

*Corresponding Author: computerappl13@gmail.com

56

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005 Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

 User Interface Bug Classification Model Using ML and NLP Techniques: A Comparative

Performance Analysis of ML Models

 Sara Khan* and Saurabh Pal

Department of Computer Applications, Veer Bahadur Singh Purvanchal University, Jaunpur- 222003, India
E-mail/Orcid Id:

SK, computerappl13@gmail.com, https://orcid.org/0000-0002-2614-3929;

SP, drsaurabhpal@yahoo.co.in, https://orcid.org/0000-0001-9545-7481

Introduction

User Interface Testing, generally abbreviated as ‘UI

Testing’, deals with structurally and functionally testing

user interface components. Validation is needed for

cross-browser checks, working of dynamic contents, anti-

aliasing checks, in-built support plugins and many more

(Aho and Vos, 2018). Automating these activities

involves thousands of test cases to be created and

maintained. Maximum time spent by testers is in

analyzing failures of any of these test cases. Analysis of

failures starts with bug report analysis and then moves

towards fixing bugs and simultaneously towards fixing

broken tests (Fazzini et al., 2018). These reports are

generally written by stakeholders like end users,

developers, testers and project managers who are directly

or indirectly associated with project development and

maintenance. A typical bug report consists of issues

reported in a simple natural language focusing on an

unexpected behavior, change request and other

supplementary information like logs and screenshots

(Vito et al., 2024). One of the major causes of bug report

analysis is to find test case failure causes and is one of the

Article History:

Received: 14th May., 2024

Accepted: 23rd Oct., 2024

Published: 30th Nov., 2024

Abstract: Analyzing user interface (UI) bugs is an important step taken by testers and

developers to assess the usability of the software product. UI bug classification helps

in understanding the nature and cause of software failures. Manually classifying

thousands of bugs is an inefficient and tedious job for both testers and developers.

Objective of this research is to develop a classification model for the User Interface

(UI) related bugs using supervised Machine Learning (ML) algorithms and Natural

Language Processing (NLP) techniques. Also, to assess the effect of different

sampling and feature vectorization techniques on the performance of ML algorithms.

Classification is based upon ‘Summary’ feature of the bug report and utilizes six

classifiers i.e., Gaussian Naïve Bayes (GNB), Multinomial Naïve Bayes (MNB),

Logistic Regression (LR), Support Vector Machines (SVM), Random Forest (RF) and

Gradient Boosting (GB). Dataset obtained is vectored using two vectorization

techniques of NLP i.e., Bag of Words (BoW) and Term Frequency-Inverse Document

Frequency (TF-IDF). ML models are trained after vectorization and data balancing.

The models ' hyperparameter tuning (HT) has also been done using the grid search

approach to improve their efficacy. This work provides a comparative performance

analysis of ML techniques using Accuracy, Precision, Recall and F1 Score.

Performance results showed that a UI bug classification model can be built by training

a tuned SVM classifier using TF-IDF and SMOTE (Synthetic Minority Oversampling

Techniques). SVM classifier provided the highest performance measure with

Accuracy: 0.88, Precision: 0.86, Recall: 0.85 and F1: 0.85. Result also inferred that

the performance of ML algorithms with TF-IDF is better than BoW in most cases.

This work provides classification of bugs that are related to only the user interface.

Also, the effect of two different feature extraction techniques and sampling

techniques on algorithms were analyzed, adding novelty to the research work.

Keywords:

Bug classification, feature

extraction, hyperparameter

tuning, imbalance

classification, UI

How to cite this Article:

Sara Khan and Saurabh Pal (2024). User

Interface Bug Classification Model Using ML

and NLP Techniques: A Comparative

Performance Analysis of ML Models.

International Journal of Experimental

Research and Review, 45, 56-69.

DOI:

https://doi.org/10.52756/ijerr.2024.v45spl.005

https://doi.org/10.52756/ijerr.2024.v45spl.005
https://crossmark.crossref.org/dialog/?doi=10.52756/ijerr.2024.v45spl.005&domain=iaph.in

Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005
57

important responsibilities of a developer. Bug reports are

useful in reproducing failures to avoid similar faults in

the future (Kang et al., 2024). Bug reports also help

highlight the low test coverage area. Since every UI page

has hundreds of UI elements, this bug report helps gather

information on expected and unexpected issues. Bugs

represent uncertainty in the area and hence become the

classification area (Colavito et al., 2024). This research

work classifies the bugs into two classes i.e., ‘Defect’ and

‘Enhancement’, based upon the ‘Summary’ feature of the

bug report, which is a textual feature. UI bug

classification can be represented as equation 1.

UIB = {UIB1, UIB2…., UIBn} and UIBx € {0, 1} (1)

Where, UIB represents a set of UI labeled bugs

n represents total retrieved bugs and, x represents an

individual bug.

 Label 0 represents ‘Defect’ and 1 for ‘Enhancement’

(Antoniol et al., 2008). Classifying the bugs into ‘Defect’

and ‘Enhancement’ helps the developer and tester count

the defects for quality assurance, identify the area of

regression testing, initiate a change management cycle,

create new test cases for updates, etc. Bug classification

is one of the applications in the field of ‘Text

Classification’ (Meng et al., 2022). Bug report is a

combination of structured as well as unstructured

information. Structured information includes severity,

priority, component, etc. Unstructured information

describes or summarizes the bug (Kukkar et al., 2018).

‘Summary’ feature of the bug helps in understanding the

problem and thereafter helps in reproducing the bug if

required. From the developer's perspective, issue

description, bug reproducing steps and stack traces are

the three most important features of the bug report that

help in debugging the bug, while other features in the bug

report directly impact the bug resolution time (Soltani et

al., 2020). Hence, to work towards this problem

statement, the research objectives of this study can be

stated as below-

To generate a ML model for automatic classification

of the bugs from UI bug repositories into Defect and

Enhancement class.

To compare the performance of classifiers w.r.t

feature extraction techniques and sampling techniques on

the imbalance dataset.

To achieve the best-performing classifier for UI bug

classification.

Related work

Different approaches have been studied and proposed

in the past related to bug categorization, localization,

assessment and classification. Since manual classification

is time-consuming and error-prone, many approaches

have tackled the bug classification problem (Iqbal et al.,

2020). This section discusses significant studies related to

automated bug analysis and classification. Authors

performed bug classification focusing on cloud

computing applications using ML and NLP techniques

(Tabassum et al., 2023). Four classifiers were evaluated

and compared i.e., MNB, LR, Decision Tree (DT) and

RF. For vectorization, TF-IDF and Word2Vec extraction

techniques were used. Results showed that RF attained

the highest testing accuracy of 91.73% and 100% training

accuracy. Another study by (Bhandari and Rodriguez-

Perez,2023) focused on assessing the performance of

various NLP and ML techniques in the classification of

intrinsic bugs. They utilized two embedding techniques

seBERT (Bidirectional Encoder Representations from

Transformers) and TF-IDF, on SVM, LR, DT, RF and K-

Nearest Neighbour (KNN) classifiers. Results showed

that DT combined with TF-IDF achieved a F1 score of

78% on bug titles. Research work by (Alsaedi et al.,

2023) proposes a classification model that can predict the

nature of the bug report using ensemble ML techniques.

Results highlighted that the proposed approach attained

96.72% accuracy with text augmentation. Authors have

provided an approach for using unstructured bilingual

reports (Köksal and Tekinerdogan, 2022). Research

studied the effect on performance of ML algorithms due

to preprocessing, BoW size, K-fold validation and word

embeddings. No major difference was seen in the

performance results of algorithms related to

preprocessing and BoW size of 265. 10-fold cross-

validation showed better results in SVM using a linear

kernel. Word embedding ‘FastText’ with RF gave

71.19% of F1- measure. Another paper tried to solve the

problem of software bug prediction using ML approach

(Hammouri et al., 2018). The author’s approach was

based on historical data faults, essential metrics, and

different software computing techniques. NB, DT and

Artificial Neural Network (ANN) classifiers have been

used to perform the task. On the three dataset used, DT

outperforms the other two techniques with 97.10%

accuracy, 99.60% precision measure and 100% recall

measure. Authors tried to automate the Orthogonal

Defect Classification (ODC) attributes into classes

internal, external 1 and external 2 using KNN, RF,

Nearest Centroid (NC), NB, SVM and Recurrent Neural

Network (RNN) (Lopes et al., 2020). Results showed that

there are certain difficulties in automating the process,

which can be improved by using bigger datasets. Several

authors have directly related the analysis of bugs to fault

or defect prediction approaches. The ML-

Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005
58

driven bug classification approach has been applied in

several ways to predict software defects. In

(Alqahtani, 2023), security bug classification has been

done using the ‘FastText’ classifier. Results highlighted

Table 1. Overview of the related work.

Reference Application of

classification

ML techniques

applied

Classification labels Result

Tabassum et

al., 2023

Classification of

Cloud computing

applications

MNB, DT, LR,

RF

Crash, Enhancement,

Performance, Resource

Usage, Security and

Compile

RF achieved the

highest test

accuracy of

91.73%.

Bhandari and

Rodríguez-

Pérez, 2023

Classification in

Version Control

Systems

SVM, LR, DT,

RF and KNN

Intrinsic,

Non-Intrinsic Bugs/

Extrinsic Bugs

TF-IDF with DT

achieved highest

F1 Score of 78%.

Alsaedi et al.,

2023

Classification of

Mozilla and Eclipse

bug repositories

RF, MNB, SVC,

LR, Proposed

ensemble model

(Hard voting)

and ensemble

model(Soft

voting)

Graphical User Interface

(GUI), Network or

Security, Program

Anomaly,

Configuration, Test

Code and Performance

Proposed model

attains accuracy

of 96.72% with

text

augmentation.

Köksal and

Tekinerdogan,

2022

Classification of

unstructured bilingual

bug report

NB, SVM,

KNN, LR, DT,

RF

Assignment/Initializatio

n, External Interface,

Internal Interface,

Others

FastText with RF

gave highest F1

measure of

71.19%.

Hammouri et

al., 2018

Classification of data

faults, essential

metrics and soft

computing techniques

NB, DT, ANN Fault Categories A(0-4),

B(5-9), C(10-14), D(15-

19) and E(more than 20)

DT achieves

highest accuracy

with 97.10%

accuracy,

99.60% precision

measure and

100% recall

measure.

Lopes et al.,

2020

Classification of

ODC attributes

NB, SVM, NC,

KNN, RF, RNN

Internal, External 1,

External 2

Results highlight

the challenges of

automating ODC

attributes and

opportunity to

improve with

larger datasets.

Alqahtani,

2023

Classification of

Security bug reports

SVC, RF, LR,

GNB, KNN,

Multi-Layer

Perceptron

(MLP)

Security and Non-

security bugs

Fasttext classifier

achieves F1

score of 0.81

Goseva-

Popstojanovaa

nd Tyo, 2018

Classification on

NASA datasets

Supervised:

Bayesian

network, KNN,

NB, MNB, RF,

SVM

Unsupervised:

Cosine

similarity

distance

measure

Supervised: Security and

Non-Security bugs

Unsupervised: Non-

Security bugs

Both can be used

for classification.

Supervised

learning

performed

slightly better

Hirsch, and

Hofer, 2022

Classification on bug

reports of GitHub

projects

MNB, SVM,

RF, LR,

ensemble

classifiers

Concurrency, Memory

and Resources, Other,

Semantic

Ensemble

classifier

performance was

better than single

classifier alone

Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005
59

that 0.81 F1 score was achieved in identifying security

bug reports and 0.61 in cross project validation. Authors

of paper (Goseva-Popstojanova and Tyo, 2018)

performed automated bug classification related to

security and non-security issues, using both supervised

and unsupervised algorithms. Results showed that

supervised algorithms performed better than

unsupervised algorithms. In (Hirsch and Hofer, 2022), a

classification model has been proposed based on

ensemble methods to predict the fault category.

Comparison of basic ML algorithms with ensemble

methods has been done. Result obtained is 0.69% macro

average F1 score. It was also applied to inter projects for

validation.

Studying and analyzing the available literature, it was

found that classification specific to UI issues has been

rarely done. Classifying these issues or bugs can help in

risk profiling and can help in improving risk coverage in

UI test suites, which will further help in organizing the

test activities. Table 1 provides a short summary of the

related work highlighting application of the classification

being done, ML techniques applied, labels of the

classification and major result obtained. Rest of the paper

is structured as follows. Section II elaborates on materials

and methods, section III describes results and discussion

and section IV provides the conclusion.

Table 2. Components for which UI issues have been retrieved from the bug repository.

Sl. No Components Tool name

1 Accessibility Tools DevTools

2 API Testopia, Mozilla

3 DOM DevTools

4 Frontend Web Extensions

5 Graphic Design Mozilla Foundation Communications

6 Graphics Core

7 Layout Core

8 Pages & Content Mozilla

9 Panning & Zooming Core

10 Picture-in-Picture Toolkit

11 Shared Components DevTools

12 Tabs Fenix

13 Theme & Visual Design Firefox for iOS

14 UI Taskcluster

15 UI Design Seamonkey

16 User Interface Bugzilla, Testopia, Mozilla

17 Widget Core

Figure 1. Methodology of the study.

Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005
60

Materials and Methods

Methodology

Figure 1 provides high level design of the system

model. It comprises of six phases: 1. Data Retrieval and

Analysis 2. Data Pre-processing 3. Vectorization 4. Class

Balancing 5. ML classification and 6. Performance

assessment. In the first phase, dataset has been retrieved

from the bug repository and analyzed. Further in the

second phase, it is cleaned for null and incomplete values

using NLP text pre-processing techniques. Third phase is

about selecting the relevant feature and further

transforming it into a model processing format using NLP

vectorization techniques. In the fourth phase class

balancing techniques are applied to remove imbalance in

the dataset. Dataset is further split in 70:30 mode of train-

test split for training and validating the ML model. In the

fifth phase, optimization and training of the classifiers

have been done on the feature vectors. Finally, the model

performance is evaluated and compared in the sixth

phase. Detail description about each phase is provided

below-

About the dataset

Gathering quality data is considered the most crucial

step in building a classification model that can have a

significant impact on the performance of ML models.

Therefore, it was assured that data collected is of high

quality and free from irrelevant information. Dataset has

been retrieved from the Eclipse Bugzilla repository

(Ahmed et al., 2021). It is a very powerful web based

system used in maintaining thousands of bug reports. It

provides an efficient way to track the bugs. Around 10K

issues were filtered on the basis of different UI

components. Table 2 provides components for which

issues have been extracted. And, Table 3 provides bug

report attributes.

Dataset has two classes i.e., ‘Defect’ and

‘Enhancement’ as mentioned in the previous section.

After applying data cleaning techniques like removal of

null and incomplete values. Distribution of these two

classes that was obtained is represented in Figure 2.

Around 10K issues were initially extracted, out of which

around 200 issues were dropped from the dataset after

cleaning due to inappropriate attribute values. It can be

seen that the dataset obtained is highly imbalanced. To

balance the dataset, different sampling techniques have

been applied which are mentioned in the next section.

Figure 2. Distribution of classes.

A sample of the UI bug reports from the dataset

6807

3010

0

2000

4000

6000

8000

0: Defect 1: Enhancement

Class/Label

Frequency

Table 3. Attributes of the bug report.

Sl. No Attribute Name Description

1 Bug ID Unique bug id number to track throughout the cycle

2 Type Classification of bugs as ‘Defect’ or ‘Enhancement’

3 Summary Detail description of issue

4 Product Product name associated

5 Component UI component associated

6 Assignee Assignee name

7 Status New, Assigned, Unconfirmed, Closed

8 Severity Normal/Minor/Major

9 Priority P1/P2/P3

10 Version Version number of the product

Table 4. Bug sample from the dataset representing Defect and Enhancement.

Type Summary

Defect The icons normally displayed by Testopia are predominantly absent

Defect Environment property values are not saved

Enhancement Show colour contrast ratio between icon image and its background

Enhancement Graphics data gathering from about: support is slow

Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005
61

representing both the classes is provided in Table 4.

Classification using ML

Classification is the process of assigning a class to the

object by prediction. Each class is represented by some

features that are similar in the behavior or in pattern.

These features contain adequate information that can

distinguish one class from another. Following are the

classifiers applied in this research work.

Logistic Regression Classifier

Generally abbreviated as ‘LR’. LR calculates the

probability of an object to be assigned to a particular

class. An estimated probability greater than 50%

indicates that an instance belongs to the positive class

which is labeled as 1 and 0 otherwise. A weighted sum of

the input features along with the bias term is calculated

by the model and the corresponding output is further

provided (Starbuck, 2023).

Support Vector Machines classifier

Generally abbreviated as ‘SVM’. Objective of the

SVM classifier is to find the hyperplane which tries to

maximize the margin between the classes in training data.

Advantage of SVM is that it utilizes very little memory

and is good with high dimensional complex data. They

are generally affected by points which are near the

margin of the hyperplane. Integrating SVM with different

kernel methods makes the classifier adaptable to different

types of data (Steidl, 2015).

Naïve Bayes classifier

Based on the Bayes’ theorem of probability, this

algorithm produces the probabilities for every case. It

predicts the highest probability outcome. Assumption is

based on the fact that features are independent. In case of

text classification, a text vector is constructed of

corresponding document x, depending on a given

dictionary, wherein, n represents total elements in the

dictionary set DS and total occurrences in document x (Li

et al., 2022).

DS= {ds1, ds2,............, dsn}

X= {x1, x2,..............,xn}

Objective is to find the maximum probability that can

solve equation ‘2’ given below.

𝑃(𝑦𝑗│𝑋) = [𝑃(𝑦𝑗)𝑃(𝑋│𝑦𝑗)]/𝑃(𝑋) (2)

Any new data set X when provided, there will be

calculation for all P (yj|X), and the greatest probability

value will be the classification result of the document X

which will belong to classification class y. In this

research work, GNB and its variation MNB classifiers

have been used.

Random Forest

Generally abbreviated as ‘RF’. This is one of the most

well accepted ensemble methods which are based on the

bagging methods. It is a technique that ensembles

decision trees together. Voting methods based on the

output of the results of individual trees determine the

classification results. RF brings randomness when

growing the trees. As in the case of normal decision trees,

which finds best feature for splitting the node. RF finds

the best feature from the random set of features. This

randomness makes the tree diverse with lower variance,

making it a better model (Paul et al., 2018).

Gradient Boosting

Generally abbreviated as ‘GB’. This is a boosting

algorithm that works by adding predictors sequentially to

an ensemble. New predictors correct the predecessor. At

every stage regression trees try to fit on the log loss made

by the previous predictor (Chen and Guestrin, 2016).

XGBoost python library is used that provide optimized

implementation of Gradient Boosting classifiers.

Extremely fast, scalable and portable.

Class Balancing Techniques

Classification results can be affected if the dataset is

skewed or imbalanced. Classification with an imbalanced

dataset will result in misclassification with gradient being

less informative. Classes in a dataset that contribute

towards a larger proportion of the dataset are called

“Majority classes”. And the one that is smaller in

proportion is termed as “Minority classes”. There is

mainly three categories of imbalance (degree of

imbalance) i.e., Mild, Moderate and Extreme. Proportion

of minority class is around 20-40% of the dataset in case

of the mild, for moderate it’s around 1 to 20% and for

extreme this range to less than 1%. There are various

important techniques that have been considered for class

imbalancing in this research work. Oversampling

techniques balances the minority classes by increasing its

frequency whereas, undersampling balances the data by

lowering the majority class. In the oversampling

category, Synthetic Minority Oversampling Techniques

(SMOTE), Edited Nearest Neighbour based SMOTE

(SMOTE-ENN), SMOTE-Borderline, SMOTE-SVM,

RandomOverSampler and Adaptive Synthetic

(ADASYN) has been used. In undersampling techniques,

RandomUnderSampler, AllKNN, NearMiss and Tomek’s

Links have been considered. Details of these techniques

can be studied (Hasib et al., 2020).

Hyperparameter Tuning (HT)

HT and optimization is one of the important steps for

fine tuning the behavior of ML algorithms. It directly

impacts the performance of algorithms. It refers to

finding out the set of hyperparameter values that will

provide the best performance measures on the data in a

Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005
62

reasonable amount of time. It is generally determined by

the user before the model is trained. Three kinds of

hyperparameter optimization methods are generally used

i.e., grid search, manual search and random search. In this

research, grid search has been used. As the name itself

suggests, in grid search the user predetermines a grid of

hyperparameters and the model is trained based on each

possible combination of the grid (Ghawi and Pfeffer,

2019).

Text preprocessing

Data cleaning is an integral part of any NLP problem.

It is necessary before one could represent the data in a

suitable format. Steps of text preprocessing could depend

upon the requirement of the problem statement (Hickman

et al., 2020). Important preprocessing steps taken in this

work are stop words removal, conversion to lowercase,

tokenization, stemming and lemmatization.

Stop words removal: Removing the common words

that act as a noise to the statement like ‘a’, ’the’ etc.

Tokenization: Converting strings to lists of words.

Stemming: Words that imply the same meaning are

identified as the same. This is achieved by removing ‘--

ing’,’--ly’ etc.

Lemmatization: Converting to the base or root word.

For eg. ‘feet’ becomes ‘foot’.

Extracting text features

Features need to be extracted from the text data as it’s

not in the required form that can be used for ML

techniques. Two important methods which are used in

this research for feature extraction are BoW and TF-IDF.

In the BoW model, each word is considered as a feature

and it checks for a word’s existence in a sentence. Hence,

each sentence represents a BoW. Each sentence can be

referred to as a document and collection of all documents

can be said as a corpus. Each document is converted to a

vector representing words present in the document in a

dictionary. Major drawback of BoW is that it does not

preserve the order of the sentence but still it’s being

applied in various classification tasks because of its

simplicity. Words present in a document are assessed for

its importance by TF-IDF. Less occurring words have a

larger significance than more occurring words which

have lower significance.

Performance Evaluation Metrics

To measure the performance of the classification

model, four powerful metrics have been used. They are

briefly described below. Notations used are TP: True

Positives, TN: True Negatives, FP: False Positives, and

FN: False Negatives (Juba and Le, 2019).

1. Accuracy: Accuracy denotes ‘Right predictions’.

It can be computed as the amount of correct predictions

out of total predictions. Equation 3 provides formula to

measure Accuracy.

[𝑇𝑃 + 𝑇𝑁]
[𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁]⁄

 (3)

2. Precision: Precision denotes proportion of

positive identification that was actually correct. Equation

4 provides formula to measure Precision.

[𝑇𝑃]

[𝑇𝑃 + 𝐹𝑃]⁄

 (4)

3. Recall: Recall represents the proportion of actual

positives that were identified correctly. Equation 5

provides formula to measure Recall.

[𝑇𝑃]
[𝑇𝑃 + 𝐹𝑁]⁄

 (5)

4. F1 Measure: Integrates precision and recall for

better performance measure. Is calculated by taking

harmonic mean of the two. Equation 6 provides formula

to measure F1 score.

 2 ×
[𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙]

[𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙]⁄

 (6)

Results and Discussion

Preprocessing Results

Six classifiers namely LR, GNB, MNB, RF, SVM and

GB have been trained on the dataset for the classification

objectives after required preprocessing and

hyperparameter tuning have been applied, as mentioned

in the previous section. Results for the preprocessing are

provided in Table 5 and 6.

After preprocessing, feature extraction has been done

using Tf-IDF and BoW techniques as mentioned in the

previous section. Below is an example of feature

vectorization vocabulary created using TF-IDF technique.

Table 5. Text preprocessing methods applied to the ‘Summary’ feature of the bug report

Summary Show or allow to go to the component description…….

Tokenization Show, or, allow, to, go, to, the, component, description ……..

Lowercase show, or, allow, to, go, to, the, component, description……

Stop words Removal show, allow, go, component, description…….

Lemmatisation/Stemming show, allow, go, component, description…….

Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005
63

{'show': 3523, 'allow': 180, 'go': 1565, 'compon': 757,

'descript': 947, 'move': 2174, 'edit': 1104, 'bug': 581,

'icon': 1696, 'normal': 2269…….}

Hyperparameter Tuning (HT) of ML algorithms

HT of ML algorithms has been done through grid

search technique. Best parameter value has been retrieved

and used as provided in Table 7. GridSearchCV provides

an exhaustive search for an estimator through a parameter

grid, providing the best value to the algorithms

(Subramani et al., 2022).

Performance Evaluation

Objective of this research is to formulate best

classification model for UI bugs by comparing different

feature vectorization methods, sampling methods, and

ML techniques. ML models are trained for respective

combinations of sampling and vectorization methods.

These models are optimized using grid search approach

as mentioned in the previous section. Dataset was split in

70:30 ratio meaning 70% data was applied in training the

model and 30% in testing the model. Models are then

evaluated depending on the metrics. Though, accuracy is

considered one of the most important metrics for

evaluation, but in certain cases high value of accuracy not

always imply a good performing classifier. Therefore, it

is necessary to evaluate the models on all the four metrics

(Ramay et al., 2019). In this subsection, performance of

each model is presented w.r.t its performance measures in

Table 6. Final output after text preprocessing.

Label Summary Length Summary_after_clean length_after_clean

Enhancement Show or allow to go

to the component

description….

86 show allow go component

description moving com..

61

Defect The icons normally

displayed by testopia

are predominantly...

66 icon normally displayed

testopia predominantly...

53

Defect Editing environments

adding new item to

top no...

54 editing environment adding

new item top node f...

50

Defect Environment property

values are not saved

41 environment property

value saved

32

Defect Environment

properties got all the

same propertyid

51 environment property got

propertyid

35

Table 7. Hyperparameter Tuning through GridSearchCV.

ML Model
Hyperparameter values obtained through GridSearchCV

TF-IDF BoW

GNB var_smoothing =3.5e-05 var_smoothing=0.00012

MNB alpha=0.3 alpha=1.0

LR C=10 C=0.1

SVM C=1, gamma=1, kernel=linear C=0.1, gamma=0.001,kernel=linear

RF

min_samples_split=8,

n_estimators=100,

 max_depth=2, max_features=sqrt,

min_samples_leaf=3

min_samples_split=8,

n_estimators=100,

max_depth= 80, max_features=2,

min_samples_leaf=3

GB
learning_rate=0.1, max_depth=3,

n_estimators=50

learning_rate=0.1, max_depth=5,

n_estimators=50

Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005
64

tabular format. Highest values obtained in each of the

tables are highlighted with a pink colour. Table 8

provides the performance result of GNB.

It can be derived that accuracy score with TF-IDF in

all the cases of sampling, lies in between 0.50 to 0.70 and

with BoW it ranges in between 0.53 to 0.73. F1 score

obtained is at the lower side, mostly ranging in between

0.57 to 0.70 with both the vectorization cases. It can be

said by analyzing the performance that the model is

underfitting the training data to some extent. Table 9

highlights the performance of MNB.

Performance of MNB on the dataset is better when

compared to GNB. Accuracy ranges in between 0.75 to

0.80 in most of the cases of TF-IDF and BoW and F1

score is mostly higher than 0.70 with most of the

sampling techniques. Table 10 provides the performance

results of LR. Results highlight that most of the sampling

methods are seen to perform well with LR. Where, BoW

vectorization technique is seen to have better overall

performance compared to TF-IDF with accuracy mostly

ranging above 0.80 and F1 mostly higher than 0.75.

Table 11 highlights performance of the SVM

classifier. Oversampling techniques is seen to perform

well with TF-IDF technique. Accuracy ranges above 0.85

and F1 score above 0.83 in most of the cases.

Table 12 and Table 13 provides performance result for

RF and GB algorithms. RF results are mostly similar to

SVM in most of the cases with accuracy and F1 score

generally above 0.80. Performance of GB is also good

with F1 score ranging in between 0.75 to 0.82.

Analyzing the performance of each classifier w.r.t

feature vectorization and sampling techniques from the

Tables [8-13], final result of each classifier can be

presented as in Table 14 and Figure 3 provides

visualisation for the same.

Table 8. Performance result of GNB.

Sampling Type

Sampling Methods
Accuracy Precision Recall F1 Score

T
F

-

ID
F

B
o
W

T
F

-

ID
F

B
o
W

T
F

-

ID
F

B
o
W

T
F

-

ID
F

B
o
W

OverSampling

RandomOverSampler 0.67 0.62 0.77 0.75 0.67 0.61 0.75 0.67

ADASYN 0.68 0.73 0.88 0.76 0.77 0.71 0.82 0.73

Borderline SMOTE 0.68 0.72 0.76 0.76 0.65 0.69 0.70 0.72

SMOTE 0.68 0.73 0.76 0.74 0.66 0.71 0.70 0.72

SMOTE-ENN 0.50 0.54 0.79 0.76 0.52 0.55 0.62 0.63

SMOTE-SVM 0.66 0.72 0.77 0.75 0.67 0.71 0.71 0.73

UnderSampling

RandomUnderSampler 0.53 0.53 0.79 0.77 0.54 0.54 0.64 0.63

AllKNN 0.65 0.65 0.77 0.75 0.50 0.59 0.57 0.66

NearMiss 0.70 0.70 0.80 0.74 0.69 0.48 0.74 0.58

Tomek’s Links 0.66 0.66 0.88 0.76 0.67 0.61 0.76 0.67

Table 9. Performance result of MNB.

Sampling Type

Sampling Methods
Accuracy Precision Recall F1 Score

T
F

-

ID
F

B
o
W

T
F

-

ID
F

B
o
W

T
F

-

ID
F

B
o
W

T
F

-

ID
F

B
o
W

OverSampling

RandomOverSampler 0.78 0.74 0.82 0.81 0.77 0.73 0.79 0.76

ADASYN 0.78 0.80 0.69 0.80 0.82 0.78 0.74 0.78

Borderline SMOTE 0.77 0.80 0.83 0.81 0.77 0.78 0.79 0.79

SMOTE 0.79 0.81 0.83 0.81 0.78 0.79 0.80 0.79

SMOTE-ENN 0.25 0.36 0.82 0.80 0.30 0.39 0.43 0.52

SMOTE-SVM 0.71 0.85 0.77 0.78 0.73 0.81 0.74 0.79

UnderSampling

RandomUnderSampler 0.74 0.69 0.82 0.82 0.73 0.70 0.77 0.75

AllKNN 0.85 0.77 0.82 0.82 0.82 0.77 0.82 0.79

NearMiss 0.76 0.51 0.80 0.79 0.75 0.54 0.77 0.64

Tomek’s Links 0.86 0.82 0.85 0.82 0.83 0.81 0.83 0.81

Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005
65

… …

Table 10. Performance result of LR.

Sampling Type

Sampling Methods Accuracy Precision Recall F1 Score

T
F

-I
D

F

B
o

W

T
F

-I
D

F

B
o

W

T
F

-I
D

F

B
o

W

T
F

-I
D

F

B
o

W

OverSampling

RandomOverSampler 0.82 0.81 0.82 0.81 0.80 0.78 0.80 0.79

ADASYN 0.82 0.80 0.83 0.79 0.81 0.78 0.81 0.78

Borderline SMOTE 0.82 0.82 0.83 0.80 0.81 0.80 0.81 0.80

SMOTE 0.81 0.82 0.82 0.80 0.80 0.80 0.80 0.80

SMOTE-ENN 0.27 0.30 0.82 0.82 0.32 0.35 0.46 0.49

SMOTE-SVM 0.84 0.81 0.83 0.79 0.82 0.79 0.82 0.79

UnderSampling

RandomUnderSampler 0.73 0.70 0.82 0.81 0.73 0.70 0.77 0.75

AllKNN 0.84 0.83 0.83 0.81 0.82 0.81 0.82 0.81

NearMiss 0.70 0.42 0.80 0.77 0.70 0.44 0.74 0.56

Tomek’s Links 0.86 0.87 0.82 0.82 0.83 0.82 0.82 0.82

Table 11. Performance result of SVM.

Sampling Type

Sampling Methods
Accuracy Precision Recall F1 Score

T
F

-I
D

F

B
o
W

T
F

-I
D

F

B
o
W

T
F

-I
D

F

B
o
W

T
F

-I
D

F

B
o
W

OverSampling

RandomOverSampler 0.86 0.85 0.83 0.83 0.83 0.83 0.83 0.83

ADASYN 0.87 0.86 0.83 0.80 0.83 0.82 0.83 0.80

Borderline SMOTE 0.87 0.85 0.86 0.79 0.84 0.81 0.84 0.79

SMOTE 0.88 0.84 0.86 0.79 0.85 0.80 0.85 0.79

SMOTE-ENN 0.41 0.33 0.82 0.78 0.45 0.37 0.58 0.50

SMOTE-SVM 0.87 0.86 0.84 0.82 0.33 0.82 0.47 0.82

UnderSampling

RandomUnderSampler 0.76 0.15 0.82 0.83 0.76 0.20 0.78 0.32

AllKNN 0.86 0.85 0.83 0.68 0.83 0.80 0.83 0.73

NearMiss 0.67 0.76 0.81 0.72 0.68 0.71 0.73 0.71

Tomek’s Links 0.87 0.85 0.85 0.68 0.83 0.80 0.83 0.73

Table 12. Performance result of RF.

Sampling

Type

Sampling Methods
Accuracy Precision Recall F1 Score

T
F

-

ID
F

B
o
W

T
F

-

ID
F

B
o
W

T
F

-

ID
F

B
o
W

T
F

-

ID
F

B
o
W

OverSamp

ling

RandomOverSampler 0.86 0.48 0.83 0.83 0.83 0.83 0.83 0.83

ADASYN 0.86 0.64 0.82 0.76 0.83 0.50 0.82 0.60

Borderline SMOTE 0.86 0.66 0.82 0.73 0.82 0.65 0.82 0.68

SMOTE 0.87 0.72 0.84 0.74 0.83 0.69 0.83 0.71

SMOTE-ENN 0.45 0.15 0.82 0.03 0.49 0.20 0.61 0.05

SMOTE-SVM 0.87 0.72 0.83 0.82 0.83 0.82 0.83 0.82

UnderSam

pling

RandomUnderSampler 0.58 0.41 0.81 0.79 0.59 0.43 0.68 0.55

AllKNN 0.84 0.86 0.67 0.69 0.80 0.80 0.72 0.74

NearMiss 0.56 0.52 0.77 0.74 0.57 0.53 0.65 0.61

Tomek’s Links 0.86 0.84 0.69 0.67 0.80 0.80 0.74 0.72

Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005
66

…

Table 13. Performance result of GB

Sampling Type

Sampling Methods Accuracy Precision Recall F1 Score

T
F

-I
D

F

B
o

W

T
F

-I
D

F

B
o

W

T
F

-I
D

F

B
o

W

T
F

-I
D

F

B
o

W

OverSampling

RandomOverSampler 0.81 0.76 0.82 0.81 0.79 0.73 0.80 0.76

ADASYN 0.86 0.74 0.82 0.76 0.82 0.74 0.82 0.75

Borderline SMOTE 0.86 0.77 0.82 0.78 0.83 0.75 0.82 0.76

SMOTE 0.84 0.78 0.80 0.79 0.81 0.76 0.80 0.77

SMOTE-ENN 0.38 0.30 0.82 0.82 0.79 0.35 0.80 0.49

SMOTE-SVM 0.85 0.79 0.81 0.80 0.82 0.76 0.81 0.77

UnderSampling

RandomUnderSampler 0.82 0.67 0.81 0.82 0.79 0.68 0.79 0.74

AllKNN 0.87 0.86 0.84 0.80 0.82 0.81 0.82 0.80

NearMiss 0.53 0.47 0.79 0.75 0.54 0.50 0.64 0.60

Tomek’s Links 0.85 0.85 0.86 0.83 0.80 0.80 0.82 0.81

Table 14. Best combination of techniques for each ML model with highest performance measures.

Best Performing combination of classifier

<Model, Vectorization , Sampling>
Accuracy Precision Recall F1

<GNB, TF-IDF, ADASYN> 0.68 0.88 0.77 0.82

<MNB, TF-IDF, Tomek’s Links> 0.86 0.85 0.83 0.83

<LR, BoW, Tomek’s Links> 0.87 0.82 0.82 0.82

<SVM, TF-IDF, SMOTE> 0.88 0.86 0.85 0.85

<RF, TF-IDF, SMOTE> 0.87 0.84 0.83 0.83

<GB, TF-IDF, AllKNN> 0.87 0.84 0.82 0.82

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GNB MNB LR SVM RF GB

Comparison of ML models

Acc. Prec. Rec. F1

Figure 3. Comparison of ML models with highest performance measure.

Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005
67

So, the best classification model can thus be derived

from these analysis. Analyzing Table 14 and Figure 3, it

can be deduced that SVM classifier using TF-IDF and

SMOTE outperformed all the classifiers, w.r.t all the

combinations of sampling and vectorization techniques

by achieving 0.88 Accuracy, 0.86 Precision, 0.85 Recall

and 0.85 F1 score. Closely followed by RF classifier,

when applied with TF-IDF and SMOTE, provides 0.87

Accuracy score, 0.84 Precision score, 0.83 Recall score

and 0.83 F1 score.

Conclusion

In this work, we have considered comparing ML

algorithms in scenarios of two different vectorization

techniques and different oversampling and

undersampling data balancing techniques. Two important

conclusions can be derived from the results. Hypertuned

SVC and RF with TF-IDF and SMOTE techniques

almost provided the highest performance measures, with

SVM having slightly better overall metrics score. Based

on the project feasibility related to run time complexity

and resource constraints, a decision to choose between

the two can be taken. Second result can be derived that

‘TF-IDF’ provided better results in most of the cases as

compared to BoW in this problem domain. This research

work can help in different ways like textual analysis of

bug reports through bug classification, pattern analysis,

anomaly analysis and many more. This can be a starting

step towards automated bug repairing, test suite

management and providing continuous improvement to

the product.

In future, this work can be extended to analyze the

effect of data complexity on the functioning of sampling

techniques. More ensemble methods can be applied and

results can be compared. Also, more defect repositories

can be used with different features. Word embeddings

and deep learning techniques can be explored for better

performance.

Conflict of Interest

The authors declare that there is no conflict of interest.

References

Ahmed, H.A., Bawany, N.Z., & Shamsi, J.A. (2021).

CaPBug-A Framework for Automatic Bug

Categorization and Prioritization Using NLP and

Machine Learning Algorithms. IEEE Access, 9,

50496-50512.

https://doi.org/10.1109/ACCESS.2021.3069248

Aho, P., & Vos, T.E. (2018). Challenges in Automated

Testing Through Graphical User Interface. 2018

IEEE International Conference on Software

Testing, Verification and Validation Workshops

(ICSTW), pp. 118-121.

https://doi.org/10.1109/icstw.2018.00038

Alqahtani, S. S. (2023). Security bug reports

classification using fast text. International

Journal of Information Security, 23(2), 1347–

1358. https://doi.org/10.1007/s10207-023-00793-

w

Alsaedi, S.A., Noaman, A.Y., Gad-Elrab, A.A., & Eassa,

F.E. (2023). Nature-Based Prediction Model of

Bug Reports Based on Ensemble Machine

Learning Model. IEEE Access, 11, 63916-63931.

https://doi.org/10.1109/ACCESS.2023.3288156

Antoniol, G., Ayari, K., Penta, M.D., Khomh, F., &

Guéhéneuc, Y. (2008). Is it a bug or an

enhancement? : a text-based approach to classify

change requests. Conference of the Centre for

Advanced Studies on Collaborative Research, pp.

304-318.

https://doi.org/10.1145/1463788.1463819

Bhandari, P., & Rodríguez-Pérez, G. (2023). BuggIn:

Automatic Intrinsic Bugs Classification Model

using NLP and ML. Proceedings of the 19th

International Conference on Predictive Models

and Data Analytics in Software Engineering.

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable

Tree Boosting System. In Proceedings of the

22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD

'16). Association for Computing Machinery, New

York, NY, USA, pp. 785–794.

https://doi.org/10.1145/2939672.2939785.

Colavito, G., Lanubile, F., Novielli, N., & Quaranta, L.

(2024). Leveraging GPT-like LLMs to Automate

Issue Labeling. 2024 IEEE/ACM 21st

International Conference on Mining Software

Repositories (MSR), pp. 469-480.

https://doi.org/10.1145/3643991.3644903

Fazzini, M., Prammer, M., d’Amorim, M., & Orso, A.

(2018). Automatically translating bug reports into

test cases for mobile apps. Proceedings of the

27th ACM SIGSOFT International Symposium on

Software Testing and Analysis.

https://doi.org/10.1145/3213846.3213869

Ghawi, R. & Pfeffer, J. (2019). Efficient Hyperparameter

Tuning with Grid Search for Text Categorization

using KNN Approach with BM25 Similarity.

Open Computer Science, 9, 160 – 180.

https://doi.org/10.1515/comp-2019-0011

Goseva-Popstojanova, K. & Tyo, J. (2018). Identification

of Security Related Bug Reports via Text Mining

https://doi.org/10.1109/ICSTW.2018.00038
https://doi.org/10.1007/s10207-023-00793-w
https://doi.org/10.1007/s10207-023-00793-w
https://doi.org/10.1109/ACCESS.2023.3288156
https://doi.org/10.1145/1463788.1463819
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/3643991.3644903
https://doi.org/10.1145/3213846.3213869
https://doi.org/10.1515/comp-2019-0011

Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005
68

Using Supervised and Unsupervised

Classification. In Proceedings of IEEE

International Conference on Software Quality,

Reliability and Security (QRS), pp. 344-355.

https://doi.org/10.1109/QRS.2018.00047.

Hammouri, A., Hammad, M., Alnabhan, M. M. &

Alsarayrah, F. (2018).Software Bug Prediction

using Machine Learning Approach. International

Journal of Advanced Computer Science and

Applications, 9(2).

http://dx.doi.org/10.14569/IJACSA.2018.090212.

Hasib, K. M. et al. (2020). A Survey of Methods for

Managing the Classification and Solution of Data

Imbalance Problem. Journal of Computer

Science,16(11), 1546-1557.

Hickman, L., Thapa, S., Tay, L., Cao, M. & Srinivasan,

P. (2020). Text preprocessing for text mining in

organizational research: Review and

recommendations. Organizational Research

Methods, 25(1), 114-146.

https://doi.org/10.1177/1094428120971683

Hirsch, T., & Hofer, B. (2022). Using textual bug reports

to predict the fault category of software

bugs. Array, 15, 100189.

https://doi.org/10.1016/j.array.2022.100189

Kang, S., Yoon, J., Askarbekkyzy, N., & Yoo, S. (2024).

Evaluating Diverse Large Language Models for

Automatic and General Bug Reproduction. IEEE

Transactions on Software Engineering, 50, 2677-

2694. https://doi: 10.1109/TSE.2024.3450837

Köksal, Ö. & Tekinerdogan, B. (2022). Automated

Classification of Unstructured Bilingual Software

Bug Reports: An Industrial Case Study Research.

Appl. Sci., 12(1), 338. https://doi.org/10.3390/

app12010338.

Iqbal, S., Naseem, R., Jan, S., Alshmrany, S., Yasar, M.,

& Ali, A. (2018). Determining Bug Prioritization

Using Feature Reduction and Clustering With

Classification. IEEE Access, 8, 215661–215678.

Juba, B., & Le, H. S. (2019). Precision-Recall versus

Accuracy and the Role of Large Data

Sets. Proceedings of the AAAI Conference on

Artificial Intelligence, 33(01), 4039-4048.

https://doi.org/10.1609/aaai.v33i01.33014039

Kukkar, A., & Mohana, R.M. (2018). A Supervised Bug

Report Classification with Incorporate and

Textual Field Knowledge. Procedia Computer

Science, 132, 352-361.

https://doi.org/10.1016/j.procs.2018.05.194

Li, R., Liu, M., Xu, D., Gao, J., Wu, F., & Zhu, L.

(2022). A Review of Machine Learning

Algorithms for Text Classification. In

Proceedings of Lu, W., Zhang, Y., Wen, W.,

Yan, H., Li, C. (eds) Cyber Security. CNCERT

2021. Communications in Computer and

Information Science, vol 1506. Springer,

Singapore. https://doi.org/10.1007/978-981-16-

9229-1_14

Lopes, F., Agnelo, J., Teixeira, C.A., Laranjeiro, N., &

Bernardino, J. (2020). Automating orthogonal

defect classification using machine learning

algorithms. Future Generation Computer

Systems, 102, 932-947.

https://doi.org/10.1016/j.future.2019.09.009

Meng, F., Wang, X., Wang, J., Wang, P. (2022).

Automatic Classification of Bug Reports Based

on Multiple Text Information and Reports’

Intention. In: Aït-Ameur, Y., Crăciun, F. (eds)

Theoretical Aspects of Software Engineering.

TASE 2022. Lecture Notes in Computer Science,

vol 13299. Springer, Cham, 131- 147.

https://doi.org/10.1007/978-3-031-10363-6_9

Paul, A., Mukherjee, D.P., Das, P., Gangopadhyay, A.,

Chintha, A.R., & Kundu, S. (2018). Improved

Random Forest for Classification. IEEE

Transactions on Image Processing, 27, 4012-

4024. https://doi.org/10.1109/TIP.2018.2834830

Ramay, W.Y., Umer, Q., Yin, X., Zhu, C., & Illahi, I.

(2019). Deep Neural Network-Based Severity

Prediction of Bug Reports. IEEE Access, 7,

46846-46857. https://doi.org/

10.1109/ACCESS.2019.2909746

Starbuck, C. (2023). Logistic Regression. In: The

Fundamentals of People Analytics. Springer,

Cham, pp. 223-238. https://doi.org/10.1007/978-

3-031-28674-2_12

Soltani, M., Hermans, F.F., & Bäck, T. (2020). The

significance of bug report elements. Empirical

Software Engineering, 25, 5255 - 5294.

https://doi.org/10.1007/s10664-020-09882-z

Steidl, G. (2015). Supervised Learning by Support Vector

Machines. In: Handbook of Mathematical

Methods in Imaging, Springer, New York, NY.

https://doi.org/10.1007/978-3-642-27795-5_22-5

Subramani, P., Thiyaneswaran, B., Sujatha, M., Nalini,

C., & Rajkumar, S. (2022). Grid Search for

Predicting Coronary Heart Disease by Tuning

Hyper-Parameters. Comput. Syst. Sci. Eng., 43,

737-749.

https://doi.org/10.32604/csse.2022.022739

Tabassum, N., Namoun, A., Alyas, T., Tufail, A., Taqi,

M., & Kim, K. (2023). Classification of Bugs in

https://doi.org/10.1109/QRS.2018.00047
https://dx.doi.org/10.14569/IJACSA.2018.090212
https://doi.org/10.1177/1094428120971683
https://doi.org/10.1016/j.array.2022.100189
https://doi.org/10.1609/aaai.v33i01.33014039
https://doi.org/10.1016/j.procs.2018.05.194
https://doi.org/10.1007/978-981-16-9229-1_14
https://doi.org/10.1007/978-981-16-9229-1_14
https://doi.org/10.1016/j.future.2019.09.009
https://doi.org/10.1007/978-3-031-10363-6_9
https://doi.org/10.1109/TIP.2018.2834830
https://doi.org/10.1007/978-3-031-28674-2_12
https://doi.org/10.1007/978-3-031-28674-2_12
https://doi.org/10.1007/s10664-020-09882-z
https://doi.org/10.1007/978-3-642-27795-5_22-5
https://doi.org/10.32604/csse.2022.022739

Int. J. Exp. Res. Rev., Vol. 45: 56-69 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v45spl.005
69

Cloud Computing Applications Using Machine

Learning Techniques. Applied Sciences, 13(5),

2880. https://doi.org/10.3390/app13052880

Vito, G.D., Starace, L.L.L., Martino, S.D., Ferrucci, F., &

Palomba, F. (2024). Large Language Models in

Software Engineering: A Focus on Report Issue

Classification and User Acceptance Test

Generation. Ital-IA 2024: 4th National

Conference on Artificial Intelligence, organized

by CINI, May 29-30, 2024, Naples, Italy.

How to cite this Article:

Sara Khan and Saurabh Pal (2024). User Interface Bug Classification Model Using ML and NLP Techniques: A Comparative

Performance Analysis of ML Models. International Journal of Experimental Research and Review, 45, 56-69.

DOI : https://doi.org/10.52756/ijerr.2024.v45spl.005

https://doi.org/10.3390/app13052880
https://creativecommons.org/licenses/by-nc-nd/4.0/

