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Introduction 

In the digitization world, web applications are mostly 

used to perform day-to-day activities in e-commerce, 

banking, healthcare etc. Many users use web applications 

to perform their tasks and share their valuable personal 

and business information over the web. However, there 

are security loopholes in the web applications. In most 

cases, the cyber-attacks are performed by expert hackers 

using various techniques like Injection attacks, Cross-Site 

Scripting (XSS), Cross-Site Request Forgery (CSRF), 

Broken authentication and Denial of service (DoS) etc. 

These are the general intrusion detection techniques 

commonly used by hackers. Among the various attacks, 

SQL injection attacks are among the most dangerous 

threats to web applications. They have been listed among 

the top ten vulnerability attacks by OWASP (Open Web 

Application Security Project), an international 

organization for web application developers. SQLiAs are 

critical threats to organizations as well as military and 

defence systems. Due to a lack of protective systems, 

SQLiA attacks can potentially damage underlying 

databases, steal valuable information and compromise 
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Abstract: Everyone uses web-based applications to carry out daily business and 

personal tasks. These programmes are vulnerable to attack by hackers, who may also 

misuse the data. The most serious attack with the greatest damaging potential on digital 

platforms is the structured query language injection attack (SQLiA). The backend 

databases could be corrupted or destroyed by SQLiA if it manages to breach security 

protections. Using SQLiA tactics, hackers can get unauthorized access, steal important 

data, and take over the network completely or partially. An automatic SQL injection 

prevention and detection technique is needed to safeguard web-based applications from 

SQLiA. This research suggests a novel similarity-matching algorithm of vectors 

extracted from design time and run-time queries. This technique allocates the weights of 

different SQL keywords used in design time and run-time queries and further design 

time and run-time vectors have been created from respective queries. The similarity 

between the design time and run time vector is determined by calculating the angle 

between these two vectors. The angle of deviation between the design time vector and 

run time vector is calculated and if the angle of deviation is zero, then it is concluded as 

no SQL injection otherwise, it indicates the existence of SQLiA vulnerability. The 

proposed algorithm is validated against the GitHub dataset. In the first dataset, out of 

1300 injected queries, the proposed method identifies 1219 injected queries; out of 300 

normal queries, it identifies 290 normal queries with 93.76% and 96.66% detection 

accuracy, respectively. Similarly, for the second dataset, out of 10489 injected queries, 

it identifies 10280 injected queries and out of 301 normal queries, it identifies 280 

normal queries with 98.01% and 93.02% detection accuracy, respectively. 
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individual machines or the entire network. Hackers can 

get unauthorized access to web applications and 

underlying databases, steal sensitive information and 

corrupt the databases. Some reputed organizations 

impacted by SQLiAs are Travelocity, FTD.com, 

Creditcards.com, Guess Inc. and RIAA. 

In most cases, hackers target the free text input fields 

present in the web applications to exploit the web 

applications and underlying databases. Such text input 

fields without proper validations become security threats 

or loopholes of any web application. In such cases, expert 

hackers use their techniques to enter malicious inputs in 

free text input fields to exploit the underlying databases. 

Hence, every text input should be thoroughly validated to 

avoid SQL injection attacks. Developers may use input 

validation and parameterized queries to prevent SQL 

injection attacks. 

In legacy web applications, developers use string 

concatenation techniques to send the actual user inputs 

during the use of web applications which is bad 

programming practice and always provides a path for 

hackers to exploit the web applications. In many cases, 

modern developers still use the string concatenation 

technique to pass the user inputs to the web applications 

and are prone to SQL injection attacks. To overcome 

these situations, programmers should use stored 

procedures and parameterized queries to pass input 

parameters to SQL queries. 

The web applications, at times, may display the actual 

database-level errors in the web pages. It is due to 

inappropriate exception handling, the presence of syntax 

errors logical errors etc. Hackers exploit this technique to 

gather the initial database schema, table details and role 

authorization. It is the entry point for hackers to gather 

valuable information about the underlying databases. 

Based on this analysis, hackers gain initial knowledge 

and further exploit their actions to attack the underlying 

databases. 

In the case of developed legacy applications or 

applications deployed in a production environment, 

source code modification is essential to protect those 

applications from SQL injection attacks. However, it is a 

challenging and time-consuming task to re-engineer any 

production application. This is also very difficult to 

modify the production application in different locations 

of one or many source code files of the application to 

protect from SQL injection attacks. To overcome such 

situations, we require an automatic tool that acts as a 

shield to protect systems from SQL injection attacks in 

database-driven applications. Such a shield may perform 

as a filter to separate the SQL-injected queries and 

safeguard the applications. Informal survey results show 

that 97% of such free text input fields are potentially 

vulnerable to SQL injection attacks. However, tool 

development includes the process of continuous 

improvement to keep up with emerging threats and black-

hat techniques, and it is a tedious task. It is possible that a 

single tool may not address all types of SQLiA attacks 

(Thomas et al., 2009; Abdul Bashah Mat Ali et al., 2011; 

Dimitris et al., 2009; Lee et al., 2012; Huang et al., 2003). 

Researchers always try to address critical or high-impact 

vulnerabilities like SQL Injection. As per the study, 70% 

of database-centric applications are under threat due to 

SQL injection vulnerabilities. 

Based on the literature survey, SQLiA detection and 

prevention methods can be categorized as follows: 

# Detection of SQLiA using Static analysis approach 

# Identification of SQLiA using Dynamic analysis 

method 

# Combination of static and dynamic approaches 

(Ghafarian, 2017) 

# Machine learning techniques 

The static analysis approach analyses the whole SQL 

query that exists in the database-driven application. It 

verifies the user input type to prevent SQL injection 

attacks. It is difficult to prevent if malicious user input 

contains the correct input type. This technique does not 

apply to emerging and new types of SQLiA attacks. 

Dynamic analysis techniques are employed to detect 

security loopholes during program executions. Example: 

CANDID tool techniques. Based on the literature 

available, the dynamic approach seems to be the best fit 

for web applications (Thomas et al., 2009; Elia et al., 

2010; Park et al., 2006). Vulnerability Assessment and 

Penetration Testing (VAPT) tool may be used to detect 

the loopholes, vulnerable codes etc., in existing web 

applications so that developers can fix those areas to 

strengthen the security issues before exposure to the 

external world. 

The advantages of dynamic or penetration testing are 

as follows: 

# No impact on the development of the life cycle 

# Avoidance of static analysis challenges 

# Source code sanitizing is not necessary 

# Deployment-security 

E-shield (Jamar et al., 2017) devices or honeypots are 

currently in use to protect the production system from 

SQLiA attacks. A code-based analysis to automatically 

detect the existing SQLiA attacks (Su et al., 2006; 

Halfond et al., 2008). Recently, machine learning 

techniques have been prevalent in SQLiA detection. 

Example: Wave accessibility evaluation tool (WAVES 
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tool) (Thomas et al., 2009; Zhang et al., 2010; Natarajan 

et al., 2012; Jana et al., 2020; Hlaing et al., 2020). The 

combined static and dynamic analysis method is more 

robust because it can use the functionality of both. A 

model is prepared based on various machine learning 

algorithms in machine learning techniques. Then, the 

dataset is divided into two sets training and test set. The 

training set is for training the model, and the test set is for 

validation of the model. This hybrid approach can detect 

SQL injection attacks. 

Related Works 

To incorporate a thorough examination of SQL 

injection, we have evaluated papers from several 

journals, conferences, and data sources. The following is 

the organization of various papers: 

Huang and others focus on web application 

vulnerability assessment to find the loopholes and coding 

practices (Huang et al., 2003) prone to SQL injection 

attacks. This paper focuses on analyzing the design of 

web applications to identify poor coding practices, use of 

software testing tools etc to expose the SQLiA 

vulnerabilities. This study helps to identify the existing 

gaps of web applications and those vulnerabilities can be 

fixed further to avoid the SQLiA attacks. But for real-

time applications, this tool cannot detect such SQLiA 

attacks that did not surface during source code analysis. 

Wassermann and others describe a technique of input 

validation approach using static analysis (Wassermann et 

al., 2004) method to detect and prevent SQLiA 

vulnerability. Similarly, the JDBC checker (Su et al., 

2004) is also using a static analysis approach. Nguyen 

and all present a fully automated approach to securely 

hardening (Nguyen-Tuong et al., 2005) web applications. 

Protection measures to reduce vulnerabilities are 

crucial: for instance, in the case of Android malware 

detection, new approaches like the Borutashap algorithm 

turned out to be effective (Sharma et al., 2023). This 

approach puts emphasis on the array needed to protect 

digital systems whether from malware or injection 

attacks. Buehrer and others describe a technique to detect 

the manipulation performed by hackers in SQL queries. 

The technique is based on comparing, at run time, the 

parse tree (Buehrer et al., 2005) of the SQL statement 

before inclusion of user input with that resulting after 

inclusion of input. The parse tree comparison is very 

efficient and adds about 3 milliseconds overhead to 

database query execution time. It is easy to implement as 

developers need minimal effort to change the source code 

section of database interaction. 

Valeur and others focused on an anomaly-based 

(Valeur et al., 2005) system which learns the normal 

database access by web applications using different 

models. These models protect the underlying database 

from unknown attacks. Many researchers also focus on 

dynamic taint analysis to detect SQLiA vulnerabilities. 

Halfond and others describe the AMNESIA tool (Halfond 

et al., 2005) which is based on static and dynamic 

analysis approaches to detect SQL injection 

vulnerabilities. This tool builds a model based on static 

analysis to generate legitimate queries. Park and others 

present a detection methodology SQL injection using 

pairwise (Park et al., 2006) sequence alignment of amino 

acid code formulated from a web application parameter 

database sent via the web server. The experiment shows 

that this method can identify existing SQLiA 

vulnerabilities and unknown attacks. 

Wasserman and Su use the static analysis technique to 

generate finite state automata (Wasserman et al., 2006) 

for modelling the set of valid SQL commands for each set 

of data access. They present the first formal definition of 

command injection attacks in the context of web 

applications and gives a sound and complete algorithm 

for preventing them based on context-free grammar and 

compiler parsing techniques. It cannot handle many 

queries, such as those with LIKE. This limitation is an 

implementation issue, and it is reasonable to assume that 

support for these yet unsupported queries will be 

available in the future. However, it is a problem of static 

design and it cannot model dynamic queries. The 

technique to prevent tautology attacks is very 

complicated. 

Halfond and others focus on a highly automated 

method to protect applications against SQL injection. It is 

based on the novel idea of positive tainting (Halfond et 

al., 2008) and the concept of syntax-aware evaluation. 

Thomas and others suggested an algorithm of prepared 

statement replacement to avoid SQLiA vulnerabilities by 

replacing SQL statements with prepared statements 

(Thomas et al., 2009). Prepared statements have a static 

structure, which prevents SQL injection attacks from 

changing the logical structure of a prepared statement.  

Mitropoulos proposes a novel method to prevent 

SQLiA attacks by placing a database driver (Dimitris et 

al., 2009) between the application and underlying 

databases. It creates SQL signatures that are used to 

distinguish between normal queries and injected queries. 

The driver neither depends on the web application nor the 

underlying databases and due to this reason, it can be 

integrated easily with any web application/system. It acts 
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as a shield between web applications and the backend 

databases to protect from SQL injection attacks. 

Elia and others described the experimental evaluation 

of five detection tools (Elia et al., 2010) concerning 

vulnerabilities that exist in applications, databases and 

networks. The results emphasize the shortcomings of 

current intrusion detection technologies in identifying 

SQL Injection attacks as the analyzed tools have 

relatively poor effectiveness and only perform effectively 

in certain situations. Web applications employing 

database-driven content have become widely deployed on 

the Internet, and organizations use them to provide a 

broad range of services to people. Along with their 

growing deployment, there has been a surge in attacks 

that target these applications. One type of attack, 

particularly SQL injection, is especially harmful. SQL 

injections can give attackers direct access to the database 

underlying an application and allow them to leak 

confidential or even sensitive information. SQL injection 

can evade or detour IDS or firewalls in various ways. 

Hence, a detection system based on regular expressions 

or predefined signatures cannot prevent SQL injection 

effectively. Zhang and others described a tool D-WAV 

(Zhang et al., 2010) to detect cross-site scripting and SQL 

injection vulnerabilities. 

Ali et al. (2011) shared the idea of a new web 

scanning tool (MySQL injector) with enhanced features 

that can perform penetration testing on PHP applications. 

This tool generates the result of penetration testing of any 

web application. After analysis of the result, injection 

techniques and new hacking techniques can be captured. 

Cyber experts can refer to these existing and new hacking 

techniques to gather knowledge of protection 

mechanisms from SQLiA vulnerabilities. 

Lee and others suggested a very simple and effective 

way to detect the SQLiA vulnerabilities where it removes 

the SQL query attributes (Lee et al., 2012) of web 

applications or web pages during page submission and 

compares the parameters with the pre-determined ones. It 

uses a combination of static and dynamic analysis 

approach and experiments show its effectiveness and 

simplicity. To detect and prevent SQL injection attacks, 

Natrajan and others suggested a SQL-injection-free 

(SQL-IF) secure algorithm (Natrajan et al., 2012). The 

generated algorithm can be integrated into the runtime 

environment while the implementation has been done 

through Java. This method also describes several 

procedures to avoid SQL injection attacks.  

Ghafarian has developed a novel method for 

identifying and preventing SQLIA implementation. The 

methodology is a hybrid (Ghafarian, 2017) of the static 

and dynamic approaches. There are three steps to the 

suggested method. It is advised that all database tables be 

expanded to include a record with only a few images, 

such as a dollar sign, for the initial stage (static). This 

needs to be completed before implementation and during 

database design. The author suggested creating an 

algorithm once and configuring it to work for any query 

for the second step (dynamic). 

Jana and others focus on a code-based analysis (Jana 

et al., 2020; Kumar et al., 2023) approach to detect 

injection attacks in a query before execution. This 

approach analyses the user input by assigning a complex 

number to each input element. Hlaing et al. (2020)  

present an approach that detects a query token with a 

reserved words-based lexicon (Hlaing et al., 2020) to 

detect SQLIA attacks. At first, it creates a lexicon and in 

the second step tokenizes the input query statement and 

each string token is detected to a predefined words 

lexicon to prevent SQLiA. Shreya and others depicted the 

existing tools and methods available to detect and prevent 

SQLiA vulnerabilities (Chowdhury et al., 2021). Gogoi et 

al. (2022) suggested a machine learning-based approach 

for the detection of web shells written in PHP language. 

The proposed approach analyses the function call and the 

use of super global variables commonly used in PHP web 

shells using a deep learning technique. Saxena et al. 

(2022) described web security flaws like SQLi, XSS, 

malicious URLs, phishing attacks, path traversal and 

CMDi in detail. They also elaborated on the existing 

security methods for detecting these threats using 

machine learning approaches for URL classification and 

the potential research opportunities for ML and DL-based 

techniques in this category, based on a thorough 

examination of existing solutions. 

SQLi Attack Types 

This section emphasizes the most common types of 

SQL injection attacks used by hackers. The main 

intention is to summarize the different types of SQL 

injection attacks to manipulate the data, gather the 

database information, access underlying databases and 

execute system-level commands to destroy the databases. 

Table 1 summarizes some of the SQLiA types. 

Table 1. SQLi Attack Types. 

Sl. 

No. 
Type Purpose 

1 
Illegal or logically 

In-correct 

Reveal relevant database 

information through error 

messages generated from the 

underlying database 

2 Piggybacked 
To delete the information from a 

database with harmful intention 

3 Tautology To get the application access 
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without a valid username and 

password 

4 Union 

To disclose sensitive 

information using the UNION 

operator 

5 Stored Procedure 

To gain access to the host 

operating system by performing 

a command execution 

6 Alternate encoding 

To hide the aggressor’s pattern 

via alternate encodings, such as 

hexadecimal, ASCII 

7 
Boolean Injection 

or Inference 

To bypass the authentication 

mechanism to gain access to 

database information 

I. Illegal / logically incorrect queries: It is a primitive way 

to gather database information applied by hackers or 

adversaries. In this case, an adversary injects junk inputs 

into the regular queries. Due to this, the underlying 

database throws error messages containing the database 

schema information and reveals other related database 

details. Based on this initial information, hackers may 

further exploit the database using different types of 

SQLiA. The purpose of this attack is to collect the 

structure of the database schema. 

SELECT * FROM employee WHERE employeeId = ‘mec001199’ 

AND password = ‘abc@123’AND CONVERT (char, no); 

II. Piggybacked queries: A malicious SQL query is 

inserted into a normal SQL query. In structured query 

language, the database may execute multiple SQL queries 

simultaneously if the operator separates the queries ";". 

Note that this operator is inserted at the end of each 

query. Using this attack the hacker can drop tables gather 

table data or even destroy the database. On execution of 

Query 2, the table user will be dropped. 

SELECT * FROM employee WHERE employee Id = 

‘mes001199’AND password ‘abc@12’; DROP TABLE user; 

III. Tautology attacks (Qbea'h et al., 2016) bypass the 

authentication mechanism to access the database 

information. The SQL injection query evaluates as TRUE 

by adding one or more SQL commands like (2 = 2 or 1 

=1 or –) in the WHERE clause of the SQL statement. The 

results of Query 3 will display all the information in the 

user table. 

SELECT * FROM users WHERE name=‘abcd’ OR 1 = 1; 

IV. Union queries: The union injection attacks performed 

by the hackers to join the two SQL queries using the 

UNION operator. The malicious query joined with the 

normal query with the UNION operator. 

SELECT  *  FROM  user  WHERE  id=  ‘mes01199  ’UNION 

SELECT * FROM previlege WHERE id=‘admin’‘–”AND pass- 

word= ‘abc1234’; 

All the strings after “—” are considered as comments 

and two SQL queries are executed. The result of the 

query process shows the administrator’s information on 

the DBMS. 

V. Stored Procedure: The attacker uses built-in stored 

procedures and executes built-in functions with malicious 

SQL injection codes. 

CREATE PROCEDURE DBO @userName varchar2, @pass 

varchar2, AS EXEC(“SELECT * FROM user WHERE id=“‘+ 

@userName + ”’AND password=“‘+ @password + ”’); GO 

This scheme is very vulnerable to attacks such as 

piggy-backed queries. 

VI. Alternate encoding: The attackers modify the normal 

query using alternate encoding such as hexadecimal, 

ASCII and Unicode to avoid detection by the defensive 

techniques. 

SELECT accounts FROM users WHERE username = ‘john’; exec 

(char (Ox73687574646j776e)) 

VII. Boolean Injection / Inference: It is a type of 

inferential SQL injection technique where the hackers 

inject malicious payload that forces the database to return 

a different result set depending on whether the query 

returns a TRUE or FALSE result. 

SELECT accounts FROM “users” WHERE username = ‘john’OR 1 = 1 

Materials and Methods 

The proposed system is based on a dynamic analysis 

approach and can detect SQL injection attacks in real-

time scenarios. It detects all the SQLiA vulnerabilities 

listed in Table 1. The proposed system involves the 

following steps:  

A. Weight Assignment 

B. Extraction of vectors from design time and run-time 

queries 

C. SQL injection vulnerability detection Engine  

A. Weight Assignment 

Each SQL keyword has some impact on SQLiA 

vulnerabilities. Assignment of a Weight to each SQL 

keyword is done depending on its severity. A weight of 5 

indicates the highest severity and a weight of 1 indicates 

the low severity. The weight has been assigned for each 

SQL keyword to identify the severity of the presence of 

the keyword in SQL injection queries. The SQL 

keywords are then stored as key-value pairs in a dynamic 

data table termed as dictionary. The procedure to create 

the dictionary is defined in Algorithm 1. The key-value 

pair can be visualized as in Table 2.  

Algorithm 1. Prepare SQL Keyword HashTable(). 

Pseudo Code: 

HashTable prepare_SQL_Keyword_HashTable() 

{  

Step 1: Create a hashtable 

Step 2:  Store all the SQL keywords as key-value (weight) pairs in 

this hashtable where value refers to the weight assigned. 

} 

Step 3: Return the hashtable 
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Table 2. List of keywords having their weights two or 

above. 

Keyword 

(key) 

Weight 

(value) 

Keyword 

(key) 

Weight 

(value) 

ALTER 5 MODIFY 3 

CONNECT 5 NOAUDIT 3 

CREATE 5 OR 3 

DROP 5 SELECT 3 

SHUTDOWN 4 UNION 3 

ADD 3 AUDIT 2 

ALL 3 NOCOMPRESS 2 

AND 3 NOT 2 

BETWEEN 3 NOWAIT 2 

DELETE 3 NULL 2 

INSERT 3 ORDER BY 2 

MODIFY 3 UPDATE 2 

Table 2 shows a few keywords along with their 

weights. The rest of the keywords are assigned the weight 

1. A lookup table is required to store all the SQL 

keywords along with the corresponding weights. To 

accomplish this, a dictionary has to be created using a 

hash table. The hash table returned by the Algorithm1 is 

used for this purpose. It stores all the SQL keywords as 

key-weight pairs. It is used for extracting the weights for 

the available SQL keywords in the given design time run-

time query. 

B. Extraction of vectors from design time and run-

time queries 

The different vectors extracted from design time and 

run-time queries are as follows: 

i. In the case of real-time application, the DLL 

(dynamic link library) extractor is plugged in with the 

application. The exposed methods of the extractor are 

called before the database interaction source code 

snippet. It captures the design time query and sends it to 

the dynamic data table to store the design time query 

temporarily. 

ii. From the same source code snippet, the exposed 

method of the extractor captures the run-time query 

which consists of all the input parameters and sends to 

them to the dynamic data table corresponding to the same 

design time query. 

iii. For Example, consider the following design time 

and run-time query extracted from the query extractor. 

Design Time query: SELECT * FROM employee WHERE 

emp_name = @val1; 

Run time query (Injected query): SELECT * FROM employee 

WHERE emp_name = ‘lucia01’ OR 1 >0; 

iv. The split function of the string is used to separate 

the SQL Keywords that exist in design time and run-time 

query and are stored in a temporary location. With the 

help of Table 2, the Weight Vector is created for 

respective queries after assigning the weights. The 

get_Keyword_Count () function of Algorithm 2 is used to 

create the count vector. Similarly, the Keyword Vector is 

created. After all the above steps, the Design Time 

Vector(dv) is created which is the product of the design 

time weight and count vector. Similar steps are followed 

to create the Run Time Vector(rv), a product of run time 

weight and count vector. The resultant Design Time 

Vector (dv) and Run Time Vector(rv) with associated 

vectors are shown below: 

Keyword Vector (Design Time): [select, from, where]T 

Count Vector (Design Time): [1, 1, 1]T 

Weight vector (Design Time): [3, 1, 1]T 

Design time vector(dv) = Count Vector * Weight Vector = [3, 1, 1]T 

 

Keyword Vector (Run Time): [select, from, where, or]T 

Count Vector (Run Time): [1, 1, 1, 1]T 

Weight vector (Run Time): [3, 1, 1, 3]T 

Run time vector(rv) = Count Vector * Weight Vector = [3, 1, 1, 3]T 

The above design time and run time vectors are used 

in subsection C for further processing. 

 

C. SQL injection vulnerability detection engine 

Figure 1 shows the system architecture to detect 

SQLiA. A user requests web pages via HTTP web 

request from a web server. Web pages are submitted to 

the webserver to serve the user request. A web server 

uses HTTP (Hypertext Transfer Protocol) and a few other 

protocols to process the web requests generated from the 

client side over the World Wide Web. The web server is 

connected to the internet to serve incoming and outgoing 

web requests through a firewall. The underlying Web 

server software is responsible for processing the web 

request and generating the response to end users or 

clients. It can handle multiple requests simultaneously.  

The design time query and run-time query can be 

discriminated as follows: Assume that a user has to 

submit his username and password in a login form. The 

user enters the text fields username and password and 

presses the submit button. 

The code for the submit button might be written as 

SELECT * FROM login WHERE user name = @username AND 

password = @password.  This is termed a design time query. 

Assume that the username of the user is “user1” and 

the password is “pass1234”. The user provides this 

information and presses the submit button. Then the code 

for the submit button is transformed as 

SELECT * FROM login WHERE user name = ’user1’ AND password 

= ’pass1234’. 

This is termed a run-time query. The query extractor 

extracts design time and run-time queries and stores both 

SQL queries in system memory. 
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The illustration of the proposed method and generic 

steps involved in processing the design time and run-time 

queries are as mentioned below: 

I. Consider Table 3 for sample design time and run-time 

queries. The proposed engine tokenizes each word in the 

design time query and forms a keyword vector. 

II. A function get_Keyword_Count(string, vector) is 

defined in Algorithm 2 to count the occurrences of each 

SQL keyword and store it as a count vector. From the 

repository of weights i.e., from Table 2, the weight for 

each keyword is extracted and stored as a weight vector. 

III. Create a keyword vector, weight vector, count vector 

and design time vector (dv) as in Table 4 from the given 

design time queries of Table 3. Table 4 shows the step-

by-step extraction of the keyword vector, weight vector, 

count vector and finally, design time vector i.e., dv. Here, 

the weight and count of the keywords are extracted and 

stored in the weight and count vector. The weight vector 

and count vector's dot product are taken and stored as dv. 

The count vector is calculated with the help of Algorithm 

2. 

IV. Create a keyword vector, weight vector, count vector 

and run time vector (rv) as in Table 5 from the given run 

time queries of Table 3. 

 

  

 

 

Algorithm 2: get_Keyword_Count(string query, 

vector keyword vector) 

Pseudo Code: 

vector get_Keyword_Count(string query, vector 

keyword_vector) 

{  

Step 0: count_vector = []; count=0 

Step 1: For each element i in keyword_vector 

Step 2: count the occurrences in the query  

Step 3: count_vector[i]=count 

Step 4: count = 0  

Step 5: Return count_vector 

 } 

 

Table 5 shows the keyword vector, weight vector, count 

vector extracted for the run-time queries and finally time 

vector i.e., rv. Here the weight and count of the keywords 

are extracted and stored in the weight and count vector. 

The dot product of the weight vector and count vector is 

taken and stored as rv. The count vector is calculated 

with the help of Algorithm 2. 

 

 

Figure 1. Skeleton view of the proposed method and its location of operation. 
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VI. To find the similarity between dv and rv, they 

should be of equal length. If required, the vector dv is 

padded with zeros to maintain the same length as that of 

rv. The similarity between the dv and rv is determined by 

determining the angle between two vectors. This can be 

determined using the equation (1) formula.  

i. e.  θ =  cos−1( 
𝑑𝑣.𝑟𝑣

|𝑑𝑣||𝑟𝑣|
 )   ------------(1) 

Here The mathematical formula i. e., θ =

 cos−1( 
𝑑𝑣.𝑟𝑣

|𝑑𝑣||𝑟𝑣|
 )   is used to measure the angle of 

deviation between design time and run time vector. If the 

angle of deviation is zero, then it implies that there is no 

SQLiA vulnerability and if the angle of deviation is zero, 

then it means that SQLiA vulnerability exists. 

Table 6 shows the angle between the design time and 

run-time queries. In Table 6, the angle of deviation θ   is 

non-zero for all the queries i.e., from Q1 to Q10 except 

Q5. In the case of Q5, θ  is zero, meaning there is no SQL 

injection vulnerability. But for others i.e., from Q1 to  

 

 

Q10 (except Q5), SQLiA vulnerability exists. The 

above steps are also depicted in the below flowchart. 

In this proposed method, the similarity matching is 

calculated based on the angle of deviation. If the angle 

between the design time and run-time query is 0 degrees, 

it means there is no deviation and it implies the design 

time and run-time queries are similar. This indicates that 

there are no SQL injection vulnerabilities. On the other 

hand, if the angle between design time and runtime query 

is a non-zero degree, there is some deviation that 

indicates that design time and run-time queries are not 

similar. That means SQL injection vulnerabilities exist in 

this scenario. This mathematical model to determine the 

SQL injection vulnerabilities is unique because till now, 

no researcher used this concept for this purpose. This 

model can detect all kinds of SQL injection 

vulnerabilities. This model can be used in real-time 

scenarios and is able to prevent the web application from 

SQL injection vulnerabilities. 

Figure 2. Flow chart of the proposed method. 
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Table 3. Sample design time and run-time queries. 

Query 

No. 
Design time Query Run time Query 

Q1 SELECT * FROM employee 

WHERE emp_name = @val1 

SELECT * FROM employee WHERE 

emp_name = ‘lucia01’ OR 1 >0 

Q2 SELECT * FROM employee 

WHERE emp_name = @val1 

SELECT * FROM employee WHERE 

emp_name = ‘lucia01’; UNION all SELECT * 

FROM employee 

Q3 SELECT * FROM employee 

WHERE emp_name = @val1 

SELECT * FROM employee WHERE 

emp_name = ‘lucia01’; EXEC SP_Help 

Q4 SELECT * FROM employee 

WHERE emp_name = @val1 

SELECT * FROM employee WHERE 

emp_name = ‘lucia01’; DROP TABLE user 

Q5 SELECT * FROM employee 

WHERE emp_name = @val1 

SELECT * FROM employee WHERE 

emp_name = ‘lucia01’ 

Q6  

SELECT * FROM employee 

WHERE emp_name = @val1 

SELECT * FROM employee WHERE 

emp_name = ‘lucia01’; SHUTDOWN 

Q7 SELECT * FROM employee 

WHERE emp_name = @val1 

 

SELECT * FROM employee WHERE 

emp_name = ‘lucia01’ WAITFOR DELAY 

’00:00:10:00’ 

Q8 SELECT * FROM employee 

WHERE emp_name = @val1 

SELECT * FROM employee WHERE 

emp_name = ‘lucia01’ UNION SELECT * 

FROM employee 

Q9 SELECT * FROM employee 

WHERE emp_name = @val1 

SELECT * FROM employee WHERE 

emp_name= ‘lucia01’ OR 1 = 

COVERT(int,(SELECT TOP 1 table name 

FROM INFORMATIONSCHEMA.tables)) 

Q10 SELECT * FROM employee 

WHERE emp_name = @val1 

SELECT * FROM employee WHERE 

emp_name = ‘lucia01’; SELECT DB_NAME() 

Table 4. Keyword vector, Weight vector, Count vector and design time vector for design-time 

queries are given in Table 3. 

Query Keyword vector 
Weight 

vector 
Count vector 

Design time 

vector(dv) 

Q1 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T 

Q2 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T 

Q3 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T 

Q4 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T 

Q5 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T 

Q6 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T 

Q7 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T 

Q8 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T 

Q9 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T 

Q10 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T 
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In the form of DLL (Dynamic-link Library), this 

algorithm can be integrated with a web application or any 

legacy application to detect and prevent SQLiA on a real-

time basis in any particular application. The proposed 

method filters the SQLiA and acts as a shield to protect 

the web application from SQLiA attacks. It is language-

independent and easily integrates with any third-party 

apps without any source code modification of existing 

web applications. The .Net framework is used to 

implement the proposed algorithm. 

Results and Discussion 

The proposed method is evaluated on an open-source 

data set from GitHub. The results obtained after applying 

this procedure are awesome and it is compared with 

different existing methods based on the scope and 

capabilities. This method uses the mathematical model or 

formula to match the similarities between design time and  

 

run-time queries, which is a dynamic analysis method 

hence, machine learning parameters like recall, false 

positive, F1-score, precision etc, are not applicable in this 

scenario. Those measures are applicable in a machine 

learning-based approach to calculate the capabilities and 

accuracy of machine learning models. However, in this 

section, the main focus is on the dataset used for 

validation and detection accuracy of the proposed 

method. Also focused on the comparison of different 

tools/methods capabilities with the proposed method. 

This section includes several subsections as follows: 

A. Dataset used 

B. Validation using opensource GitHub dataset 

C. Comparison of different tools/methods with the 

proposed method 

A. Dataset used 

We use GitHub open-source datasets to test the 

proposed method. The payloads are available in the raw 

Table 5. Keyword vector, Weight vector and Count vector for run-time queries are given in Table 3. 

Query Keyword vector Weight vector 
Count 

vector 

Run time 

vector(rv) 

Q1 [select, from, where, or]T [3, 1, 1, 3]T [1, 1, 1, 1]T [3, 1, 1, 3]T 

Q2 [select, from, where, union, 

all]T 

[3, 1, 1, 3, 3]T [2, 2, 1, 1, 

1]T 

[6, 2, 1, 3, 3]T 

Q3 [Select, from, where, sp 

help]T 

[3, 1, 1, 2]T [1, 1, 1, 1]T [3, 1, 1, 2]T 

Q4 [select, from, where, drop, 

table, user]T 

[3, 1, 1, 5, 1, 1]T [1, 1, 1, 1, 

1,1]T 

[3, 1, 1, 5, 1, 1]T 

Q5 [select, from, where]T [3, 1, 1]T [1, 1, 1]T [3, 1, 1]T 

Q6 [select, from, where, 

shutdown]T 

[3, 1, 1, 4]T [1, 1, 1, 1]T [3, 1, 1, 4]T 

Q7 [select, from, where, wait 

for, delay]T 

[3, 1, 1, 2, 2]T [1, 1, 1, 1, 

1]T 

[3, 1, 1, 2, 2]T 

Q8 [select, from, where, 

union]T 

[3, 1, 1, 3]T [2, 2, 1, 1]T [6, 2, 1, 3]T 

Q9 [select, from, where, or]T [3, 1, 1, 3]T [1, 2, 1, 1]T [3, 2, 1, 3]T 

Q10 [select, from, where]T [3, 1, 1]T [2, 1, 1]T [6, 1, 1]T 

Table 6. The angle between design time query and run-time query. 

Query padded dv vector rv vector 𝑪𝒐𝒔𝛉 𝛉 

Q1 [3, 1, 1, 0]T [3, 1, 1, 3]T 0.742 420 

Q2 [3, 1, 1, 0, 0]T [6, 2, 1, 3, 3]T 0.82 34.920 

Q3 [3, 1, 1, 0]T [3, 1, 1, 2]T 0.86 30.680 

Q4 [3, 1, 1, 0, 0, 0]T [3, 1, 1, 5, 1, 1]T 0.54 57.320 

Q5 [3, 1, 1]T [3, 1, 1]T 1 0
0 

Q6 [3, 1, 1, 0]T [3, 1, 1, 4]T 0.64 50.210 

Q7 [3, 1, 1, 0, 0]T [3, 1, 1, 2, 2]T 0.76 40.540 

Q8 [3, 1, 1, 0]T [6, 2, 1, 3]T 0.9 23.840 

Q9 [3, 1, 1, 0]T [3, 2, 1, 3]T 0.75 41.410 

Q10 [3, 1, 1]T [6, 1, 1]T 0.98 11.480 
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format. Data pre-processing is required to convert the raw 

format into .csv file and further transform the queries into 

design time and run-time queries. The datasets are 

extracted from URLs given below. 

a. https://github.com/ChrisAHolland/ML-SQL-

Injection- Detector/blob/master/data/burp-suite-

payload.txt 

b. 

https://github.com/Morzeux/HttpParamsDataset/blob/mas

ter/payloadfull.csv 

A. Validation using opensource GitHub dataset 

The proposed algorithm is validated against the 

GitHub dataset. In the first dataset, out of 1300 injected 

queries, the proposed method identifies 1219 injected 

queries; out of 300 normal queries, it identifies 290 

normal queries with 93.76% and 96.66% detection 

accuracy, respectively. Similarly, for the second dataset, 

out of 10489 injected queries, it identifies 10280 injected 

queries and out of 301 normal queries, it identifies 280 

normal queries with 98.01% and 93.02% detection 

accuracy, respectively as shown in Table 7. In a few 

cases, the proposed system fails to detect the SQL 

injection attacks where keywords are not separated with 

white space and in case of new keywords which is not 

included in the keyword list. This is because this method 

is unable to properly extract the design time and run time 

vectors in such cases. Since the design time and run time 

vector are not distinguished correctly there is a chance of 

wrong calculation of the angle of deviation between 

design time and run time vector. Hence, there is a scope 

for improvement to address the weakness of the proposed 

system. The main advantage of the proposed method is 

that it can be easily integrated with legacy applications 

with minimal source code modification. This method can 

be used in the form of DLL (dynamic link library) to call 

the exposed methods to extract the design time and run-

time queries from real-time applications. Hence, in a few 

places, the source code modification is required to 

integrate this application with any web application. This 

DLL can be integrated with any web-based application. 

Hence the complete source code modification in legacy 

application is not required and it can protect the legacy 

web application from SQLiA vulnerability. In Table 8 

many methods have been depicted and some can detect a 

few SQLiA vulnerabilities. Some can detect the 

vulnerability partially and fail in some other type of 

SQLiA vulnerability. However, the proposed method can 

detect and prevent the applications from all types of 

SQLiA vulnerability. The working procedure and logic of 

the proposed method are very simple and easy to 

understand as they work on similarity matching 

techniques to design time and run-time queries. Apart 

from that, like the machine learning model, the training 

dataset is not required hence, model train activity is not 

applicable in this method. 

B. Comparison of different methods or tools with the 

proposed method 

The capabilities of different tools/methods are given 

in Table 8. Tools like AMNESIA (Halfond et al., 

2005), CSSE (Pietraszek et al., 2005), SQL-Check 

(Halfond et al., 2005), SQL-Guard (Buehrer et al., 

2005), SQL-Rand (Park et al., 2006) uses static and 

dynamic analysis approach and able to detect almost all 

types of SQL injection attacks but fails to detect stored 

procedure related vulnerabilities. The tautology checker 

(Wassermann et al., 2004; Qbea’h et al., 2016) 

successfully detects the tautology attacks vulnerability 

but fails for the rest of all types of vulnerabilities. It can 

handle tautology attacks very efficiently and can be used 

to detect tautology attacks. This tool could not be used 

alone to detect all types of SQL injection vulnerabilities. 

Tools like JDBC checker (Gould et al., 2004) and Java 

Static Tainting (Livshits et al., 2005) use the static 

analysis approach to detect SQLiA vulnerability. The 

above tools can only examine the queries present in the 

application. Hence, for real-life injection scenarios, such 

tools are not useful. JDBC checker (Gould et al., 

2004) and SafeQuery objects (Cook et al., 2005) only 

minimize the risk of SQLiA by checking the type of SQL 

queries. IDS (Valeur et al., 2005) and WAVES 

(Huang et al., 2003) are based on machine learning 

methods and require a large amount of injected data to 

learn the system. The demerits of the machine learning 

method are that they need a large amount of data to train 

the system and the result will solely depend on the 

training and testing data set. The performance of this 

mechanism depends on the capability of the training 

model and machine learning algorithm. Table 8 shows 

the applicability of different SQL injection detection 

tools with the types of SQL Injection vulnerabilities. A 

particular single tool is unable to detect all types of SQL 

injection attacks. Some tools can detect tautology, 

piggybacked, and union queries but fail to detect stored 

procedure vulnerabilities. Few tools only detect the 

queries at the application end but fail to detect them in 

real-life scenarios. Table 8 depicts the clear comparison 

of different SQL injection detection tools with the 

proposed method. The proposed method is able to detect 

and prevent all types of SQL injection vulnerabilities and 

also has an alert mechanism to notify the users or system 

administrator. The working principle of the proposed 

method is a very simple mathematical formula i.e., angle 

https://github.com/Morzeux/HttpParamsDataset/blob/master/payloadfull.csv
https://github.com/Morzeux/HttpParamsDataset/blob/master/payloadfull.csv
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Table 7.   Experimental Result of GitHub Data Set. 

 

Dataset 

Name 

 

Dataset URL 

Total 

No. of 

Queries 

No. of 

Injected 

Queries 

No. of 

Normal 

Queries 

No. of 

Normal 

Queries 

Detected & 

Detection

% 

No. of 

Injected 

Queries 

Detected & 

Detection% 

ML-SQL- 

Injection- 

Detector/data/ 

burp-suite- 

payload.txt 

https://github. 

com/ ChrisAHolland/ 

ML-SQL- 

Injection- Detector/ 

blob/master/data/ burp-

suite 

-payload.txt 

1600 1300 300 
290 & 

96.66% 

1219 & 

93.76% 

HttpParams 

Dataset/ payload 

full 

https://github. 

com/ Morzeux/ 

HttpParams Dataset/ 

Injection 

-Detector/ blob/master/ 

payload full.csv 

10790 10489 301 
280 & 

93.02% 

10280 & 

98.01% 

Table 8. Comparison of different types of methods of SQLiA. 

Sl. No. Ref. Method 
Tautol

ogy 

Incorrec

t 

Querie

s 

Union 

SQLi

A 

Piggy 

Backed 

Stored 

Proc. 

Inferen

ce 

Alt. 

Encoding 

1 AMNESIA (Halfond 

et al.,2005) 

• • • • × • • 

2 CSSE (Pietraszek et 

al., 2005) 

• • • • × • × 

3 IDS (Valeur et al., 

2005) 

◦ ◦ ◦ ◦ ◦ ◦ ◦ 

4 Java Dynamic 

Tainting (Haldar et 

al., 2005) 

+ + + + + + + 

5 SQL-Check (Halfond 

et al., 2005) 

• • • • × • • 

6 SQL-Guard  (Buehrer 

et al., 2005) 

• • • • × • • 

7 SQL-rand (Park et 

al., 2006) 

• × • • × • × 

8 Tautology checker 

(Wassermann et al., 

2004; Qbea’h et al., 

2016) 

• × × × × × × 

9 Web App Hardening 

(Nguyen-Tuong et al., 

2005) 

• • • • × • × 

10 JDBC Checker 

(Gould et al., 2004) 

+ + + + + + + 



Int. J. Exp. Res. Rev., Vol. 42: 01-17 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v42.001 
13 

 

 

 

 

 

 

 

 

11 Java Static Tainting 

(Livshits et al., 2005) 

• • • • • • • 

12 SafeQuery OB (Cook 

et al., 2005) 

• • • • × • • 

13 Security gateway 

(Scott et al., 2002) 

+ + + + + + + 

14 SecuriFly (Martin et 

al., 2005) 

+ + + + + + + 

15 SQLDOM (McClure 

et al., 2005) 

• • • • × • • 

16 WAVES (Huang et 

al., 2003) 

◦ ◦ ◦ ◦ ◦ + ◦ 

17 Proposed Method • • • • • • • 

Symbolic Representation: •: Possible, ◦: Partially Possible, ×: Impossible, +: Not Applicable 

Table 9. Analysis of functionalities of different detection and prevention mechanisms. 

Sl. No. 
Detection/Preventio

n Methods 

Code 

Modification 

SQLiA 

detection 

mechanism 

SQLiA 

prevention 

mechansim 

Any other elements 

1 
AMNESIA (Halfond 

et al., 2005) 
Not required Self-acting Self-acting Not Applicable 

2 
CSSE (Pietraszek et 

al., 2005) 
Not required Self-acting Self-acting Req. PHP interpreter 

3 
IDS (Valeur et al.,   

2005) 
Not required Self-acting Based on report IDS knowledge 

4 
JDBC Checker 

(Gould et al., 2004) 
Not required Self-acting Code modification Not Applicable 

5 

Java Dynamic 

Tainting (Haldar et 

al., 2005) 

Not required Self-acting Self-acting Not Applicable 

6 
Java Static Tainting 

(Livshits et al., 2005) 
Not required Self-acting Code modification Not Applicable 

7 
SafeQuery OB (Cook 

et al., 2005) 
Required 

Not 

Applicable 
Self-acting Developer training 

8 
SecuriFly (Martin et 

al., 2005) 
Not required Self-acting Self-acting Not Applicable 

9 
Security gateway 

(Scott et al., 2002) 
Not required 

Manual 

process 
Self-acting Proxy filter 

10 
SQL-Check (Halfond 

et al., 2005) 
Required 

Self-acting 

(partial) 
Self-acting Key management 

11 
SQL-Guard  (Buehrer 

et al., 2005) 
Required 

Not 

Applicable 
Self-acting Not Applicable 

12 
SQLDOM (McClure 

et al., 2005) 
Required Self-acting Self-acting Developer training 

13 
SQL-rand (Park et al., 

2006) 
Required Self-acting Self-acting Key management 
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of deviation between design time and run-time queries. It 

works perfectly on all types of SQL injection attacks. It 

does not use any machine learning algorithm. Hence 

large dataset is not required to train the model.  

Due to this reason false positive and false negative 

parameters are not applicable in this case. The proposed 

method is different from existing methods or tools 

because the same SQL injection detection engine is 

capable enough to detect as well as prevent web 

applications from SQL injection attacks. This method 

applies a simple logic to check the similarity between the 

design time and run time vectors in terms of the angle of 

deviation. During the study of various tools or methods, 

we have seen that one single tool cannot detect all types 

of SQL injection attacks, but the proposed mechanism 

can detect all types of SQL injection vulnerabilities. Also, 

this tool can be integrated with any web application to 

protect them in real-life scenarios. The existing tools 

based on machine learning algorithms require large data 

to train and test the model and their performance is based 

on the training dataset. The accuracy of such models 

depends on training the model in a particular dataset in 

various scenarios, which is a very difficult and time-

consuming task. Here, the proposed mechanism used the 

dynamic approach and a large dataset is not required to 

train the model. It can directly work on test datasets to 

identify the SQL injection vulnerability. Like machine 

learning models, the false positive and false negative 

criteria do not apply to the proposed method. Similarly, 

the other criteria like F1-score, precision, recall etc., 

generally used in machine learning algorithms, are not 

applicable in this scenario. The accuracy can be measured 

in terms of percentage, which can be calculated out of 

certain numbers of injected queries and how many of 

them are identified by this method. The detailed 

comparison of different methods in terms of capabilities 

and functionalities is shown in Table 9. The detection and 

prevention mechanism of the proposed method is fully 

automatic with minimal source code modification and  

 

can be integrated as DLL form with any web application 

with minimal change in the source code of the existing 

application. 

 

Conclusion and Future Work 

The paper proposes a new method to detect SQLiA 

attacks by comparing design time and run-time queries. If 

there is any deviation in design time and run-time queries 

then, it raises an alert and stops the further execution of 

the SQL statement. The deviation is calculated in terms 

of the angle of deviation between design time and run-

time queries. The performance and capability of the 

proposed method are compared with other methods, as 

mentioned in Table 7 and Table 8. The angle of deviation 

plays a crucial role in identifying the normal and injected 

queries. Sometimes, the method fails when there is a new 

keyword and if the white space is missing between 

keywords. For such cases, the proposed method is unable 

to create the correct design time and run time vector, 

which fails to calculate the proper angle of deviation 

between the two vectors and hence this method fails in 

such scenarios. This part can be taken care of during the 

data preprocessing phase. This is a small gap that can be 

addressed if any researcher uses this technique to 

determine SQLiA vulnerability. This method only uses a 

dynamic analysis approach to identify SQLiA 

vulnerability. 

It may be possible that this can be used with other 

techniques to produce some hybrid approach for 

identifying SQL injection attacks. As the main outcome, 

this technique can be integrated with other detection 

techniques to build a robust mechanism for detecting and 

preventing SQLiA vulnerability. It can be used as a 

plugin with any existing application. The proposed 

system can detect Illegal queries, Boolean injection, 

tautologies, union queries, piggy-backed queries and 

stored procedure-related SQLiA attacks. It is fast and can 

be integrated into web applications or wherever we want 

to use it. 

 

14 

Tautology checker 

(Wassermann et al., 

2004; Qbea’h et al., 

2016) 

Not required Self-acting Code modification Not Applicable 

15 
WAVES (Huang et 

al., 2003) 
Not required Self-acting Based on report Not Applicable 

16 Web App Hardening 

(Nguyen-Tuong et al., 

2005) 

Not required Self-acting Self-acting Req.PHP interpreter 

17 Proposed Method Required Self-acting Self-acting Not Applicable 
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