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Introduction 

In distributed systems, fault tolerance is crucial for 

maintaining reliability and availability, particularly as 

these systems developed in additionally complex and 

increasingly critical industries like finance, healthcare, 

and cloud computing. The intricate nature, diversity and 

large number of components in distributed systems make 

them vulnerable to various types of failures (Kirti et al., 
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Abstract: In the era of cloud computing and large-scale distributed systems, ensuring 

uninterrupted service and operational reliability is crucial. Conventional fault 

tolerance techniques usually take a reactive approach, addressing problems only after 

they arise. This can result in performance deterioration and downtime. With 

predictive machine learning models, this research offers a proactive approach to fault 

tolerance for distributed systems, preventing significant failures before they arise. Our 

research focuses on combining cutting-edge machine learning algorithms with real-

time analysis of massive streams of operational data to predict abnormalities in the 

system and possible breakdowns. We employ supervised learning algorithms such as 

Random Forests and Gradient Boosting to predict faults with high accuracy. The 

predictive models are trained on historical data, capturing intricate patterns and 

correlations that precede system faults. Early defect detection made possible by this 

proactive approach enables preventative remedial measures to be taken, reducing 

downtime and preserving system integrity. To validate our approach, we designed and 

implemented a fault prediction framework within a simulated distributed system 

environment that mirrors contemporary cloud architectures. Our experiments 

demonstrate that the predictive models can successfully forecast a wide range of 

faults, from hardware failures to network disruptions, with significant lead time, 

providing a critical window for implementing preventive measures. Additionally, we 

assessed the impact of these pre-emptive actions on overall system performance, 

highlighting improved reliability and a reduction in mean time to recovery (MTTR). 

We also analyse the scalability and adaptability of our proposed solution within 

diverse and dynamic distributed environments. Through seamless integration with 

existing monitoring and management tools, our framework significantly enhances 

fault tolerance capabilities without requiring extensive restructuring of current 

systems. This work introduces a proactive approach to fault tolerance in distributed 

systems using predictive machine learning models. Unlike traditional reactive 

methods that respond to failures after they occur, this work focuses on anticipating 

faults before they happen. 
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2024a). To address this vulnerability, fault tolerance 

mechanisms are implemented to ensure continuous 

operation and correct functionality despite the occurrence 

of faults. As distributed systems grow in complexity, the 

importance of fault tolerance increases. In finance, for 

instance, uninterrupted service is paramount for 

transaction processing and real-time trading platforms. In 

healthcare, reliable systems are crucial for diagnostics, 

patient management, and treatment monitoring. Cloud 

computing services must ensure high availability to 

support a wide range of applications and services used by 

millions of users globally (Pal et al., 2023; Kumar et al., 

2023; Swarnalatha et al., 2024; Zou et al., 2024). The 

diverse and distributed components of these systems can 

experience hardware failures, software bugs, and network 

issues. Hardware failures might include server crashes or 

disk failures, while software bugs could lead to 

unexpected system behaviour. Network issues can result 

in communication breakdowns between nodes (Lu et Al., 

2024). Each of these failures can potentially disrupt the 

entire system if not managed effectively. 

Fault tolerance mechanisms, such as redundancy, 

replication, checkpointing, and failover strategies, are 

implemented to mitigate these risks. Redundancy is the 

process of making duplicates of important parts so that, 

should one fail, another can take over. Replication 

ensures that multiple copies of data or services are 

maintained across different nodes, preventing data loss 

and service interruption (Bessani et al., 2014; Sun et al., 

2018). Checkpointing periodically saves the system’s 

state, allowing it to roll back to a known good state in 

case of failure (Elnozahy et al., 2002; Gossman, et al., 

2024). Failover mechanisms enable automatic switching 

to backup systems when primary systems fail, ensuring 

continuity of operations. Moreover, modern approaches 

to fault tolerance are incorporating predictive analytics 

and machine learning to preemptively identify potential 

issues. Through the examination of past data and 

identification of trends that predate malfunctions, these 

systems are able to implement remedial measures prior to 

malfunctions, hence augmenting dependability and 

accessibility. To ensure the dependability and availability 

of distributed systems (Siddiqui and Haroon, 2023), fault 

tolerance is a basic necessity. As these systems play 

increasingly pivotal roles in various critical sectors, the 

implementation of robust fault tolerance mechanisms 

becomes ever more important to ensure continuous, 

correct operation even in the face of inevitable failures. 

Various approaches are employed to achieve fault 

tolerance, each designed to address specific types of 

failures and meet particular system requirements. Here’s 

an overview of common fault tolerance techniques in 

distributed systems. 

Replication  

In distributed systems, replication is a failure 

tolerance approach that involves maintaining multiple 

copies of data or services across different nodes. This 

approach ensures that if one node fails, the system can 

continue to function using the replicated data from 

another node. Replication can be carried out 

synchronously, where updates are immediately 

propagated to all replicas, ensuring consistency but 

potentially adding latency. Conversely, asynchronous 

replication allows for quicker operations but may result in 

temporary inconsistencies. 

Common replication strategies include active 

replication, where all replicas handle requests 

simultaneously, and passive replication, where a primary 

replica manages requests and updates the backups. 

Replication enhances system reliability ((Siddiqui and 

Haroon, 2024)), availability, and load balancing, but it 

also requires careful management to address challenges 

such as data consistency, network overhead, and storage 

costs. Replication in distributed systems is a fundamental 

technique for ensuring data availability, reliability, and 

fault tolerance. Mathematical formulas for replication 

typically involve determining the number of replicas, 

understanding quorum requirements, and assessing the 

trade-offs between availability and consistency (Garg, 

2022). In quorum-based replication, a read-or-write 

operation requires approval from a certain number of 

replicas (quorum) to ensure data consistency. This 

approach is often used in distributed databases and 

consensus algorithms (Hasan and Zeebaree, 2024). 

The following conditions must be met to ensure 

consistency, the number of replicas, n, represents how 

many copies of a piece of data or service exist across 

different nodes:  

• W+R>n 

• W>n/2 

• R>n/2 

 

Availability measures the proportion of time that the 

system can successfully respond to requests. With 

replication, the availability of the system improves as 

more replicas are added, but this can be subject to the 

number of available replicas (Eckart et al., 2008). If the 

system requires k out of n replicas to be available for 

operation, the availability can be calculated as: 

A=1−(1−p)k 
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Redundancy  

Redundancy is a critical concept in fault-tolerant 

systems, where extra components or systems are added to 

take over in case of failure. Redundancy ensures 

continued operation and improves the system’s reliability 

(Bandari, 2020). Redundancy is a fault tolerance 

technique in distributed systems that involves duplicating 

critical components or functions to prevent system 

failures. By maintaining multiple copies of hardware, 

software, or network paths, redundancy makes sure that if 

one part fails, another can take over without any 

problems., allowing the system to continue operating 

without interruption. There are various types of 

redundancy, including hardware redundancy, software 

redundancy, and information redundancy. Hardware 

redundancy involves the use of additional physical 

components, such as extra servers or power supplies. 

Software redundancy entails running multiple instances 

of software applications on different systems. 

Information redundancy involves duplicating data across 

multiple storage devices. While redundancy significantly 

enhances system reliability and availability, it also 

increases costs and complexity. Therefore, careful design 

and management are required to balance these trade-offs 

effectively.  

Series Redundancy: 

The system fails if any single component fails. Series 

redundancy is a fault tolerance technique where multiple 

redundant components are arranged in a sequential 

manner to ensure system reliability. In this configuration, 

each component in the series must function correctly for 

the overall system to operate. If one component fails, the 

next in line takes over to maintain continuity. This 

technique is commonly used in scenarios where high 

reliability is critical, such as in power supply systems and 

communication networks. Series redundancy ensures that 

the failure of a single component does not lead to total 

system failure, thereby increasing the system's overall 

reliability. However, it can introduce higher latency and 

complexity, as each component must be capable of 

seamlessly taking over the task of the failed one. 

Effective monitoring and maintenance are crucial to 

managing the increased complexity and ensuring that all 

components are functioning correctly. Series redundancy 

can significantly enhance fault tolerance but requires 

careful design to avoid single points of failure and ensure 

smooth transitions between components. 

System Reliability:  

The reliability of a series system with n components is 

the product of the reliability of each component Ri  

Rs = R1 × R2 × ⋯ ⋅ Rn = ∏i=1
n  Ri 

In a parallel configuration, the system continues to 

function as long as at least one component is operational. 

This configuration improves overall system reliability, 

The reliability of a parallel system with n components is 

calculated by the probability that at least one component 

does not fail (Power and Kotonya, 2018). 

Rp = 1 − ∏2=1
n  (1 − Ri) 

In k-out-of-n redundancy, the system is operational as 

long as at least k out of n components are functioning. 

This is a common setup in fault-tolerant systems. 

The reliability of a k-out-of-n system can be 

calculated using the binomial probability formula: 

Rk, n = ∑i=k
n  (n

i
)Ri(1 − R)n−i    

Where  (n
i
)  is the bionomial coffiecent  and R is the 

reliability of each component. 

For a 2-out-of-3 system where each component has a 

reliability of 0.95: 

R2,3 = (
3

2
) ∗. 952 ∗ (1 − .95) + (

3

3
) ∗. 953

R23 = 3 ∗ 952 ∗ .05 + 1 ∗. 953

R23 = .135375 + .857375 = .99275

 

Redundancy affects the mean time to failure (MTTF) 

and mean time to repair (MTTR) of a system. For a series 

system, the system’s MTTF is lower because any single 

failure will cause the system to fail (Kochhar and 

Jabanjalin, 2017). Figure 1 displays the system model for 

fault tolerance. 

MTTF series=   
1

∑i=1
n  

1

MTTF

 

Consensus Algorithms 

Consensus algorithms are fundamental in distributed 

systems to ensure that multiple nodes can agree on a 

common state or decision, even in the presence of faults. 

The mathematical models for consensus algorithms 

typically revolve around ensuring properties such as 

safety (no two nodes decide on different values) and 

liveness (all non-faulty nodes eventually decide on a 

value) (Polze et al., 2011). 

Byzantine Fault Tolerance is crucial when dealing 

with nodes that may fail or act maliciously. The objective 

is to achieve consensus despite up to f Byzantine faults 

among N nodes. 

• Consensus can be achieved if and only if N≥3f+1 

• The quorum size Q must satisfy Q>N+f/2 

• Prepare phase:  Q prepare≥ 2f+1 

• Commit phase: Q commit≥2f+1 

Ensures no two honest nodes commit different values. 
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For any two nodes ni, nj : where vi=vj 

Ensures all non-faulty nodes eventually commit a 

value. 

∃t: ∀ni ∈ N − f 

Paxos 

A family of protocols for achieving consensus in a 

network of unreliable processors. Paxos is designed for 

environments where nodes can fail (crash fault tolerance) 

but do not act maliciously (Mukwevho and Celik, 2018). 

 A proposer sends a prepared request with proposal 

number n to a quorum Q of acceptors. Acceptors respond 

with the highest-numbered proposal they have accepted. 

Q prepare>N/2 

Acceptors promise not to accept any proposal 

numbered less than n 

The proposer sends an acceptance request for proposal 

number n and value v to the quorum. Acceptors accept 

the proposal if it is the highest number they have seen. 

Q accept>N/2 

Once a quorum of acceptors has accepted a proposal, 

it is considered decided. 

Safety: Q accept ∩Q prepare ≠ ∅ 

Raft:  

A consensus algorithm designed to be easier to 

understand and implement than Paxos. Raft simplifies 

consensus by dividing the problem into leader election, 

log replication and safety. 

Table 1. Algorithm properties analysis.  

Algorithms 
 

Fault Model Nodes Required 

(N) 

Quorum Size 

(Q) 

Properties 

PBFT Byzantine N≥3f+1 Q>N+f/2 Safety, Liveness, Tolerates faults 

Paxos Crash N≥2f+1 Q>N/2 Safety, Liveness 

Raft Crash N≥2f+1 Q>/2N Safety, Liveness 

Fa
u
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n

ce

Storage

Storage Capacity

Disk IO and Bandwidth usage

Processing

Fault Detection Latency

Fault Recovery Efficiency

Job Priority

Fault Detection Latency

Fault Recovery Efficiency

Figure 1. System Model for fault tolerance. 
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A node becomes a leader if it receives votes from a 

majority of nodes.  

The leader wins if it receives votes ≥N/2+1. 

The leader replicates log entries to a majority of 

followers. Q log ≥ N/2+1 (Khan and Haroon, 2022).  

 

A log entry is committed if it is stored on a majority 

of nodes and the leader who created it is still in power. 

Entry e is committed if ∃Q:e is in the logs of Q nodes and

 the leader’s term is valid. The properties of PBFT, 

Paxos, and Raft algorithms are analysed in Table 1. 

 

These mathematical models and properties help in 

designing, analyzing and validating consensus algorithms 

in distributed systems, ensuring they can achieve 

agreement and maintain functionality despite faults. 

 

Research Gap:  

The objective of this research is to address the 

pressing necessity for fault tolerance in distributed 

systems, which are becoming increasingly complex and 

vital for industries such as finance, healthcare, and cloud 

computing. As these systems continue to expand, the risk 

of various failures (e.g., hardware, software, and 

network) grows, necessitating robust fault tolerance 

mechanisms. The study aims to explore and enhance 

existing fault tolerance techniques such as replication, 

redundancy, and checkpointing and introduces predictive 

machine learning models to provide a proactive approach 

for mitigating potential failures. By employing predictive 

analytics, the research seeks to anticipate failures before 

they occur, thus improving the reliability and availability 

of distributed systems. 

 

Traditional fault tolerance techniques primarily focus 

on reactive measures, addressing system failures only 

after they have occurred. There is a lack of research on 

proactive fault tolerance, especially leveraging predictive 

machine learning models to pre-emptively identify and 

mitigate faults before they impact the system. While fault 

tolerance mechanisms are well-researched, their impact 

on system performance, particularly in terms of 

downtime reduction, mean time to recovery (MTTR), and 

real-time responsiveness, has not been sufficiently 

studied.  

 

 

 

 

 

 

The proposed solution offers insights into how 

proactive fault tolerance can enhance system reliability 

while minimizing performance trade-offs. We utilize 

supervised learning algorithms like Random Forests and 

Gradient Boosting (Yadav et al., 2024) to achieve high-

accuracy fault predictions. 

 

Related Work 

Distributed systems are the backbone of modern 

computing infrastructures, powering cloud services, 

large-scale applications, and enterprise solutions. They 

provide the scalability, flexibility, and resilience required 

to handle vast amounts of data and serve millions of 

users. However, the inherent complexity and 

interdependencies within these systems make them 

susceptible to various types of faults and failures. 

Hardware malfunctions, software bugs, network 

disruptions, and resource contention are just a few 

examples of issues that can jeopardize system reliability 

and availability (Srivastava et al., 2013). 

 

Traditional fault tolerance techniques in distributed 

systems typically involve reactive measures, such as 

redundancy, failover mechanisms, and post-failure 

recovery processes (Veer and Bhardwaj, 2024; Obadia et 

al., 2014). While effective in many cases, these 

approaches often address problems only after they have 

impacted the system, leading to service interruptions, 

data loss, and increased operational costs. In critical 

applications, even brief downtimes can have significant 

repercussions, from financial losses to reputational 

damage (Kalaskar and Thangam, 2023). 

 

To overcome the limitations of reactive fault 

tolerance, there is a growing need for proactive strategies 

that can predict and prevent failures before they occur. 

This shift from reaction to anticipation is driven by the 

advancements in machine learning (Mondal et al., 2023)  

and artificial intelligence, which offer powerful tools for 

analyzing and interpreting complex data patterns. By 

harnessing these technologies, we can develop systems 

capable of detecting early signs of potential issues and 

taking preemptive actions to avoid faults (Gururaj et al., 

2023a). Table 2 shows the analyses of state-of-the-art 

techniques of fault tolerance. 
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Methodology  

The primary challenge in implementing proactive 

fault tolerance in distributed systems is the ability to 

accurately predict faults in a timely manner. This requires 

sophisticated models that can process vast amounts of 

real-time data, identify subtle anomalies, and forecast 

impending failures with high precision. Additionally, 

these models must be integrated seamlessly into existing 

systems, providing actionable insights without 

introducing significant overhead or complexity 

(Venkataraman, 2023). 

Traditional fault detection methods often rely on 

predefined rules or simple statistical techniques, which 

may not capture the dynamic and non-linear nature of 

modern distributed systems. As a result, there is a 

pressing need for more advanced approaches that 

leverage the predictive power of machine learning. These 

approaches must be capable of learning from historical 

data, adapting to evolving system behaviours and 

providing early warnings that enable preventive 

maintenance and fault mitigation (Gururaj et al., 2023a). 

Developing Predictive Models: Designing and training 

machine learning models to predict a range of system 

faults based on historical and real-time data (Haloi and 

Chanda, 2024). This involves exploring various 

algorithms, including supervised learning and deep 

learning techniques, to identify the most effective models 

for different types of faults. 

Real-Time Fault Prediction: Implementing a real-

time monitoring and prediction system that can analyze 

incoming data streams, detect anomalies, and forecast 

potential failures. This system should provide sufficient 

lead time for operators to take corrective actions before 

faults occur (Gururaj et al., 2023b). 

Integration and Scalability: Ensuring that the 

predictive fault tolerance framework can be integrated 

with existing distributed system architectures without 

significant modifications. The solution should be scalable 

to handle large volumes of data and adaptable to diverse 

operational environments (Fox and Brewer, 1999). 

Table 2. Critique of state-of-the-art techniques. 

References Technique Finding 

Dhingra and 

Gupta, 2017 

SVM, Decision Trees, Random Forest, 

Fault Prediction, Preemptive 

Migration 

Machine learning can predict faults early, 

reducing system downtime and operational 

costs. 

Yang et al., 

2023 

LSTM, CNN, Hybrid Models, 

Predictive Fault Management, Edge 

Node Replication 

Machine learning can predict faults early, 

reducing system downtime and operational 

costs. 

Lima et al., 

2021 

Neural Networks, Bayesian Networks, 

Predictive Maintenance, Task 

Migration 

Neural networks effectively predict system 

failures; proactive task migration minimizes 

impact. 

Bharany et al., 

2022 

 

Various ML Algorithms (Survey), 

Fault Detection, Resource 

Redundancy 

Ensemble methods generally outperform 

individual models in predicting system faults. 

Karadayi et al., 

2020 

 

K-means, DBSCAN, LSTM, Anomaly 

Detection, Preemptive Action 

ML-based anomaly detection enhances early 

fault detection in IoT systems. 

AlOrbani et al., 

2021 

 

Reinforcement Learning, Dynamic 

Resource Allocation, Load Balancing 

Reinforcement learning optimizes resource 

allocation. 

Chakrabarty et 

al., 2019 

 

Linear Regression, Gradient Boosting, 

Fault Prediction, Redundant 

Scheduling 

Predictive models anticipate failures, 

improving system reliability and uptime. 

Al Qassem et 

al., 2023 

 

Random Forest, Logistic Regression, 

Predictive Fault Management, Auto-

scaling 

Random forest models are effective in 

predicting cloud system faults; auto-scaling 

improves robustness. 

Seba et al., 2024 

 

LSTM, CNN, Hybrid Models, 

Predictive Fault Management, Edge 

Node Replication 

Combining temporal and spatial data in 

hybrid models enhances fault tolerance in 

edge computing. 

Ren, 2021 Ensemble Methods (Bagging, 

Boosting), Predictive Maintenance, 

Hot Standby Redundancy 

Ensemble learning methods significantly 

reduce system downtime through effective 

fault prediction. 

Singh and 

Singh, 2023 
Feature selection and deep learning 

Deep learning classifiers (CNN, FFNN, 

RBN) improve fault prediction rate. 
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Result and Discussion 

Conduction of extensive experiments to validate the 

accuracy and effectiveness of the predictive models are 

present in this section. This includes testing the system in 

simulated and real-world distributed environments, 

measuring its impact on system reliability, and comparing 

it with traditional fault tolerance methods (Hien, 2023). 

Table 3 displays the dataset. 

In the table, the Event type attributes have various 

numerical values, here 0 means submit an event, 1 means 

scheduled event, and 2 means evict event. The priority 

attribute, 0 means the lowest priority, and increasing 

numerical value means the priority of the job is also 

increasing. Task failure 0 means no failure and 1 means 

the task failed. Task failure 0 means no failure and 1 

means the task failed. Figure 2 displays the task failure 

concerning CPU Req, Memory Req, and Disk Space Req. 

Pre-process the Data 

Read the data set and examine its contents. After 

reading the data set, the next step is to understand the 

structure, features, and target variables, Handle missing 

values, encode categorical variables, and normalize 

numerical features if necessary. In the next step Split the 

data into features and target variables. For the training 

purpose here the random forest (Swarnalatha et al., 2024) 

machine learning techniques have been applied. We can 

split the data set into several subsets of the data, build the 

decision tree of all subsets of the data, and then we can 

employ the approach of random forest to categorize the, 

the new example will show the fault or not. Random 

Forest is an ensemble machine learning algorithm that 

combines the predictions of multiple decision trees to 

improve accuracy and reduce overfitting. It is particularly 

effective for classification tasks, such as predicting task 

failures in distributed systems (Tiwari et al., 2024). 

Table 3. Dataset for fault tolerance  experimental validation. 

Time Job_Id 

Task 

Index 

Machine 

Id 

Event 

Type Priority 

CPU 

Request 

Memory 

Requirement 

Diskspace 

Requirement 

Task 

Failure 

1 1001 1 3001 0 0 0.5 0.1 0.02 0 

2 1002 2 3002 1 1 0.7 .2 0.03 1 

3 1003 1 3003 0 2 0.6 0.15 0.25 0 

4 1004 2 3004 2 3 0.8 0.3 0.04 1 

5 1005 1 3005 0 1 0.4 0.1 0.02 0 

6 1006 2 3006 1 2 0.6 0.25 0.035 1 

7 1007 1 3007 0 3 0.7 0.2 0.03 0 

8 1008 2 3008 2 0 0.5 0.3 0.02 0 

9 1009 1 3009 0 2 0.8 0.25 0.045 1 

10 1010 2 3010 1 1 0.6 0.2 0.025 0 

 
Figure 2.  Task failure with respect to CPU Req, Memory Req, Disk Space Req. 

0

0.2

0.4

0.6

0.8

1

1.2
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Randomly samples subsets of the training data with 

replacement to train each decision tree. Table 4 and Table 

5 display the sample subset. 

In the decision tree the target attribute is the task 

failure, the main concern over here is to find out the 

root node. In the above data set the feature is Time, 

Task index, CPU request, and task failure. In the five 

examples, we found three examples are the negative 

example and two are the positive example.  The 

entropy of the entire data set is calculated by the 

given mathematical model (Kirti et al., 2024b). 

Figure 3 shows the Data subset of the Result for 

ensemble model 1. Figure 3 shows the data subset of 

the Result for ensemble model 1. Figure 4 and 5 

demonstrate the decision tree 1 and 2. 

 

 

 

 Entropy (𝑆) = −
2

5
log2 (

2

5
) −

3

5
log2 (

3

5
)

= (−
2

5
∗ −.397 −

3

5
∗ −.221)

= −4 ∗ −.397 − .6 ∗ −.221
= .2914

 

Similarly the entropy of task index calculated Entropy 

of task index (Figure 4). 

 
Figure 4. Decision tree 1. 

Table 5. Samples subsets of the training data. 

Time Task Index CPU 

Request 

Task Failure 

6 2 0.6 1 

7 1 0.7 0 

8 2 
0.5 

1 

9 1 0.8 0 

10 2 0.6 1 

We have another decision tree of above data set  

Table 4. Samples subsets  of the training data. 

Time Task Index CPU Request Task Failure 

1 1 .5 0 

2 2 .7 1 

3 1 .6 0 

4 2 .8 1 

5 1 .4 0 

0

1

2

3

4

5

6

TIME TASK INDEX CPU REQUEST TASK FAILURE

Figure 3. Data subset of Result for ensemble model 1. 
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Figure 5. Decision tree 2. 

After the ensemble learning, the new example 

is classified according to the target attribute. The example 

is given in the table (Sifat et al., 2024; Al-Dulaimy et al., 

2022). Table 6 displays the predicted task failure. Figure 

6 shows the comparative model between actual or 

predicted task failure. 

The confusion matrix of above data set is given below 

Predicted 

Actual 

 

 

TP TN 

FP 3 1 

FN 4 4 

The accuracy of the model is calculated using the 

formula (TP+TN)/(TP+TN+FP+FN)(TP+TN)/ (TP+TN+ 

FP+FN), which results in 70%. This means the model 

correctly predicted 70% of the outcomes. The miss 

classification rate is defined as (FN+FP)/ 

(TP+TN+FP+FN)*(FN+FP)/(TP+TN+FP+FN), 

indicating the portion of incorrect predictions, while the 

false positive rate (FPR) is 0.33, and the true positive rate 

(TPR) is 0.75. Precision, which measures how many of 

the predicted positives are correct, is also 0.75. A random 

forest ensemble-based method was used by Lan and Li 

(2008), which enhanced the model's fault prediction. 

Because random forests are robust in forecasting 

outcomes in complicated systems and can manage noisy 

data, they are frequently used for fault tolerance. 

The use of sophisticated machine learning models for 

early failure detection is crucial, according to recent 

research on fault tolerance in distributed systems. 

Because of its intricacy, distributed systems are 

vulnerable to errors that could seriously interrupt 

operations. According to research, fault-tolerant systems 

ought to strive for prompt fault detection and self-

recovery methods in addition to accuracy. To enhance 

defect detection without depending on centralized 

models, methods like federated learning, which handle 

data in a decentralized fashion, are being investigated. 

Hybrid models and deep learning are also important for 

increasing fault tolerance, according to recent studies. 

Techniques that combine ensemble approaches like 

random forests and recurrent neural networks (RNNs) for 

instance offer greater defect detection rates and flexibility 

to changing contexts. Predictive maintenance and real-

time monitoring are also being used by fault tolerance 

models nowadays to identify abnormalities early on, save 

downtime, and maximize resource allocation. Therefore, 

fault detection rates and system reliability can be greatly 

increased by incorporating contemporary methods like 

real-time monitoring and deep learning into conventional 

fault tolerance models like the random forest. 

Conclusion 

The application of predictive machine learning models 

significantly enhances fault tolerance in distributed 

systems by proactively addressing potential issues. Our 

analysis focused on employing Random Forest, a robust 

ensemble learning algorithm, to predict task failures 

within a distributed environment. The Random Forest 

model exhibited high accuracy in forecasting task 

failures, thereby substantially decreasing the likelihood of 

unexpected system downtimes. By analysing historical 

data, the Random Forest model identifies patterns and 

Table 6. Predicted Task Failure. 

Time Job_Id 

Task 

Index 

Machine 

Id 

Event 

Type Priority 

Cpu 

Request 

Memory 

Req 

Diskspace 

Req 

Task 

Failure 

Predicted 

Task 

Failure 

1 1001 1 3001 0 0 0.5 0.1 0.02 0 0 

2 1002 2 3002 1 1 0.7 .2 0.03 1 1 

3 1003 1 3003 0 2 0.6 0.15 0.25 0 0 

4 1004 2 3004 2 3 0.8 0.3 0.04 1 1 

5 1005 1 3005 0 1 0.4 0.1 0.02 0 1 

6 1006 2 3006 1 2 0.6 0.25 0.035 1 0 

7 1007 1 3007 0 3 0.7 0.2 0.03 0 0 

8 1008 2 3008 2 0 0.5 0.3 0.02 0 0 

9 1009 1 3009 0 2 0.8 0.25 0.045 1 1 

10 1010 2 3010 1 1 0.6 0.2 0.025 0 1 
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anomalies that typically precede faults. This capability 

allows for timely interventions, as the model can signal 

potential issues before they develop into critical failures. 

The proactive nature of this fault tolerance approach 

facilitates preemptive maintenance and resource 

reallocation; further minimizing system downtime and 

enhancing overall reliability. Early detection of potential 

failures empowers system administrators to take 

corrective actions before issues escalate. For instance, if 

the model predicts a hardware component is likely to fail, 

administrators can replace the component during a 

scheduled maintenance window, rather than waiting for it 

to fail and cause an unscheduled outage. Similarly, if the 

model identifies an application likely to experience a 

software fault, administrators can deploy patches or 

redistribute workloads to mitigate the impact. By 

employing a Random Forest model to anticipate and stop 

task failures, the suggested technique increases fault 

tolerance in distributed systems. This proactive strategy 

improves resource management, strengthens maintenance 

plans, and decreases system downtime. It enables prompt 

actions before problems worsen, which results in cost 

savings and improved dependability. All things 

considered, the approach guarantees improved scalability 

and performance in big, complicated systems. The 

Random Forest model may struggle with highly dynamic 

environments where new failure patterns emerge rapidly, 

limiting its ability to adapt. It also requires significant 

historical data for accurate predictions, which may not 

always be available. Additionally, the model's complexity 

can lead to higher computational costs in large-scale 

systems. 
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