering,

pp. 697-698.

https://doi.org/10.1109/icse.2004.1317494

Haldar, V., Chandra, D., & Franz, M. (2006). Dynamic

Taint Propagation for Java. In Proceedings of the

21st Annual Computer Security Applications

Conference (ACSAC’05), pp. 309–311.

https://doi.org/10.1109/csac.2005.21

Halfond, W. G. J., & Orso, A. (2005). AMNESIA:

analysis and monitoring for Neutralizing SQL-

injection attacks. In Proceedings of the 20th

IEEE/ACM International Conference on

Automated Software Engineering (ASE ’05).

Association for Computing Machinery, pp. 174–

183. https://doi.org/10.1145/1101908.1101935

Halfond, W., Orso, A., & Manolios, PP. (2008). WASP:

Protecting Web Applications using Positive

Tainting and Syntax-Aware Evaluation. IEEE

Transactions on Software Engineering, 34(1), 65–

81. https://doi.org/10.1109/tse.2007.70748

Hlaing, Z. C. S. S., & Khaing, M. (2020). A Detection

and Prevention Technique on SQL Injection

Attacks. In Proceedings of the IEEE Conference

on Computer Applications (ICCA, 2020), pp. 1–6.

https://doi.org/10.1109/icca49400.2020.9022833

Huang, Y., Huang, S., Lin, T., & Tsai, C. (2003a). Web

application security assessment by fault injection

and behavior monitoring. Mathematical and

Computer Modelling, 55(1-2), 58–68.

 https://doi.org/10.1145/775152.775174

Huang, Y., Huang, S., Lin, T., & Tsai, C. (2003b). Web

application security assessment by fault injection

and behavior monitoring. In Proceedings of the

12th International Conference on World Wide Web

(WWW’03), Association for Computing Machinery,

pp. 148–159.

https://doi.org/10.1145/775152.775174

Jamar, R., Sogani, A., Mudgal, S., Bhadra, Y., & Churi,

PP. PP. (2018). Website attack prevention using E-

Shield as a IDPS tool. In Proceedings of the IEEE

International Conference on System, Computation,

Automation and Networking (ICSCA, 2018), pp. 1-

7. https://doi.org/10.1109/icscan.2018.8541152

Jana, A., & Maity, D. (2020). Code-based Analysis

Approach to Detect and Prevent SQL Injection

Attacks. In Proceedings of the 11th International

Conference on Computing, Communication and

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
16

Networking Technologies (ICCCNT, 2020), pp. 1–

6.

 https://doi.org/10.1109/icccnt49239.2020.9225575

Kumar, A., Dutta, S., & Pranav, P. (2023). Supervised

learning for Attack Detection in Cloud. Int. J. Exp.

Res. Rev., 31(Spl Volume), 74-84.

https://doi.org/10.52756/10.52756/ijerr.2023.v31sp

l.008

Lee, I., Jeong, S., Yeo, S., & Moon, J. (2012). A novel

method for SQL injection attack detection based on

removing SQL query attribute values.

Mathematical and Computer Modelling, 55(1–2),

58–68. https://doi.org/10.1016/j.mcm.2011.01.050

Martin, M., Livshits, B., & Lam, M. S. (2005). Finding

application errors and security flaws using PQL. In

Proceedings of the 20th Annual ACM SIGPLAN

Conference on Object-oriented Programming,

Systems, Languages, and Applications (OOPSLA

’05), Association for Computing Machinery, pp.

365–383.

https://doi.org/10.1145/1094811.1094840

McClure, R., & Kruger, I. (2005). SQL DOM: compile

time checking of dynamic SQL statements. In

Proceedings of the 27th International Conference

on Software Engineering, 2005 (ICSE 2005), pp.

88-96. https://doi.org/10.1109/icse.2005.1553551

Mitropoulos, D., & Spinellis, D. (2009). SDriver:

Location-specific signatures prevent SQL injection

attacks. Computers & Security, 28(3–4), 121–129.

https://doi.org/10.1016/j.cose.2008.09.005

Natarajan, K., & Subramani, S. (2012). Generation of

SQL-Injection free secure algorithm to detect and

prevent SQL-Injection attacks. Procedia

Technology, 4, 790–796.

https://doi.org/10.1016/j.protcy.2012.05.129

Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J.,

& Evans, D. (2005). Automatically hardening web

applications using precise tainting. IFIP Advances

in Information and Communication Technology,

295–307.

 https://doi.org/10.1007/0-387-25660-1_20

Park, J., & Noh, B. (2007). SQL Injection attack

detection: Profiling of web application parameter

using the sequence pairwise alignment. In Springer

eBooks, pp. 74–82. https://doi.org/10.1007/978-3-

540-71093-6_6

Pietraszek, T., & Vanden Berghe, C. (2006). Defending

against injection attacks through Context-Sensitive

String Evaluation. In Lecture Notes in Computer

Science, pp. 124–145.

https://doi.org/10.1007/11663812_7

Qbea’h, M., Alshraideh, M., & Sabri, K. E. (2016).

Detecting and Preventing SQL Injection Attacks:

A Formal Approach. In Proceedings of the

Cybersecurity and Cyberforensics Conference

(CCC, 2016), pp. 123–129.

https://doi.org/10.1109/ccc.2016.26

Rubaiei, M. A., Yarubi, T. A., Saadi, M. A., & Kumar, B.

(2020). SQLIA Detection and Prevention

Techniques. In Proceedings of the 9th

International Conference System Modeling and

Advancement in Research Trends (SMART, 2020,

pp. 115–121.

https://doi.org/10.1109/smart50582.2020.9336795

Saxena, A., Arora, A., Saxena, S., & Kumar, A. (2022).

Detection of web attacks using machine learning

based URL classification techniques. In

Proceedings of the 2nd International Conference

on Intelligent Technologies (CONIT, 2022), pp. 1-

13.

https://doi.org/10.1109/conit55038.2022.9847838

Sharma, S., P., Chhikara, R., & Khanna, K. (2023). An

efficient Android malware detection method using

Borutashap algorithm. International Journal of

Experimental Research and Review, 34(Special

Vol), 86-96.

https://doi.org/10.52756/ijerr.2023.v34spl.009

Scott, D., & Sharp, R. (2002). Abstracting application-

level web security. In Proceedings of the 11th

International conference on World Wide Web

(WWW '02). Association for Computing

Machinery, pp. 396–407.

 https://doi.org/10.1145/511446.511498

Su, Z., & Wassermann, G. (2006). The essence of

command injection attacks in web applications. In

Conference Record of the 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of

Programming Languages (POPL ’06). Association

for Computing Machinery, pp. 372–382.

https://doi.org/10.1145/1111037.1111070

Thomas, S., Williams, L., & Xie, T. (2009). On

automated prepared statement generation to

remove SQL injection vulnerabilities. Information

and Software Technology, 51(3), 589–598.

https://doi.org/10.1016/j.infsof.2008.08.002

Valeur, F., Mutz, D., & Vigna, G. (2005). A Learning-

Based approach to the detection of SQL attacks.

Detection of Intrusions and Malware, and

Vulnerability Assessment. DIMVA 2005. In

Lecture Notes in Computer Science, pp. 123–140.

https://doi.org/10.1007/11506881_8

Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v42.001
17

Wassermann, G., & Su, Z. (2004). An Analysis

Framework for Security in Web Applications. In

Proceedings of the FSE Workshop on Specification

and Verification of Component-Based Systems, pp.

70-78.

https://api.semanticscholar.org/CorpusID:5102805

Zhang, L., Gu, Q., Peng, S., Chen, X., Zhao, H., & Chen,

D. (2010). D-WAV: A Web Application

Vulnerabilities Detection Tool Using

Characteristics of Web Forms. In Proceedings of

the Fifth International Conference on Software

Engineering Advances, 2010, pp. 501–507.

https://doi.org/10.1109/icsea.2010.85

How to cite this Article:

Jayanto Kumar Chowdhury, Dilip Kumar Yadav and Chandra Mouli P.V.S.S.R (2024). SQL Injection Attack Detection Based on

Similarity Matching Between Vectors Extracted From Design Time and Run-Time Queries. International Journal of Experimental

Research and Review, 42, 01-17.

DOI : https://doi.org/10.52756/ijerr.2024.v42.001

https://creativecommons.org/licenses/by-nc-nd/4.0/

