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Introduction 

The heart is a crucial organ necessary for the proper 

functioning of the body, as it pumps blood throughout the 

system, which is vital for sustaining health (David et al., 

2018). The fast-paced nature of contemporary life has 

resulted in an increase in heart-related health problems. 

As a result, heart disease has emerged as a significant 

global health issue, greatly impacting illness and death 

rates. This highlights the important role of the healthcare 

system in addressing these serious health challenges. This 

study focuses on HF, a condition where the heart 

weakens and can't pump blood effectively enough for the 

body's needs. HF is not a single condition but rather a 

category with different types based on various factors. 

Though symptoms may overlap, accurately identifying 

the specific type is crucial for doctors to choose the most 

effective treatment plan. HF arises from various culprits 

(Hajouli et al., 2022). Underlying conditions like high 

BP, diabetes, lung problems (chronic respiratory disease), 

heart muscle disease (cardiomyopathy), and clogged 

arteries (coronary artery disease) can all contribute. Risk 

factors (National Heart, Lung and Blood Institute 2018) 

include a family history of heart problems, age 

(especially seniors), African-American ethnicity, and 

unhealthy habits like excessive alcohol consumption, 

tobacco use, and substance abuse. HF is divided into two 

primary categories based on how it affects heart 

pumping. Systolic HF, also known as HF with a low 

ejection fraction, occurs when the heart muscle weakens 

and struggles to squeeze. When the heart muscle stiffens 

and strains to relax and fill with blood while resting, 

diastolic HF ensues. 

Healthcare professionals are essential in diagnosing 

HF through comprehensive evaluations, utilizing 
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Abstract: Heart failure (HF) is a common complication of cardiovascular diseases. This 

research focuses on assessing the effectiveness of different models for predicting HF 
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susceptible to human error. To tackle this challenge, the work proposed an AutoML 

approach utilizing the AutoGluon framework for predicting HF. The main goal of this 

study is to automate the process of selecting the most efficient model. This study 

compares a total of twenty (20) individual-trained ML models, consisting of fourteen 

(14) from AutoML and six (6) from TML. In TML, Logistic Regression (LR) produced 

the highest 87.50% accuracy and ROC-AUC of 88.83% compared to Support Vector 
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(RF) and K-Nearest Neighbors (KNN). In AutoML, the CatBoost model outperforms 

the other thirteen algorithms with the highest accuracy of 99.39% and ROC-AUC of 

99.89%. The results show that an AutoML based algorithm called the CatBoost model 

gives the most accurate model among all 20 models. SHAP was employed to interpret 

the top-performing model, increasing its transparency and usability. 
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advanced imaging techniques, and performing diagnostic 

procedures, including ECG, brain natriuretic peptide test, 

chest X-ray, etc. However, these procedures (Shah et al., 

2020) take a lot of time, money, and effort from both 

individuals and healthcare professionals, and they do not 

always find the exact type of heart disease at the early 

stages. The rise of HF in young people, the financial 

strains, the shortcomings of current medical equipment, 

and the difficulties in diagnosis emphasize the need for 

creative solutions. Computerized techniques have 

evolved as viable alternatives to conventional 

approaches, providing more rapid and efficient HF risk 

prediction. Advanced computer-aided technologies, 

including Machine Learning (ML), Deep Learning (DL), 

and AutoML, hold significant promise in improving the 

early detection and diagnosis of HF. These techniques 

offer a more effective way to address the challenges 

posed by this complex condition compared to traditional 

methods.  

Here is a summary of the study's main contribution: 

1) Several predictive models were built using both 

TML methods, including SVM, LR, DT, KNN, RF, 

GNB, and the AutoML framework AutoGluon. 

2) The research utilizes a dataset of heart information 

consisting of 303 patient records acquired from 

Kaggle. 

3) The study selects, evaluates, and validates the best-

performing models from both TML and AutoML 

approaches, comparing their prediction results 

using performance metrics such as accuracy, ROC-

AUC, and so on. 

4) SHAP was used to analyze AutoML models to 

explain the predictions and focus on the most 

important predictive variables. 

The organization of this research is as follows: Section 

2 conducts a literature review, while Section 3 offers an 

overview of TML models and AutoML, along with a 

detailed description of the proposed model. Section 4 

discusses the results obtained from the implementation of 

this approach. Finally, Section 5 provides a conclusion 

and future research. 

Background work 

People widely recognize HF as a leading cause of 

mortality. Recent research has focused extensively on 

using ML to predict HF, aiming to improve patient 

outcomes and healthcare management. Numerous studies 

have investigated various techniques, datasets, and 

performance metrics to enhance the accuracy and 

reliability of these prediction models. Traditional 

methods for diagnosing heart disease have typically 

relied on a patient's medical history, physical 

examinations, and symptom assessments by medical 

professionals. Among these methods, angiography is 

considered highly accurate for identifying heart 

conditions. However, angiography is associated with 

drawbacks such as high costs, potential side effects and 

the requirement for specialized technical skills (Patil et 

al., 2009). To overcome these issues, numerous 

researchers used ML models such as SVM, DT, and so on 

(Detrano et al., 2009). Krittanawong et al. (2019) 

evaluated and compared their research using ML 

classifiers such as LR, RF and DT. Their findings 

indicated that ML algorithms could significantly improve 

their ability to predict HF, with RF demonstrating the 

best results. According to most researchers, the three 

most commonly used methods are DT, ANN, and SVM 

to predict heart disease. 

Again, researchers have investigated the application of 

ML to heart diagnosis, utilizing various methods such as 

feature selection, feature analysis, hyperparameter tuning, 

balancing techniques, hybrid models, and ensemble 

techniques to achieve improved results. The author 

(Ranganathan et al., 2024) used statistical analysis such 

as Pearson correlation analysis to provide the relationship 

between the features in their dataset and improve 

accuracy. The author (Mohan et al., 2019) proposed a 

novel method of hybrid RF with a linear model to 

increase accuracy and identify significant features in 

heart disease. Gardner et al. (1984) combined RF, 

Gradient Boost (GB), and KNN into an ensemble model 

to improve accuracy and robustness over the individual 

models. Tarawneh et al. (2019) examined a range of 

studies on both single-model and hybrid-model 

approaches, and their findings indicate that hybrid models 

exhibit superior accuracy in disease prediction compared 

to single models. Baseer et al. (2023) conducted a 

comparison with and without hyperparameter tuning 

using ML algorithms for HF prediction. Using 

GridSearchCV with SVM results in a significantly higher 

accuracy of 99.02%, compared to the 74% accuracy 

achieved by SVM without GridSearchCV. 

Khourdifi et al. (2019) enhanced the performance of 

ML models by integrating particle Swarm Optimization 

(PSO) and Ant Colony Optimization (ACO) to identify 

important features and improve accuracy. Gazeloglu et al. 

(2020) compared the prediction of CVD with and without 

feature selection. In this case, Naïve Bayes (NB) and 

Fuzzy Rough Sets achieve the highest accuracy compared 

to those without feature selection when combined with 

correlation-based Feature Selection (CFS). Shah et al. 

(2017) employed Principal Component Analysis (PCA) 
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for feature selection. Bodapati et al. (2019) proposed a 

clustering-based method for extracting pertinent features 

that significantly influence classification outcomes. They 

employed both K-means clustering and spectral 

clustering for cluster formation to mitigate clustering 

uncertainty. Nasarian et al. (2020) created heterogeneous 

hybrid feature selection (2HFS) to discover critical CAD 

features. ADASYN and SMOTE were used to address the 

dataset imbalance. This method improved classification 

accuracy to 92.58%. Waqar et al. (2021) introduced a 

SMOTE-based artificial neural network to address 

imbalanced data, eliminating the necessity for feature 

engineering in datasets. This approach surpassed the 

performance of all other models. 

Many researchers have delved into utilizing ML to 

diagnose HF through various models. However, 

incorporating ML often demands a level of computer 

science proficiency, potentially hindering widespread 

adoption among healthcare practitioners (Ferreira et al., 

2021). Standard stages in a ML endeavor encompass 

defining the problem, acquiring data, conducting 

exploratory data analysis, data preparation, model 

exploration, and model refinement. AutoML (Absar et 

al., 2020) platforms make it easier to use advanced 

models by automating feature engineering and 

hyperparameter tuning. Compared to TML methods, 

these platforms require a lot less code and technical 

knowledge. These platforms automatically handle data 

preparation, model selection, and model refinement 

processes. AutoML frameworks provide healthcare 

providers with a cost-effective tool for identifying and 

predicting cardiac diseases. 

Paladino et al. (2023) explored the effectiveness of 

AutoML tools in diagnosing heart disease. They used 

AutoGluon, PyCaret, and AutoKeras to generate 

predictive models to achieve this. The results indicated 

that AutoGluon consistently outperformed the other tools, 

achieving an accuracy of 86%. Orlenko et al. (2020) used 

the TPOT tool to predict CAD diagnosis more accurately 

and in less time. They found that TPOT's automated 

optimization produced better predictive models than grid 

search. Auto-Sklearn beat TML on two cardiovascular 

datasets, according to Padmanabhan et al. (2019) and Pol 

et al. (2021) used PyCaret to forecast heart disease. 

Ferreira et al. (2021) conducted a comparative study that 

evaluated eight AutoML tools (rminer, AutoKeras, 

AutoSklearn, H2O, TPOT, TransmogrifAI, AutoGluon, 

and PyTorch) across three scenarios: GML, DL, and 

XGB. As confirmed by OpenML results, contemporary 

GML AutoML algorithms outperformed human ML 

modeling on five datasets. Rimal et al. (2023) conducted 

a comparison between conventional ML models and 

AutoML in the context of heart disease classification. 

Among all models, the AutoML-produced generalized 

linear model demonstrated the highest accuracy. 

    The advantage of using AutoML for model building 

is its ability to efficiently optimize hyperparameters in a 

short time, with the option to set time constraints on 

execution duration. AutoML automatically identifies the 

algorithms that provide the most accurate predictions for 

the given dataset. ML models can be used to identify 

important HF predictors and distinguish between 

individuals with and without an HF diagnosis. 

Materials and Methods 

Traditional Machine Learning (TML) 

TML has seen significant advancements in recent 

years, as outlined by Tufail et al. (2023), involving 

several steps crucial for developing ML models, each 

requiring manual intervention, as depicted in figure 1 

(right part). This figure illustrates the basic architecture 

of both AutoML and TML. In TML, the process begins 

with collecting high-quality, relevant data from various 

sources like databases, APIs, or public repositories. Next, 

the data undergoes manual preprocessing, including 

cleaning, normalizing, scaling, and encoding. Feature 

selection follows, using techniques such as correlation, 

PCA, etc., to identify the important and pertinent 

features. The data is then manually split into training and 

testing sets, typically in ratios like 80-20 or 70-30, to 

ensure the model can generalize well. Choosing the 

appropriate ML algorithm depends on the specific tasks, 

such as classification or regression. Finally, the model 

performance is manually evaluated using various metrics 

like F1-score, accuracy, precision, Mean Squared Error 

(MSE), or R-squared recall, often employing cross-

validation for robustness. Despite these advancements, 

developing ML models traditionally remains resource-

intensive, requiring significant expertise and time. 

AutoML 

    The complexity of cutting-edge TML techniques is 

constantly evolving, making it difficult for ML experts to 

incorporate the latest best practices into their models. To 

address this challenge, this study utilized AutoML. 

AutoML (He et al., 2020) streamlines and automates the 

complete process of applying ML to practical problems, 

as depicted in figure 1 (left part). By handling complex 

tasks, AutoML makes ML more accessible to a wider 

audience, including those with limited expertise. It cuts 

down on the time and effort needed to create effective 

models by providing user-friendly interfaces or APIs that 

allow users to input their data and receive optimized 
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models without requiring extensive knowledge of the 

underlying algorithms and techniques. AutoML 

simplifies the ML process by automating the selection of 

appropriate algorithms (Rajeev et al., 2024) and 

hyperparameters, and it excels at optimizing these 

hyperparameters, a crucial and often time-consuming 

aspect of achieving optimal model performance. 

Figure 1 illustrates (left part) the basic architecture of 

AutoML, highlighting its differences from the TML 

framework. According to Shen et al. (2018), the general 

steps of AutoML include data collection from various 

sources, similar to TML. AutoML then automates data 

preprocessing, which involves data cleaning, handling 

missing values, and formatting it for analysis, saving 

significant time and effort. It also automatically selects 

features from the data. It also automatically divides the 

data into training and testing sets for performance 

evaluation. It also selects the most suitable ML model for 

the specific task and data, eliminating the need for 

manual model selection. It also automates performance 

analysis, typically calculating accuracy, precision and 

recall metrics. Finally, the trained model can be applied 

to new data for predictions, enabling researchers to 

evaluate the outcomes and pinpoint areas that need 

enhancement. Several AutoML tools are available to 

automate model development. Leading AutoML 

platforms include Auto-PyTorch, Microsoft Azure 

AutoML, H2O and AutoGluon. In this work, AutoGluon 

is utilized. 

Proposed Methodology 

    Figure 2 presents the proposed methodology for HF 

prediction, which includes the following steps: 1) Dataset 

Overview, 2) Dataset Splitting, 3) AutoGluon, and 4) 

SHAP Analysis, as described below: 

Heart disease dataset 

Figure 1. Basic architecture of AutoML vs TML. 
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This work uses the "heart disease" dataset from the 

UCI repository (Janosi et al., 1988). It is composed of 

1,025 records and 14 parameters. This dataset, which is 

free from missing or null values, serves as the basis for 

the HF prediction experiment, i.e., a clean dataset. Table 

1 provides a detailed description of the features utilized 

in the study. 

Table 1. Dataset features and their description.  

Feature Description 

age Age in years 

sex Sex (1 = male; 0 = female) 

cp Chest pain type 

trestbps Resting blood pressure (in mm Hg) 

chol Serum cholesterol in mg/dL 

fbs Fasting blood sugar > 120 mg/dL (1 = true; 0 

= false) 

restecg Resting electrocardiographic results 

thalach Maximum heart rate achieved 

exang Exercise-induced angina (1 = yes; 0 = no) 

oldpeak ST depression induced by exercise relative to 

rest 

slope Slope of the peak exercise ST segment 

ca Number of major vessels (0–3) colored by 

fluoroscopy 

Dataset splitting 

ML fundamentally divides a dataset into training and 

test sets to enhance accuracy and prevent overfitting. A 

human expert split this heart disease dataset of 1025 

records into 80% (820 records) training data and 20% 

(205 records) test data. This test data was set aside for 

final performance evaluation. After that, AutoML divided 

the training data into two groups: a training group with 

80% (656 records) for model building and a validation 

group with 20% (164 records) for hyperparameter tuning 

and overfitting prevention during the ML process, as 

illustrated in figure 3. 

 
Figure 3. Data splitting by AutoML. 

AutoML-AutoGluon 

Amazon Web Services (AWS) designed this 

AutoGluon library to streamline and speed up the 

development and deployment of ML models. This tool 

uses text, images, and tabular data. It automates various 

steps in the ML pipeline described below: 

Automated Data preprocessing 

AutoGluon's robust automated data preprocessing 

capabilities simplify and expedite data preparation for 

ML tasks. It automatically detects and handles missing 

values in the data with mean, median, or other statistical 

measures. In this work, AutoGluon ensures that there are 

Figure 2. Proposed HF prediction system. 
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no missing values in the data. It also automatically 

performs categorical encoding using one-hot or ordinal 

encoding without human intervention. This encoding is 

used to convert categorical variables into numerical 

values based on their order or rank. Table 2. provides the 

parameters of data preprocessing automated by 

AutoGluon. 

Table 2. Automated Data preprocessing parameters. 

Parameter Description 

Missing values No 

Train data instances 820 

Valid data instances 205 

Columns of Train Data  13 

Target Column      target 

Type of Problem binary 

Target mapping class 0 = 0, class 1 = 1 

Automated model training 

The AutoGluon strategy (Erickson et al., 2020) 

introduces a novel form of multi-layer stack ensembling 

approach and n-repeated k-fold bagging to improve 

model performance. Algorithm 1 summarizes this 

approach. Initially, the training data (A, B) undergoes 

preprocessing to extract relevant features, employing 

normalization and feature engineering methods. The 

family of models (Mf) encompasses the set of algorithms 

for training, and L indicates the number of stacking 

layers. Initially, the algorithm follows a stacking loop, 

iterating through each layer. An n-repeated procedure 

splits the data into k parts within this loop, forming k 

folds for cross-validation. Each model type m in Mf is 

trained on k-1 folds and validated on the remaining fold, 

producing out-of-fold (OOF) predictions (Sun et al., 

2023). These OOF predictions are averaged over all n 

repetitions and k folds to minimize variance. The 

averaged OOF predictions are then merged with the 

original feature matrix, creating an expanded dataset for 

the next stacking layer. This process is repeated for all 

specified stacking layers, resulting in a robust ensemble 

model. In this work, the stacking process employs two 

layers and uses k=5 subsets for cross-validation. 

Algorithm 1 AutoGluon training strategy  

(Erickson et al., 2020)  

Impose: Datapoint (A, B); Models family Mf  ; Number 

of layers L 

Step 1:  To extract features, do the data preprocess 

Step 2: for z= 1 to L do       #Stacking 

Step 3:        for x= 1 to n do   #n_repeated 

Step 4:             Divide data into k chunks randomly   

{𝐴^𝑦, 𝐵^𝑦}𝑦=1
𝑘  

Step 5:             for y= 1 to k do       # k fold bagging 

Step 6:                  for each model type m in Mf  do 

Step 7:                           Train a model type m on A-y, B-

y 

Step 8:                          Generate predictions 𝐵𝑚,𝑥
^𝑦

  on 

OOF data  Xy 

Step 9:                   end for 

Step 10:              end for 

Step 11:        end for 

Step 12:   Average OOF predictions   𝐵̂𝑚  = 

{
1

 𝑛
 ∑ 𝐵𝑚,𝑥

^𝑦
𝑥  }𝑦=1

𝑘 } 

Step 13:         A   Concatenate (A, {𝐵̂𝑚}  m ∈M ) 

Step 14: end for 

 
Figure 4. Multi-layer stacking ensemble strategy using 

AutoGluon. 

Figure 4 illustrates AutoGluon's multi-layer stacking 

ensemble strategy, which includes two stacking layers. 

Initially, the dataset is input into various base models, 

such as RF, KNN, CatBoost, LightGBM, XGBoost, Extra 

Trees and NN. The outputs from these base models are 

concatenated and fed into the next layer, which comprises 

multiple stacker models. These stacker models function 

as base models for this layer, learning from the 

aggregated predictions of the initial base models. The 

predictions from the stacker models are then combined 

using a weighting mechanism that assigns different 

weights to each model's predictions based on their 

performance, resulting in the final prediction. 
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Automated Model Selection 

AutoGluon automates model selection using a multi-

stacking approach. This work configures the tool to 

generate 14 models by setting the parameter models=14 

in the fit() function. Researchers can specify any number 

of models for experimentation. The models produced 

include CatBoost, RandomForestGini, 

RandomForestEntr, NeuralNetTorch, LightGBMLarge, 

NeuralNetFastAI, ExtraTreesEntr, ExtraTreesGini, 

LightGBM, WeightedEnsemble_L2, KNeighborsDist, 

XGBoost, LightGBMXT, and KNeighborsUnif. The 

leaderboard showcases the performance metrics of all 14 

models trained by AutoGluon. Among these algorithms, 

CatBoost stands out as the top performer, as indicated by 

the various metrics detailed in Table 2.  

Automated performance analysis 

AutoGluon automatically offers a variety of 

evaluation metrics to help assess model performance. 

AutoGluon tailors the selection of metrics to the specific 

type of ML task, such as classification or regression. In 

this work, which focuses on the classification problem, 

the evaluation utilized accuracy (A), precision (P), Recall 

(R), F1-score (F1), and the ROC-AUC curve. These 

metrics provide a comprehensive view of the model's 

effectiveness in binary classification tasks. Figure 5 

showcases the confusion matrix, a performance 

evaluation, by comparing the model's predictions with the 

actual class labels. 

 
Figure 5. Structure of confusion matrix. 

A True Positive (TP) is when a person with HF is 

correctly diagnosed as having HF, whereas a True 

Negative (TN) is when someone without heart failure is 

accurately identified as not having HF. In contrast, a 

False Positive (FP) occurs when a person without heart 

failure is wrongly diagnosed with HF, and a False 

Negative (FN) happens when someone with heart failure 

is incorrectly identified as not having HF. 

    Accuracy (A) (Pal et al., 2022) measures how 

accurately it predicts the outcome. Equation (1) expresses 

the accuracy as the ratio of the count of accurate 

predictions to the total count of predictions. However, if 

the data isn't balanced, this statistic might be biased and 

provide distorted findings. 

𝐴 =
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
                                                          (1) 

    According to Equation (2), Precision(P) is defined 

as the ratio of TP to the total of TP and FP, or the number 

of TP divided by the total. Equation (3) defines Recall(R) 

as the ratio of the TP of all True Positives, including FN. 

The F1 score (F1) is calculated by taking the harmonic 

mean of the P and R variables, which equals two times 

the product of the two variables distributed by the total of 

the two variables (Equation 4). 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                      (2) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                      (3) 

𝐹1 = 2 ∗
𝑃∗R

𝑃+R
                                                                  (4) 

The ROC curve (Deepa et al., 2024) illustrates the 

relationship between the False Positive Rate (FPR) and 

the R across various threshold settings to assess the 

model's accuracy. A higher ROC-AUC score signifies a 

greater ability to distinguish between classes. An area 

under the curve (AUC) of 1 indicates a perfect classifier, 

whereas an area of 0.5 indicates a performance equivalent 

to random guessing. 

Explainable AI (XAI) Integration 

XAI (ElShawi et al., 2020) pertains to the 

advancement of AI systems designed to deliver precise 

predictions or decisions and to furnish clear and 

comprehensible rationales for their results. The goal is to 

enhance trust, accountability, and user acceptance by 

allowing humans, whether end-users or domain experts, 

to understand the process and reasoning behind a specific 

decision or prediction. Local and global interpretability 

approaches broadly categorize the various XAI methods. 

Local interpretability focuses on understanding individual 

predictions and providing explanations for specific 

instances. Techniques such as LIME and SHAP are 

frequently used to demonstrate how specific input 

features impact individual predictions, thus improving the 

transparency of the model's decision-making on a case-

by-case basis. In contrast, global interpretability aims to 

provide a broad understanding of the model's overall 

behavior. This approach looks at general patterns and 

relationships within the model, offering insights into 

feature importance, model rules, and the overall decision 

logic. Methods like DT, feature importance scores, and 

partial dependence plots help illustrate how the model 

makes predictions across the whole dataset, ensuring a 

broader comprehension of the model's functionality. This 

study uses only SHAP for global interpretability. 
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Shapley Additive ExPlanations (SHAP) 

Its goal is to provide insights into the overall behavior 

of the model across its entire dataset and features. SHAP 

(Jiang et al., 2023) assigns a value to each feature in a 

prediction, representing its contribution to the overall 

model output. Shapley values aim to fairly and 

interpretably distribute the model's prediction among its 

features. The results and discussions provide a clear 

explanation of these predictions through visualization. 

For global interpretability, SHAP is employed as a tool. 

SHAP values offer a methodology for interpreting the 

outcomes of ML models, shedding light on the individual 

contributions of features to predictions for specific 

instances. SHAP values associated with individual 

features can be either positive or negative. Positive SHAP 

values indicate that a feature contributes to an increase in 

the prediction, while negative SHAP values suggest that a 

feature contributes to a decrease in the prediction. By 

aggregating SHAP values across all instances, a more 

comprehensive understanding of the importance of 

features for the classifier is achieved. This approach aids 

in the interpretation of the classifier's predictions and the 

identification of key features influencing its behavior. As 

a result, SHAP values play a critical role in providing 

deeper insight into the functioning of classifiers, making 

them useful for interpreting diverse model outputs. 

The SHAP value is calculated using equation (5). This 

tool enables the assessment of the correlation between the 

model's prediction and the constituent elements employed 

to attain such a predicted value. 

Φ(𝑐, 𝑥) = ∑
 |𝑧′|!(𝑇−|𝑧′|−1)!

𝑇!𝑧′⊆𝑥′
  [𝑐𝑥(𝑧) − 𝑐𝑥̇ (

𝑧′

ⅈ
)]  (5) 

Where the shapely value for the feature is defined by 

the function Φi(c, x) of the shape. i and x are vectors that 

represent the feature value and represent all the possible 

combinations of the feature subset. This is done to 

demonstrate the interactions that occur between such 

individual feature values. The symbol x denotes the 

simplified data input, and z is the total number of 

columns in the dataset. SHAP results are plotted and 

discussed in section 4.  

TML for HF prediction 

Figure 6. employs several proven steps to predict heart 

failure using TML. In the TML, data preprocessing for 

heart disease involved min-max normalization. The 

results indicated that there were no missing or null values 

in the data. Feature selection crucial for enhancing model 

performance was performed using the Chi-square test. 

This test helps identify features significantly related to 

the target variable, which is especially useful for 

categorical data. In this case, the test indicated that all 

features were critical for predicting HF, except for 

RestingECG. The data was then split into training and 

testing sets in an 80-20 ratio. Subsequently, various TML 

algorithms were applied, including LR, SVC, DT, KNN, 

and GNB. Among these, LR emerged as the best model, 

with an accuracy of 87.50% (Natarajan et al., 2024). 

However, TML is labor-intensive and requires substantial 

expertise. Data preprocessing involves manual feature 

engineering and selection, demanding domain knowledge 

and time. Model selection often relies on trial-and-error 

approaches for algorithm selection and hyperparameter 

tuning, which can be time-consuming and prone to 

human error. Scaling traditional ML to handle large 

datasets or multiple models is challenging, requiring 

significant computational resources and manual effort. 

Reproducing results can be difficult due to 

inconsistencies in pipelines and documentation. Despite 

these challenges, TML methods offer control and  

  

Figure 6. TML for HF prediction. 
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customization, making them suitable for scenarios where 

interpretability and fine-tuning are paramount. 

Result and Discussion 

AutoGluon v1.0.0 analyzes heart disease. The default 

settings were used as they are. AutoGluon analyzed the 

data to ensure it included all prediction features and had 

no missing values. The data was split up into 80% for 

training and 20% for testing by a human expert. Further, 

the training data was split internally into 80% and 20% of 

the validation subset. An AutoGluon automatically 

generates model training after the automated data 

preprocessing step. Here, the AutoGluon model training 

strategy is employed. This strategy used base algorithms 

such as KNN, RF, neural networks, and ensemble 

methods. Using this base algorithm, AutoGluon tested 

many embedded algorithms on its own and then showed 

the 14 best algorithms: CatBoost, RandomForestGini, 

RandomForestEntr, NeuralNetTorch, LightGBMLarge, 

NeuralNetFastAI, ExtraTreesEntr, ExtraTreesGini, 

LightGBM, WeightedEnsemble_L2, KNeighborsDist, 

XGBoost, LightGBMXT, and KNeighborsUnif. Among 

all these algorithms, CatBoost emerged as the best model 

based on its accuracy of 99.02% and ROC-AUC value of 

99.89% in evaluating HF with AutoGluon. In TML, six 

(6) individual-trained ML models, such as LR, SVC, 

DTC, RFC, KNN and GNB are used. LR produced the 

highest accuracy in TML (87.50%), with an ROC-AUC 

value of 88.43%. This research compares a total of 

twenty (20) individual-trained ML models, consisting of 

fourteen (14) from AutoML and six (6) from TML, as 

tabulated in Table 3. Out of all 20 models, CatBoost is 

the best. Figure 7. depicts the performance comparison of 

AutoML models; similarly, figure 8. depicts the 

performance comparison of TML models using various 

performance metrics. 

After evaluating the models, SHAP is employed to 

achieve global interpretability of the CatBoost model's 

predictions. Figure 9 presents the SHAP force plot of the 

fifth patient in the data, utilizing CatBoost. The base 

value (0.1122) signifies the mean SHAP value across all 

samples, indicating how each feature contributes to 

shifting the model's output from the base value. Features 

that elevate the prediction are highlighted in red, 

indicating a positive impact on the models of predicting 

HF, whereas those in blue diminish the prediction. 

Specifically, age, thal, slope, and oldpeak contribute 

positively to the model's HF prediction, while thalach, ca, 

restecg, and exang have a negative impact. The 

comprehensive SHAP value for each individual, denoted 

as f(x) = 0.53, determines whether the model predicts the 

presence of HF. Therefore, since f(x) is higher than the 

base value, the CatBoost model accurately predicts that 

the individual will have HF. This demonstrates the 

effectiveness of SHAP in enhancing model transparency 

and understanding, which is crucial for improving 

diagnostic accuracy and clinical decision-making in 

healthcare. 

Table 3. Comparison of TML vs AutoGluon using various performance parameters. 

 Algorithms Accuracy Precision Recall F1_score ROC_AUC 

A
U

T
O

G
L

U
O

N
 

CatBoost 99.02% 98.15% 100.00% 99.07% 99.89% 

RandomForestGini 99.02% 98.15% 100.00% 99.07% 99.76% 

RandomForestEntr 99.02% 98.15% 100.00% 99.07% 99.75% 

NeuralNetTorch 98.05% 98.11% 98.11% 98.11% 98.59% 

LightGBMLarge 98.05% 98.11% 98.11% 98.11% 99.31% 

NeuralNetFastAI 97.07% 96.30% 98.11% 97.20% 99.10% 

ExtraTreesEntr 97.07% 98.08% 96.23% 97.14% 99.87% 

ExtraTreesGini 97.07% 98.08% 96.23% 97.14% 99.85% 

LightGBM 95.12% 96.15% 94.34% 95.24% 98.01% 

WeightedEnsemble_L2 95.12% 96.15% 94.34% 95.24% 98.01% 

KNeighborsDist 94.15% 97.96% 90.57% 94.12% 96.86% 

XGBoost 94.15% 93.52% 95.28% 94.39% 97.33% 

LightGBMXT 90.24% 90.57% 90.57% 90.57% 97.64% 

KNeighborsUnif 63.90% 63.33% 71.70% 67.26% 76.79% 

T
M

L
 

LR 87.50% 86.73% 89.47% 88.08% 88.43% 

SVC 87.50% 85.73% 84.47% 87.08% 87.43% 

DTC 84.78% 82.52% 89.47% 85.86% 84.62% 

RFC 84.24% 81.73% 89.47% 85.43% 84.06% 

KNN 81.52% 79.61% 86.32% 82.83% 81.36% 

GNB 85.87% 84.16% 89.47% 86.73% 85.75% 
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Figure 7. Performance Comparison of AutoML Models. 

 
Figure 8. Performance Comparison of TML Models. 
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Figure 9. SHAP force plot values for 5th patient using CatBoost. 

 
Figure 10. SHAP summary plot of the 13 attributes with the test dataset of the CatBoost. 

 

Figure 11. Features importance plot using SHAP (CatBoost). 



Int. J. Exp. Res. Rev., Vol. 46: 31-44 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v46.003 
42 

The CatBoost model created a summary plot of the 

SHAP values for 13 features from the test data, as shown 

in Figure 10. Each point on this plot signifies the effect of 

a specific feature on the model's prediction. Red points 

show features that positively impact the prediction when 

their values are high, whereas blue points indicate 

features that negatively impact the prediction when their 

values are low. The features are ordered by their average 

influence, showing their importance in the model's 

decisions. Figure 11 provides an overview of the global 

impact of features on HF prediction, identifying 'ca' and 

'cp' as the most influential, while 'trestbps' and 'fbs' have 

less impact. 

Conclusion 

This work demonstrates the superiority of AutoML 

over TML models in predicting HF, highlighting the 

significant advantages in accuracy and efficiency. While 

TML models like LR achieved the highest accuracy of 

87.50% and an ROC-AUC of 88.83%, they required 

extensive manual tuning and expert knowledge. Other 

TML models, such as DT, RF, KNN, and GNB, showed 

lower accuracy, emphasizing the optimized challenges. In 

contrast, the AutoML approach, particularly using the 

AutoGluon framework, demonstrated exceptional 

performance, with the CatBoost algorithm achieving an 

best accuracy of 99.39% and an ROC-AUC of 99.89%. 

The use of SHAP provided valuable interpretability, 

making the CatBoost model both accurate and 

transparent. These findings underscore AutoML's 

potential to streamline model selection and optimization, 

saving time for medical professionals and enhancing 

predictive accuracy. Consequently, AutoML techniques 

can significantly improve HF risk assessments and 

treatment efficiency, ultimately benefiting patient 

outcomes. Future research should focus on integrating 

AutoML frameworks with real-time clinical data, larger 

datasets, or multiple datasets to enhance predictive 

capabilities and clinical decision-making further. 
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