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Introduction 

User Interface Testing, generally abbreviated as ‘UI 

Testing’, deals with structurally and functionally testing 

user interface components. Validation is needed for 

cross-browser checks, working of dynamic contents, anti-

aliasing checks, in-built support plugins and many more 

(Aho and Vos, 2018). Automating these activities 

involves thousands of test cases to be created and 

maintained. Maximum time spent by testers is in 

analyzing failures of any of these test cases. Analysis of 

failures starts with bug report analysis and then moves 

towards fixing bugs and simultaneously towards fixing 

broken tests (Fazzini et al., 2018). These reports are 

generally written by stakeholders like end users, 

developers, testers and project managers who are directly 

or indirectly associated with project development and 

maintenance. A typical bug report consists of issues 

reported in a simple natural language focusing on an 

unexpected behavior, change request and other 

supplementary information like logs and screenshots 

(Vito et al., 2024). One of the major causes of bug report 

analysis is to find test case failure causes and is one of the 
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Abstract: Analyzing user interface (UI) bugs is an important step taken by testers and 

developers to assess the usability of the software product. UI bug classification helps 

in understanding the nature and cause of software failures. Manually classifying 

thousands of bugs is an inefficient and tedious job for both testers and developers. 

Objective of this research is to develop a classification model for the User Interface 

(UI) related bugs using supervised Machine Learning (ML) algorithms and Natural 

Language Processing (NLP) techniques. Also, to assess the effect of different 

sampling and feature vectorization techniques on the performance of ML algorithms. 

Classification is based upon ‘Summary’ feature of the bug report and utilizes six 

classifiers i.e., Gaussian Naïve Bayes (GNB), Multinomial Naïve Bayes (MNB), 

Logistic Regression (LR), Support Vector Machines (SVM), Random Forest (RF) and 

Gradient Boosting (GB). Dataset obtained is vectored using two vectorization 

techniques of NLP i.e., Bag of Words (BoW) and Term Frequency-Inverse Document 

Frequency (TF-IDF). ML models are trained after vectorization and data balancing. 

The models ' hyperparameter tuning (HT) has also been done using the grid search 

approach to improve their efficacy. This work provides a comparative performance 

analysis of ML techniques using Accuracy, Precision, Recall and F1 Score. 

Performance results showed that a UI bug classification model can be built by training 

a tuned SVM classifier using TF-IDF and SMOTE (Synthetic Minority Oversampling 

Techniques). SVM classifier provided the highest performance measure with 

Accuracy: 0.88, Precision: 0.86, Recall: 0.85 and F1: 0.85. Result also inferred that 

the performance of ML algorithms with TF-IDF is better than BoW in most cases. 

This work provides classification of bugs that are related to only the user interface. 

Also, the effect of two different feature extraction techniques and sampling 

techniques on algorithms were analyzed, adding novelty to the research work. 
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important responsibilities of a developer. Bug reports are 

useful in reproducing failures to avoid similar faults in 

the future (Kang et al., 2024). Bug reports also help 

highlight the low test coverage area. Since every UI page 

has hundreds of UI elements, this bug report helps gather 

information on expected and unexpected issues. Bugs 

represent uncertainty in the area and hence become the 

classification area (Colavito et al., 2024). This research 

work classifies the bugs into two classes i.e., ‘Defect’ and 

‘Enhancement’, based upon the ‘Summary’ feature of the 

bug report, which is a textual feature. UI bug 

classification can be represented as equation 1. 

UIB = {UIB1, UIB2…., UIBn} and UIBx € {0, 1}     (1)                              

Where, UIB represents a set of UI labeled bugs 

n represents total retrieved bugs and,  x represents an 

individual bug. 

 Label 0 represents ‘Defect’ and 1 for ‘Enhancement’ 

(Antoniol et al., 2008). Classifying the bugs into ‘Defect’ 

and ‘Enhancement’ helps the developer and tester count 

the defects for quality assurance, identify the area of 

regression testing, initiate a change management cycle, 

create new test cases for updates, etc. Bug classification 

is one of the applications in the field of ‘Text 

Classification’ (Meng et al., 2022). Bug report is a 

combination of structured as well as unstructured 

information. Structured information includes severity, 

priority, component, etc. Unstructured information 

describes or summarizes the bug (Kukkar et al., 2018). 

‘Summary’ feature of the bug helps in understanding the 

problem and thereafter helps in reproducing the bug if 

required. From the developer's perspective, issue 

description, bug reproducing steps and stack traces are 

the three most important features of the bug report that 

help in debugging the bug, while other features in the bug 

report directly impact the bug resolution time (Soltani et 

al., 2020). Hence, to work towards this problem 

statement, the research objectives of this study can be 

stated as below- 

# To generate a ML model for automatic classification 

of the bugs from UI bug repositories into Defect and 

Enhancement class. 

# To compare the performance of classifiers w.r.t 

feature extraction techniques and sampling techniques on 

the imbalance dataset. 

# To achieve the best-performing classifier for UI bug 

classification. 

Related work 

Different approaches have been studied and proposed 

in the past related to bug categorization, localization, 

assessment and classification. Since manual classification 

is time-consuming and error-prone, many approaches 

have tackled the bug classification problem (Iqbal et al., 

2020). This section discusses significant studies related to 

automated bug analysis and classification. Authors 

performed bug classification focusing on cloud 

computing applications using ML and NLP techniques 

(Tabassum et al., 2023). Four classifiers were evaluated 

and compared i.e., MNB, LR, Decision Tree (DT) and 

RF. For vectorization, TF-IDF and Word2Vec extraction 

techniques were used. Results showed that RF attained 

the highest testing accuracy of 91.73% and 100% training 

accuracy. Another study by (Bhandari and Rodriguez-

Perez,2023) focused on assessing the performance of 

various NLP and ML techniques in the classification of 

intrinsic bugs. They utilized two embedding techniques 

seBERT (Bidirectional Encoder Representations from 

Transformers) and TF-IDF, on SVM, LR, DT, RF and K-

Nearest Neighbour (KNN) classifiers. Results showed 

that DT combined with TF-IDF achieved a F1 score of 

78% on bug titles. Research work by (Alsaedi et al., 

2023) proposes a classification model that can predict the 

nature of the bug report using ensemble ML techniques. 

Results highlighted that the proposed approach attained 

96.72% accuracy with text augmentation. Authors have 

provided an approach for using unstructured bilingual 

reports (Köksal and Tekinerdogan, 2022). Research 

studied the effect on performance of ML algorithms due 

to preprocessing, BoW size, K-fold validation and word 

embeddings. No major difference was seen in the 

performance results of algorithms related to 

preprocessing and BoW size of 265. 10-fold cross-

validation showed better results in SVM using a linear 

kernel. Word embedding ‘FastText’ with RF gave 

71.19% of F1- measure. Another paper tried to solve the 

problem of software bug prediction using ML approach 

(Hammouri et al., 2018). The author’s approach was 

based on historical data faults, essential metrics, and 

different software computing techniques. NB, DT and 

Artificial Neural Network (ANN) classifiers have been 

used to perform the task. On the three dataset used, DT 

outperforms the other two techniques with 97.10% 

accuracy, 99.60% precision measure and 100% recall 

measure. Authors tried to automate the Orthogonal 

Defect Classification (ODC) attributes into classes 

internal, external 1 and external 2 using KNN, RF, 

Nearest Centroid (NC), NB, SVM and Recurrent Neural 

Network (RNN) (Lopes et al., 2020). Results showed that 

there are certain difficulties in automating the process, 

which can be improved by using bigger datasets. Several 

authors have directly related the analysis of bugs to fault 

or defect prediction approaches. The ML- 
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driven bug classification approach has been applied in  

several ways to predict software defects. In 

(Alqahtani, 2023), security bug classification has been 

done using the ‘FastText’ classifier. Results highlighted 

Table 1. Overview of the related work. 

Reference Application of 

classification 

ML techniques 

applied 

Classification labels Result 

Tabassum et 

al., 2023 

Classification of 

Cloud computing 

applications 

MNB, DT, LR, 

RF 

Crash, Enhancement, 

Performance, Resource 

Usage, Security and 

Compile 

RF achieved the 

highest test 

accuracy of 

91.73%. 

Bhandari and 

Rodríguez-

Pérez, 2023 

Classification in 

Version Control 

Systems 

SVM, LR, DT, 

RF and KNN 

Intrinsic, 

Non-Intrinsic Bugs/ 

Extrinsic Bugs 

TF-IDF with DT 

achieved highest 

F1 Score of 78%. 

Alsaedi et al., 

2023 

Classification of 

Mozilla and Eclipse 

bug repositories 

RF, MNB, SVC, 

LR, Proposed 

ensemble model 

(Hard voting) 

and ensemble 

model(Soft 

voting) 

Graphical User Interface 

(GUI), Network or 

Security, Program 

Anomaly, 

Configuration, Test 

Code and Performance 

Proposed model 

attains accuracy 

of 96.72% with 

text 

augmentation. 

Köksal and 

Tekinerdogan, 

2022 

Classification of 

unstructured bilingual 

bug report 

NB, SVM, 

KNN, LR, DT, 

RF 

Assignment/Initializatio

n, External Interface, 

Internal Interface, 

Others 

FastText with RF 

gave highest F1 

measure of 

71.19%. 

Hammouri et 

al., 2018 

Classification of data 

faults, essential 

metrics and soft 

computing techniques 

NB, DT, ANN Fault Categories A(0-4), 

B(5-9), C(10-14), D(15-

19) and E(more than 20) 

DT achieves 

highest accuracy 

with 97.10% 

accuracy, 

99.60% precision 

measure and 

100% recall 

measure. 

Lopes et al., 

2020 

Classification of 

ODC attributes 

NB, SVM, NC, 

KNN, RF, RNN 

Internal, External 1, 

External 2 

Results highlight 

the challenges of 

automating ODC 

attributes and 

opportunity to 

improve with 

larger datasets. 

Alqahtani, 

2023 

Classification of 

Security bug reports 

SVC, RF, LR, 

GNB, KNN, 

Multi-Layer 

Perceptron 

(MLP) 

Security and Non-

security bugs 

Fasttext classifier 

achieves F1 

score of 0.81 

Goseva-

Popstojanovaa

nd Tyo, 2018 

Classification on 

NASA datasets  

Supervised: 

Bayesian 

network, KNN, 

NB, MNB, RF, 

SVM 

Unsupervised: 

Cosine 

similarity 

distance 

measure 

Supervised: Security and 

Non-Security bugs 

Unsupervised: Non-

Security bugs 

Both can be used 

for classification. 

Supervised 

learning 

performed 

slightly better 

Hirsch, and 

Hofer, 2022 

Classification on bug 

reports of GitHub 

projects 

MNB, SVM, 

RF, LR, 

ensemble 

classifiers 

Concurrency, Memory 

and Resources, Other, 

Semantic 

Ensemble 

classifier 

performance was 

better than single 

classifier alone 
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that 0.81 F1 score was achieved in identifying security 

bug reports and 0.61 in cross project validation. Authors 

of paper (Goseva-Popstojanova and Tyo, 2018) 

performed automated bug classification related to 

security and non-security issues, using both supervised 

and unsupervised algorithms. Results showed that 

supervised algorithms performed better than 

unsupervised algorithms. In (Hirsch and Hofer, 2022), a 

classification model has been proposed based on 

ensemble methods to predict the fault category. 

Comparison of basic ML algorithms with ensemble 

methods has been done. Result obtained is 0.69% macro 

average F1 score. It was also applied to inter projects for 

validation. 

  

Studying and analyzing the available literature, it was 

found that classification specific to UI issues has been 

rarely done. Classifying these issues or bugs can help in 

risk profiling and can help in improving risk coverage in 

UI test suites, which will further help in organizing the 

test activities. Table 1 provides a short summary of the 

related work highlighting application of the classification 

being done, ML techniques applied, labels of the 

classification and major result obtained. Rest of the paper 

is structured as follows. Section II elaborates on materials 

and methods, section III describes results and discussion 

and section IV provides the conclusion. 

Table 2. Components for which UI issues have been retrieved from the bug repository. 

Sl. No Components Tool name 

1 Accessibility Tools DevTools 

2 API Testopia, Mozilla 

3 DOM DevTools 

4 Frontend Web Extensions 

5 Graphic Design Mozilla Foundation Communications 

6 Graphics Core 

7 Layout Core 

8 Pages & Content Mozilla 

9 Panning & Zooming Core 

10 Picture-in-Picture Toolkit 

11 Shared Components DevTools 

12 Tabs Fenix 

13 Theme & Visual Design Firefox for iOS 

14 UI Taskcluster 

15 UI Design Seamonkey 

16 User   Interface Bugzilla, Testopia, Mozilla 

17 Widget Core 

Figure 1. Methodology of the study. 
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Materials and Methods 

Methodology 

Figure 1 provides high level design of the system 

model. It comprises of six phases: 1. Data Retrieval and 

Analysis 2. Data Pre-processing 3. Vectorization 4. Class 

Balancing 5. ML classification and 6. Performance 

assessment. In the first phase, dataset has been retrieved 

from the bug repository and analyzed. Further in the 

second phase, it is cleaned for null and incomplete values 

using NLP text pre-processing techniques. Third phase is 

about selecting the relevant feature and further 

transforming it into a model processing format using NLP 

vectorization techniques. In the fourth phase class 

balancing techniques are applied to remove imbalance in 

the dataset. Dataset is further split in 70:30 mode of train-

test split for training and validating the ML model. In the  

fifth phase, optimization and training of the classifiers 

have been done on the feature vectors. Finally, the model 

performance is evaluated and compared in the sixth 

phase. Detail description about each phase is provided 

below- 

About the dataset 

Gathering quality data is considered the most crucial 

step in building a classification model that can have a 

significant impact on the performance of ML models. 

Therefore, it was assured that data collected is of high 

quality and free from irrelevant information. Dataset has 

been retrieved from the Eclipse Bugzilla repository 

(Ahmed et al., 2021). It is a very powerful web based 

system used in maintaining thousands of bug reports. It 

provides an efficient way to track the bugs. Around 10K 

issues were filtered on the basis of different UI 

components. Table 2 provides components for which 

issues have been extracted. And, Table 3 provides bug 

report attributes. 

Dataset has two classes i.e., ‘Defect’ and 

‘Enhancement’ as mentioned in the previous section. 

After applying data cleaning techniques like removal of 

null and incomplete values. Distribution of these two 

classes that was obtained is represented in Figure 2. 

Around 10K issues were initially extracted, out of which 

around 200 issues were dropped from the dataset after 

cleaning due to inappropriate attribute values. It can be 

seen that the dataset obtained is highly imbalanced. To 

balance the dataset, different sampling techniques have 

been applied which are mentioned in the next section. 

 

Figure 2. Distribution of classes. 

A sample of the UI bug reports from the dataset 

6807

3010

0

2000

4000

6000

8000

0: Defect 1: Enhancement

Class/Label

Frequency

Table 3. Attributes of the bug report. 

Sl. No Attribute Name  Description 

1 Bug ID  Unique bug id number to track throughout the cycle 

2 Type Classification of bugs as ‘Defect’ or ‘Enhancement’ 

3 Summary Detail description of issue  

4 Product Product name associated 

5 Component UI component associated 

6 Assignee Assignee name 

7 Status New, Assigned, Unconfirmed, Closed 

8 Severity Normal/Minor/Major 

9 Priority P1/P2/P3 

10 Version Version number of the product 

Table 4. Bug sample from the dataset representing Defect and Enhancement. 

Type Summary 

Defect The icons normally displayed by Testopia are predominantly absent 

Defect Environment property values are not saved 

Enhancement Show colour contrast ratio between icon image and its background 

Enhancement Graphics data gathering from about: support is slow 
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representing both the classes is provided in Table 4. 

Classification using ML 

Classification is the process of assigning a class to the 

object by prediction. Each class is represented by some 

features that are similar in the behavior or in pattern. 

These features contain adequate information that can 

distinguish one class from another. Following are the 

classifiers applied in this research work. 

Logistic Regression Classifier 

Generally abbreviated as ‘LR’. LR calculates the 

probability of an object to be assigned to a particular 

class. An estimated probability greater than 50% 

indicates that an instance belongs to the positive class 

which is labeled as 1 and 0 otherwise. A weighted sum of 

the input features along with the bias term is calculated 

by the model and the corresponding output is further 

provided (Starbuck, 2023).  

Support Vector Machines classifier 

Generally abbreviated as ‘SVM’. Objective of the 

SVM classifier is to find the hyperplane which tries to 

maximize the margin between the classes in training data. 

Advantage of SVM is that it utilizes very little memory 

and is good with high dimensional complex data. They 

are generally affected by points which are near the 

margin of the hyperplane. Integrating SVM with different 

kernel methods makes the classifier adaptable to different 

types of data (Steidl, 2015). 

Naïve Bayes classifier 

Based on the Bayes’ theorem of probability, this 

algorithm produces the probabilities for every case.  It 

predicts the highest probability outcome. Assumption is 

based on the fact that features are independent. In case of 

text classification, a text vector is constructed of 

corresponding document x, depending on a given 

dictionary, wherein, n represents total elements in the 

dictionary set DS and total occurrences in document x (Li 

et al., 2022). 

DS= {ds1, ds2,............, dsn} 

X= {x1, x2,..............,xn} 

Objective is to find the maximum probability that can 

solve equation ‘2’ given below. 

𝑃(𝑦𝑗│𝑋) = [𝑃(𝑦𝑗)𝑃(𝑋│𝑦𝑗)]/𝑃(𝑋)                 (2) 

            

Any new data set X when provided, there will be 

calculation for all P (yj|X), and the greatest probability 

value will be the classification result of the document X 

which will belong to classification class y. In this 

research work, GNB and its variation MNB classifiers 

have been used. 

Random Forest 

Generally abbreviated as ‘RF’. This is one of the most 

well accepted ensemble methods which are based on the 

bagging methods. It is a technique that ensembles 

decision trees together. Voting methods based on the 

output of the results of individual trees determine the 

classification results. RF brings randomness when 

growing the trees. As in the case of normal decision trees, 

which finds best feature for splitting the node. RF finds 

the best feature from the random set of features. This 

randomness makes the tree diverse with lower variance, 

making it a better model (Paul et al., 2018). 

Gradient Boosting 

Generally abbreviated as ‘GB’. This is a boosting 

algorithm that works by adding predictors sequentially to 

an ensemble. New predictors correct the predecessor. At 

every stage regression trees try to fit on the log loss made 

by the previous predictor (Chen and Guestrin, 2016). 

XGBoost python library is used that provide optimized 

implementation of Gradient Boosting classifiers. 

Extremely fast, scalable and portable.       

Class Balancing Techniques 

Classification results can be affected if the dataset is 

skewed or imbalanced. Classification with an imbalanced 

dataset will result in misclassification with gradient being 

less informative.  Classes in a dataset that contribute 

towards a larger proportion of the dataset are called 

“Majority classes”. And the one that is smaller in 

proportion is termed as “Minority classes”. There is 

mainly three categories of imbalance (degree of 

imbalance) i.e., Mild, Moderate and Extreme. Proportion 

of minority class is around 20-40% of the dataset in case 

of the mild, for moderate it’s around 1 to 20% and for 

extreme this range to less than 1%. There are various 

important techniques that have been considered for class 

imbalancing in this research work. Oversampling 

techniques balances the minority classes by increasing its 

frequency whereas, undersampling balances the data by 

lowering the majority class. In the oversampling 

category, Synthetic Minority Oversampling Techniques 

(SMOTE), Edited Nearest Neighbour based SMOTE 

(SMOTE-ENN), SMOTE-Borderline, SMOTE-SVM, 

RandomOverSampler and Adaptive Synthetic 

(ADASYN) has been used. In undersampling techniques, 

RandomUnderSampler, AllKNN, NearMiss and Tomek’s 

Links have been considered. Details of these techniques 

can be studied (Hasib et al., 2020). 

Hyperparameter Tuning (HT) 

HT and optimization is one of the important steps for 

fine tuning the behavior of ML algorithms. It directly 

impacts the performance of algorithms. It refers to 

finding out the set of hyperparameter values that will 

provide the best performance measures on the data in a 
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reasonable amount of time. It is generally determined by 

the user before the model is trained. Three kinds of 

hyperparameter optimization methods are generally used 

i.e., grid search, manual search and random search. In this 

research, grid search has been used. As the name itself 

suggests, in grid search the user predetermines a grid of 

hyperparameters and the model is trained based on each 

possible combination of the grid (Ghawi and Pfeffer, 

2019). 

Text preprocessing 

Data cleaning is an integral part of any NLP problem. 

It is necessary before one could represent the data in a 

suitable format. Steps of text preprocessing could depend 

upon the requirement of the problem statement (Hickman 

et al., 2020). Important preprocessing steps taken in this 

work are stop words removal, conversion to lowercase, 

tokenization, stemming and lemmatization. 

# Stop words removal: Removing the common words 

that act as a noise to the statement like ‘a’, ’the’ etc. 

# Tokenization: Converting strings to lists of words. 

# Stemming: Words that imply the same meaning are 

identified as the same. This is achieved by removing ‘--

ing’,’--ly’ etc. 

# Lemmatization: Converting to the base or root word. 

For eg. ‘feet’ becomes ‘foot’. 

Extracting text features 

Features need to be extracted from the text data as it’s 

not in the required form that can be used for ML 

techniques. Two important methods which are used in 

this research for feature extraction are BoW and TF-IDF. 

In the BoW model, each word is considered as a feature 

and it checks for a word’s existence in a sentence. Hence, 

each sentence represents a BoW. Each sentence can be 

referred to as a document and collection of all documents 

can be said as a corpus. Each document is converted to a 

vector representing words present in the document in a 

dictionary. Major drawback of BoW is that it does not 

preserve the order of the sentence but still it’s being 

applied in various classification tasks because of its 

simplicity. Words present in a document are assessed for 

its importance by TF-IDF. Less occurring words have a 

larger significance than more occurring words which 

have lower significance.  

Performance Evaluation Metrics 

To measure the performance of the classification 

model, four powerful metrics have been used. They are 

briefly described below. Notations used are TP: True 

Positives, TN: True Negatives, FP: False Positives, and 

FN: False Negatives (Juba and Le, 2019). 

1. Accuracy: Accuracy denotes ‘Right predictions’. 

It can be computed as the amount of correct predictions 

out of total predictions. Equation 3 provides formula to 

measure Accuracy. 

                                            

[𝑇𝑃 + 𝑇𝑁]
[𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁]⁄    

      (3) 

 

2. Precision: Precision denotes proportion of 

positive identification that was actually correct. Equation 

4 provides formula to measure Precision. 

                                            
[𝑇𝑃]

[𝑇𝑃 + 𝐹𝑃]⁄    

      (4) 

3. Recall: Recall represents the proportion of actual 

positives that were identified correctly. Equation 5 

provides formula to measure Recall. 

[𝑇𝑃]
[𝑇𝑃 + 𝐹𝑁]⁄            

      (5) 

4. F1 Measure: Integrates precision and recall for 

better performance measure. Is calculated by taking 

harmonic mean of the two. Equation 6 provides formula 

to measure F1 score. 

                  2 ×
[𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙]

[𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙]⁄   

      (6) 

Results and Discussion 

Preprocessing Results 

Six classifiers namely LR, GNB, MNB, RF, SVM and 

GB have been trained on the dataset for the classification 

objectives after required preprocessing and 

hyperparameter tuning have been applied, as mentioned 

in the previous section. Results for the preprocessing are 

provided in Table 5 and 6. 

After preprocessing, feature extraction has been done 

using Tf-IDF and BoW techniques as mentioned in the 

previous section. Below is an example of feature 

vectorization vocabulary created using TF-IDF technique.  

Table 5. Text preprocessing methods applied to the ‘Summary’ feature of the bug report 

Summary Show or allow to go to the component description……. 

Tokenization Show, or, allow, to, go, to, the, component, description …….. 

Lowercase show, or, allow, to, go, to, the, component, description…… 

Stop words Removal show, allow, go, component, description……. 

Lemmatisation/Stemming show, allow, go, component, description……. 
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{'show': 3523, 'allow': 180, 'go': 1565, 'compon': 757, 

'descript': 947, 'move': 2174, 'edit': 1104, 'bug': 581, 

'icon': 1696, 'normal': 2269…….} 

Hyperparameter Tuning (HT) of ML algorithms 

HT of ML algorithms has been done through grid 

search technique. Best parameter value has been retrieved 

and used as provided in Table 7. GridSearchCV provides 

an exhaustive search for an estimator through a parameter 

grid, providing the best value to the algorithms 

(Subramani et al., 2022). 

Performance Evaluation 

Objective of this research is to formulate best 

classification model for UI bugs by comparing different 

feature vectorization methods, sampling methods, and 

ML techniques. ML models are trained for respective 

combinations of sampling and vectorization methods. 

These models are optimized using grid search approach 

as mentioned in the previous section. Dataset was split in 

70:30 ratio meaning 70% data was applied in training the 

model and 30% in testing the model. Models are then 

evaluated depending on the metrics. Though, accuracy is 

considered one of the most important metrics for 

evaluation, but in certain cases high value of accuracy not 

always imply a good performing classifier. Therefore, it 

is necessary to evaluate the models on all the four metrics 

(Ramay et al., 2019). In this subsection, performance of 

each model is presented w.r.t its performance measures in 

Table 6. Final output after text preprocessing. 

Label Summary Length  Summary_after_clean length_after_clean 

Enhancement Show or allow to go 

to the component 

description…. 

86 show allow go component 

description moving com.. 

61 

Defect The icons normally 

displayed by testopia 

are predominantly... 

66 icon normally displayed 

testopia predominantly... 

53 

Defect Editing environments 

adding new item to 

top no... 

54 editing environment adding 

new item top node f... 

50 

Defect Environment property 

values are not saved 

41 environment property 

value saved 

32 

Defect Environment 

properties got all the 

same propertyid 

51 environment property got 

propertyid 

35 

Table 7. Hyperparameter Tuning through GridSearchCV. 

ML Model 
Hyperparameter values obtained through GridSearchCV 

TF-IDF BoW 

GNB var_smoothing =3.5e-05 var_smoothing=0.00012 

MNB alpha=0.3 alpha=1.0 

LR C=10 C=0.1 

SVM C=1, gamma=1, kernel=linear C=0.1, gamma=0.001,kernel=linear 

RF 

min_samples_split=8, 

n_estimators=100,  

 max_depth=2, max_features=sqrt, 

min_samples_leaf=3 

min_samples_split=8, 

n_estimators=100, 

max_depth= 80, max_features=2, 

min_samples_leaf=3 

GB 
learning_rate=0.1, max_depth=3, 

n_estimators=50 

learning_rate=0.1, max_depth=5, 

n_estimators=50 
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tabular format. Highest values obtained in each of the 

tables are highlighted with a pink colour.  Table 8 

provides the performance result of GNB. 

It can be derived that accuracy score with TF-IDF in 

all the cases of sampling, lies in between 0.50 to 0.70 and 

with BoW it ranges in between 0.53 to 0.73. F1 score 

obtained is at the lower side, mostly ranging in between 

0.57 to 0.70 with both the vectorization cases. It can be 

said by analyzing the performance that the model is 

underfitting the training data to some extent. Table 9 

highlights the performance of MNB. 

Performance of MNB on the dataset is better when 

compared to GNB. Accuracy ranges in between 0.75 to 

0.80 in most of the cases of TF-IDF and BoW and F1 

score is mostly higher than 0.70 with most of the 

sampling techniques. Table 10 provides the performance 

results of LR. Results highlight that most of the sampling 

methods are seen to perform well with LR. Where, BoW 

vectorization technique is seen to have better overall 

performance compared to TF-IDF with accuracy mostly 

ranging above 0.80 and F1 mostly higher than 0.75. 

Table 11 highlights performance of the SVM 

classifier. Oversampling techniques is seen to perform 

well with TF-IDF technique. Accuracy ranges above 0.85 

and F1 score above 0.83 in most of the cases. 

Table 12 and Table 13 provides performance result for 

RF and GB algorithms. RF results are mostly similar to 

SVM in most of the cases with accuracy and F1 score 

generally above 0.80. Performance of GB is also good 

with F1 score ranging in between 0.75 to 0.82. 

Analyzing the performance of each classifier w.r.t 

feature vectorization and sampling techniques from the 

Tables [8-13], final result of each classifier can be 

presented as in Table 14 and Figure 3 provides 

visualisation for the same. 

 

Table 8. Performance result of GNB. 

 

Sampling Type 

 

Sampling Methods 
Accuracy Precision Recall F1 Score 

T
F
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ID
F
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W
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F

-

ID
F
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o
W

 

T
F

-

ID
F

 

B
o
W

 

OverSampling 

RandomOverSampler 0.67 0.62 0.77 0.75 0.67 0.61 0.75 0.67 

ADASYN 0.68 0.73 0.88 0.76 0.77 0.71 0.82 0.73 

Borderline SMOTE 0.68 0.72 0.76 0.76 0.65 0.69 0.70 0.72 

SMOTE 0.68 0.73 0.76 0.74 0.66 0.71 0.70 0.72 

SMOTE-ENN 0.50 0.54 0.79 0.76 0.52 0.55 0.62 0.63 

SMOTE-SVM 0.66 0.72 0.77 0.75 0.67 0.71 0.71 0.73 

UnderSampling 

RandomUnderSampler 0.53 0.53 0.79 0.77 0.54 0.54 0.64 0.63 

AllKNN 0.65 0.65 0.77 0.75 0.50 0.59 0.57 0.66 

NearMiss 0.70 0.70 0.80 0.74 0.69 0.48 0.74 0.58 

Tomek’s Links 0.66 0.66 0.88 0.76 0.67 0.61 0.76 0.67 

Table 9. Performance result of MNB. 

 

Sampling Type 

 

Sampling Methods 
Accuracy Precision Recall F1 Score 

T
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F
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F
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ID
F

 

B
o
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OverSampling 

RandomOverSampler 0.78 0.74 0.82 0.81 0.77 0.73 0.79 0.76 

ADASYN 0.78 0.80 0.69 0.80 0.82 0.78 0.74 0.78 

Borderline SMOTE 0.77 0.80 0.83 0.81 0.77 0.78 0.79 0.79 

SMOTE 0.79 0.81 0.83 0.81 0.78 0.79 0.80 0.79 

SMOTE-ENN 0.25 0.36 0.82 0.80 0.30 0.39 0.43 0.52 

SMOTE-SVM 0.71 0.85 0.77 0.78 0.73 0.81 0.74 0.79 

UnderSampling 

RandomUnderSampler 0.74 0.69 0.82 0.82 0.73 0.70 0.77 0.75 

AllKNN 0.85 0.77 0.82 0.82 0.82 0.77 0.82 0.79 

NearMiss 0.76 0.51 0.80 0.79 0.75 0.54 0.77 0.64 

Tomek’s Links 0.86 0.82 0.85 0.82 0.83 0.81 0.83 0.81 
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Table 10. Performance result of LR. 

 

Sampling Type 

 

Sampling Methods Accuracy Precision Recall F1 Score 
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OverSampling 

RandomOverSampler 0.82 0.81 0.82 0.81 0.80 0.78 0.80 0.79 

ADASYN 0.82 0.80 0.83 0.79 0.81 0.78 0.81 0.78 

Borderline SMOTE 0.82 0.82 0.83 0.80 0.81 0.80 0.81 0.80 

SMOTE 0.81 0.82 0.82 0.80 0.80 0.80 0.80 0.80 

SMOTE-ENN 0.27 0.30 0.82 0.82 0.32 0.35 0.46 0.49 

SMOTE-SVM 0.84 0.81 0.83 0.79 0.82 0.79 0.82 0.79 

UnderSampling 

RandomUnderSampler 0.73 0.70 0.82 0.81 0.73 0.70 0.77 0.75 

AllKNN 0.84 0.83 0.83 0.81 0.82 0.81 0.82 0.81 

NearMiss 0.70 0.42 0.80 0.77 0.70 0.44 0.74 0.56 

Tomek’s Links 0.86 0.87 0.82 0.82 0.83 0.82 0.82 0.82 

Table 11. Performance result of SVM. 

 

Sampling Type 

 

Sampling Methods 
Accuracy Precision Recall F1 Score 
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OverSampling 

RandomOverSampler 0.86 0.85 0.83 0.83 0.83 0.83 0.83 0.83 

ADASYN 0.87 0.86 0.83 0.80 0.83 0.82 0.83 0.80 

Borderline SMOTE 0.87 0.85 0.86 0.79 0.84 0.81 0.84 0.79 

SMOTE 0.88 0.84 0.86 0.79 0.85 0.80 0.85 0.79 

SMOTE-ENN 0.41 0.33 0.82 0.78 0.45 0.37 0.58 0.50 

SMOTE-SVM 0.87 0.86 0.84 0.82 0.33 0.82 0.47 0.82 

UnderSampling 

RandomUnderSampler 0.76 0.15 0.82 0.83 0.76 0.20 0.78 0.32 

AllKNN 0.86 0.85 0.83 0.68 0.83 0.80 0.83 0.73 

NearMiss 0.67 0.76 0.81 0.72 0.68 0.71 0.73 0.71 

Tomek’s Links 0.87 0.85 0.85 0.68 0.83 0.80 0.83 0.73 

 

Table 12. Performance result of RF. 

 

Sampling 

Type 

 

Sampling Methods 
Accuracy Precision Recall F1 Score 
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OverSamp

ling 

RandomOverSampler 0.86 0.48 0.83 0.83 0.83 0.83 0.83 0.83 

ADASYN 0.86 0.64 0.82 0.76 0.83 0.50 0.82 0.60 

Borderline SMOTE 0.86 0.66 0.82 0.73 0.82 0.65 0.82 0.68 

SMOTE 0.87 0.72 0.84 0.74 0.83 0.69 0.83 0.71 

SMOTE-ENN 0.45 0.15 0.82 0.03 0.49 0.20 0.61 0.05 

SMOTE-SVM 0.87 0.72 0.83 0.82 0.83 0.82 0.83 0.82 

UnderSam

pling 

RandomUnderSampler 0.58 0.41 0.81 0.79 0.59 0.43 0.68 0.55 

AllKNN 0.84 0.86 0.67 0.69 0.80 0.80 0.72 0.74 

NearMiss 0.56 0.52 0.77 0.74 0.57 0.53 0.65 0.61 

Tomek’s Links 0.86 0.84 0.69 0.67 0.80 0.80 0.74 0.72 
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Table 13. Performance result of GB 

 

Sampling Type 

 

Sampling Methods Accuracy Precision Recall F1 Score 
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OverSampling 

RandomOverSampler 0.81 0.76 0.82 0.81 0.79 0.73 0.80 0.76 

ADASYN 0.86 0.74 0.82 0.76 0.82 0.74 0.82 0.75 

Borderline SMOTE 0.86 0.77 0.82 0.78 0.83 0.75 0.82 0.76 

SMOTE 0.84 0.78 0.80 0.79 0.81 0.76 0.80 0.77 

SMOTE-ENN 0.38 0.30 0.82 0.82 0.79 0.35 0.80 0.49 

SMOTE-SVM 0.85 0.79 0.81 0.80 0.82 0.76 0.81 0.77 

UnderSampling 

RandomUnderSampler 0.82 0.67 0.81 0.82 0.79 0.68 0.79 0.74 

AllKNN 0.87 0.86 0.84 0.80 0.82 0.81 0.82 0.80 

NearMiss 0.53 0.47 0.79 0.75 0.54 0.50 0.64 0.60 

Tomek’s Links 0.85 0.85 0.86 0.83 0.80 0.80 0.82 0.81 

Table 14. Best combination of techniques for each ML model with highest performance measures. 

Best Performing combination  of classifier 

<Model,  Vectorization , Sampling> 
Accuracy Precision Recall F1 

<GNB, TF-IDF, ADASYN> 0.68 0.88 0.77 0.82 

<MNB, TF-IDF, Tomek’s Links> 0.86 0.85 0.83 0.83 

<LR, BoW, Tomek’s Links> 0.87 0.82 0.82 0.82 

<SVM, TF-IDF, SMOTE> 0.88 0.86 0.85 0.85 

<RF, TF-IDF, SMOTE> 0.87 0.84 0.83 0.83 

<GB, TF-IDF, AllKNN> 0.87 0.84 0.82 0.82 
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Figure 3. Comparison of ML models with highest performance measure. 
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So, the best classification model can thus be derived 

from these analysis. Analyzing Table 14 and Figure 3, it 

can be deduced that SVM classifier using TF-IDF and 

SMOTE outperformed all the classifiers, w.r.t all the 

combinations of sampling and vectorization techniques 

by achieving 0.88 Accuracy, 0.86 Precision, 0.85 Recall 

and 0.85 F1 score. Closely followed by RF classifier, 

when applied with TF-IDF and SMOTE, provides 0.87 

Accuracy score, 0.84 Precision score, 0.83 Recall score 

and 0.83 F1 score. 

Conclusion 

In this work, we have considered comparing ML 

algorithms in scenarios of two different vectorization 

techniques and different oversampling and 

undersampling data balancing techniques. Two important 

conclusions can be derived from the results. Hypertuned 

SVC and RF with TF-IDF and SMOTE techniques 

almost provided the highest performance measures, with 

SVM having slightly better overall metrics score. Based 

on the project feasibility related to run time complexity 

and resource constraints, a decision to choose between 

the two can be taken. Second result can be derived that 

‘TF-IDF’ provided better results in most of the cases as 

compared to BoW in this problem domain. This research 

work can help in different ways like textual analysis of 

bug reports through bug classification, pattern analysis, 

anomaly analysis and many more. This can be a starting 

step towards automated bug repairing, test suite 

management and providing continuous improvement to 

the product. 

In future, this work can be extended to analyze the 

effect of data complexity on the functioning of sampling 

techniques. More ensemble methods can be applied and 

results can be compared. Also, more defect repositories 

can be used with different features. Word embeddings 

and deep learning techniques can be explored for better 

performance. 
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