

*Corresponding Author: zeealis@gmail.com

208

DOI: https://doi.org/10.52756/ijerr.2024.v44spl.018 Int. J. Exp. Res. Rev., Vol. 44: 208-220 (2024)

 A Proactive Approach to Fault Tolerance Using Predictive Machine Learning Models in Distributed

Systems

 Mohd Haroon1, Zeeshan Ali Siddiqui2*, Mohammad Husain3, Arshad Ali3 and Tameem Ahmad4

1Department of Computer Science and Engineering, Integral University, Lucknow, India, 2Department of Computer

Science and Engineering, University of Lucknow, Lucknow, India; 3Faculty of Computer and Information System,

Islamic University of Madinah, Saudi Arabia; 4Department of Computer Engineering, Aligarh Muslim University,

Aligarh, India
E-mail/Orcid Id:

MH, mharoon@iul.ac.in, https://orcid.org/0000-0001-7967-7302; ZAS, zeealis@gmail.com, https://orcid.org/0000-0002-0049-2362;

MH, dr.husain@iu.edu.sa, http://orcid.org/0000-0001-7312-9567; AA, a.ali@iu.edu.sa, https://orcid.org/0000-0001-5625-0867;

TA, tameemahmad@zhcet.ac.in, https://orcid.org/0000-0001-9802-5713

Introduction

In distributed systems, fault tolerance is crucial for

maintaining reliability and availability, particularly as

these systems developed in additionally complex and

increasingly critical industries like finance, healthcare,

and cloud computing. The intricate nature, diversity and

large number of components in distributed systems make

them vulnerable to various types of failures (Kirti et al.,

Article History:

Received: 26th Apr., 2024

Accepted: 21st Oct., 2024

Published: 30th Oct., 2024

Abstract: In the era of cloud computing and large-scale distributed systems, ensuring

uninterrupted service and operational reliability is crucial. Conventional fault

tolerance techniques usually take a reactive approach, addressing problems only after

they arise. This can result in performance deterioration and downtime. With

predictive machine learning models, this research offers a proactive approach to fault

tolerance for distributed systems, preventing significant failures before they arise. Our

research focuses on combining cutting-edge machine learning algorithms with real-

time analysis of massive streams of operational data to predict abnormalities in the

system and possible breakdowns. We employ supervised learning algorithms such as

Random Forests and Gradient Boosting to predict faults with high accuracy. The

predictive models are trained on historical data, capturing intricate patterns and

correlations that precede system faults. Early defect detection made possible by this

proactive approach enables preventative remedial measures to be taken, reducing

downtime and preserving system integrity. To validate our approach, we designed and

implemented a fault prediction framework within a simulated distributed system

environment that mirrors contemporary cloud architectures. Our experiments

demonstrate that the predictive models can successfully forecast a wide range of

faults, from hardware failures to network disruptions, with significant lead time,

providing a critical window for implementing preventive measures. Additionally, we

assessed the impact of these pre-emptive actions on overall system performance,

highlighting improved reliability and a reduction in mean time to recovery (MTTR).

We also analyse the scalability and adaptability of our proposed solution within

diverse and dynamic distributed environments. Through seamless integration with

existing monitoring and management tools, our framework significantly enhances

fault tolerance capabilities without requiring extensive restructuring of current

systems. This work introduces a proactive approach to fault tolerance in distributed

systems using predictive machine learning models. Unlike traditional reactive

methods that respond to failures after they occur, this work focuses on anticipating

faults before they happen.

Keywords:

Cloud computing, distributed

systems, preventive

maintenance, proactive fault

tolerance, random forest

machine learning models

How to cite this Article:

Mohd Haroon, Zeeshan Ali Siddiqui,

Mohammad Husain, Arshad Ali, and Tameem

Ahmad (2024). A Proactive Approach to

Fault Tolerance Using Predictive Machine

Learning Models in Distributed Systems.

International Journal of Experimental

Research and Review, 44, 208-220.

DOI:

https://doi.org/10.52756/ijerr.2024.v44spl.018

https://doi.org/10.52756/ijerr.2024.v44spl.018
https://crossmark.crossref.org/dialog/?doi=10.52756/ijerr.2024.v44spl.018&domain=iaph.in

Int. J. Exp. Res. Rev., Vol. 44: 208-220 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v44spl.018
209

2024a). To address this vulnerability, fault tolerance

mechanisms are implemented to ensure continuous

operation and correct functionality despite the occurrence

of faults. As distributed systems grow in complexity, the

importance of fault tolerance increases. In finance, for

instance, uninterrupted service is paramount for

transaction processing and real-time trading platforms. In

healthcare, reliable systems are crucial for diagnostics,

patient management, and treatment monitoring. Cloud

computing services must ensure high availability to

support a wide range of applications and services used by

millions of users globally (Pal et al., 2023; Kumar et al.,

2023; Swarnalatha et al., 2024; Zou et al., 2024). The

diverse and distributed components of these systems can

experience hardware failures, software bugs, and network

issues. Hardware failures might include server crashes or

disk failures, while software bugs could lead to

unexpected system behaviour. Network issues can result

in communication breakdowns between nodes (Lu et Al.,

2024). Each of these failures can potentially disrupt the

entire system if not managed effectively.

Fault tolerance mechanisms, such as redundancy,

replication, checkpointing, and failover strategies, are

implemented to mitigate these risks. Redundancy is the

process of making duplicates of important parts so that,

should one fail, another can take over. Replication

ensures that multiple copies of data or services are

maintained across different nodes, preventing data loss

and service interruption (Bessani et al., 2014; Sun et al.,

2018). Checkpointing periodically saves the system’s

state, allowing it to roll back to a known good state in

case of failure (Elnozahy et al., 2002; Gossman, et al.,

2024). Failover mechanisms enable automatic switching

to backup systems when primary systems fail, ensuring

continuity of operations. Moreover, modern approaches

to fault tolerance are incorporating predictive analytics

and machine learning to preemptively identify potential

issues. Through the examination of past data and

identification of trends that predate malfunctions, these

systems are able to implement remedial measures prior to

malfunctions, hence augmenting dependability and

accessibility. To ensure the dependability and availability

of distributed systems (Siddiqui and Haroon, 2023), fault

tolerance is a basic necessity. As these systems play

increasingly pivotal roles in various critical sectors, the

implementation of robust fault tolerance mechanisms

becomes ever more important to ensure continuous,

correct operation even in the face of inevitable failures.

Various approaches are employed to achieve fault

tolerance, each designed to address specific types of

failures and meet particular system requirements. Here’s

an overview of common fault tolerance techniques in

distributed systems.

Replication

In distributed systems, replication is a failure

tolerance approach that involves maintaining multiple

copies of data or services across different nodes. This

approach ensures that if one node fails, the system can

continue to function using the replicated data from

another node. Replication can be carried out

synchronously, where updates are immediately

propagated to all replicas, ensuring consistency but

potentially adding latency. Conversely, asynchronous

replication allows for quicker operations but may result in

temporary inconsistencies.

Common replication strategies include active

replication, where all replicas handle requests

simultaneously, and passive replication, where a primary

replica manages requests and updates the backups.

Replication enhances system reliability ((Siddiqui and

Haroon, 2024)), availability, and load balancing, but it

also requires careful management to address challenges

such as data consistency, network overhead, and storage

costs. Replication in distributed systems is a fundamental

technique for ensuring data availability, reliability, and

fault tolerance. Mathematical formulas for replication

typically involve determining the number of replicas,

understanding quorum requirements, and assessing the

trade-offs between availability and consistency (Garg,

2022). In quorum-based replication, a read-or-write

operation requires approval from a certain number of

replicas (quorum) to ensure data consistency. This

approach is often used in distributed databases and

consensus algorithms (Hasan and Zeebaree, 2024).

The following conditions must be met to ensure

consistency, the number of replicas, n, represents how

many copies of a piece of data or service exist across

different nodes:

• W+R>n

• W>n/2

• R>n/2

Availability measures the proportion of time that the

system can successfully respond to requests. With

replication, the availability of the system improves as

more replicas are added, but this can be subject to the

number of available replicas (Eckart et al., 2008). If the

system requires k out of n replicas to be available for

operation, the availability can be calculated as:

A=1−(1−p)k

Int. J. Exp. Res. Rev., Vol. 44: 208-220 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v44spl.018
210

Redundancy

Redundancy is a critical concept in fault-tolerant

systems, where extra components or systems are added to

take over in case of failure. Redundancy ensures

continued operation and improves the system’s reliability

(Bandari, 2020). Redundancy is a fault tolerance

technique in distributed systems that involves duplicating

critical components or functions to prevent system

failures. By maintaining multiple copies of hardware,

software, or network paths, redundancy makes sure that if

one part fails, another can take over without any

problems., allowing the system to continue operating

without interruption. There are various types of

redundancy, including hardware redundancy, software

redundancy, and information redundancy. Hardware

redundancy involves the use of additional physical

components, such as extra servers or power supplies.

Software redundancy entails running multiple instances

of software applications on different systems.

Information redundancy involves duplicating data across

multiple storage devices. While redundancy significantly

enhances system reliability and availability, it also

increases costs and complexity. Therefore, careful design

and management are required to balance these trade-offs

effectively.

Series Redundancy:

The system fails if any single component fails. Series

redundancy is a fault tolerance technique where multiple

redundant components are arranged in a sequential

manner to ensure system reliability. In this configuration,

each component in the series must function correctly for

the overall system to operate. If one component fails, the

next in line takes over to maintain continuity. This

technique is commonly used in scenarios where high

reliability is critical, such as in power supply systems and

communication networks. Series redundancy ensures that

the failure of a single component does not lead to total

system failure, thereby increasing the system's overall

reliability. However, it can introduce higher latency and

complexity, as each component must be capable of

seamlessly taking over the task of the failed one.

Effective monitoring and maintenance are crucial to

managing the increased complexity and ensuring that all

components are functioning correctly. Series redundancy

can significantly enhance fault tolerance but requires

careful design to avoid single points of failure and ensure

smooth transitions between components.

System Reliability:

The reliability of a series system with n components is

the product of the reliability of each component Ri

Rs = R1 × R2 × ⋯ ⋅ Rn = ∏i=1
n  Ri

In a parallel configuration, the system continues to

function as long as at least one component is operational.

This configuration improves overall system reliability,

The reliability of a parallel system with n components is

calculated by the probability that at least one component

does not fail (Power and Kotonya, 2018).

Rp = 1 − ∏2=1
n  (1 − Ri)

In k-out-of-n redundancy, the system is operational as

long as at least k out of n components are functioning.

This is a common setup in fault-tolerant systems.

The reliability of a k-out-of-n system can be

calculated using the binomial probability formula:

Rk, n = ∑i=k
n  (n

i
)Ri(1 − R)n−i

Where  (n
i
) is the bionomial coffiecent and R is the

reliability of each component.

For a 2-out-of-3 system where each component has a

reliability of 0.95:

R2,3 = (
3

2
) ∗. 952 ∗ (1 − .95) + (

3

3
) ∗. 953

R23 = 3 ∗ 952 ∗ .05 + 1 ∗. 953

R23 = .135375 + .857375 = .99275

Redundancy affects the mean time to failure (MTTF)

and mean time to repair (MTTR) of a system. For a series

system, the system’s MTTF is lower because any single

failure will cause the system to fail (Kochhar and

Jabanjalin, 2017). Figure 1 displays the system model for

fault tolerance.

MTTF series=
1

∑i=1
n  

1

MTTF

Consensus Algorithms

Consensus algorithms are fundamental in distributed

systems to ensure that multiple nodes can agree on a

common state or decision, even in the presence of faults.

The mathematical models for consensus algorithms

typically revolve around ensuring properties such as

safety (no two nodes decide on different values) and

liveness (all non-faulty nodes eventually decide on a

value) (Polze et al., 2011).

Byzantine Fault Tolerance is crucial when dealing

with nodes that may fail or act maliciously. The objective

is to achieve consensus despite up to f Byzantine faults

among N nodes.

• Consensus can be achieved if and only if N≥3f+1

• The quorum size Q must satisfy Q>N+f/2

• Prepare phase: Q prepare≥ 2f+1

• Commit phase: Q commit≥2f+1

Ensures no two honest nodes commit different values.

Int. J. Exp. Res. Rev., Vol. 44: 208-220 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v44spl.018
211

For any two nodes ni, nj : where vi=vj

Ensures all non-faulty nodes eventually commit a

value.

∃t: ∀ni ∈ N − f

Paxos

A family of protocols for achieving consensus in a

network of unreliable processors. Paxos is designed for

environments where nodes can fail (crash fault tolerance)

but do not act maliciously (Mukwevho and Celik, 2018).

 A proposer sends a prepared request with proposal

number n to a quorum Q of acceptors. Acceptors respond

with the highest-numbered proposal they have accepted.

Q prepare>N/2

Acceptors promise not to accept any proposal

numbered less than n

The proposer sends an acceptance request for proposal

number n and value v to the quorum. Acceptors accept

the proposal if it is the highest number they have seen.

Q accept>N/2

Once a quorum of acceptors has accepted a proposal,

it is considered decided.

Safety: Q accept ∩Q prepare ≠ ∅

Raft:

A consensus algorithm designed to be easier to

understand and implement than Paxos. Raft simplifies

consensus by dividing the problem into leader election,

log replication and safety.

Table 1. Algorithm properties analysis.

Algorithms

Fault Model Nodes Required

(N)

Quorum Size

(Q)

Properties

PBFT Byzantine N≥3f+1 Q>N+f/2 Safety, Liveness, Tolerates faults

Paxos Crash N≥2f+1 Q>N/2 Safety, Liveness

Raft Crash N≥2f+1 Q>/2N Safety, Liveness

Fa
u

lt
 T

o
le

ra
n

ce

Storage

Storage Capacity

Disk IO and Bandwidth usage

Processing

Fault Detection Latency

Fault Recovery Efficiency

Job Priority

Fault Detection Latency

Fault Recovery Efficiency

Figure 1. System Model for fault tolerance.

Int. J. Exp. Res. Rev., Vol. 44: 208-220 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v44spl.018
212

A node becomes a leader if it receives votes from a

majority of nodes.

The leader wins if it receives votes ≥N/2+1.

The leader replicates log entries to a majority of

followers. Q log ≥ N/2+1 (Khan and Haroon, 2022).

A log entry is committed if it is stored on a majority

of nodes and the leader who created it is still in power.

Entry e is committed if ∃Q:e is in the logs of Q nodes and

 the leader’s term is valid. The properties of PBFT,

Paxos, and Raft algorithms are analysed in Table 1.

These mathematical models and properties help in

designing, analyzing and validating consensus algorithms

in distributed systems, ensuring they can achieve

agreement and maintain functionality despite faults.

Research Gap:

The objective of this research is to address the

pressing necessity for fault tolerance in distributed

systems, which are becoming increasingly complex and

vital for industries such as finance, healthcare, and cloud

computing. As these systems continue to expand, the risk

of various failures (e.g., hardware, software, and

network) grows, necessitating robust fault tolerance

mechanisms. The study aims to explore and enhance

existing fault tolerance techniques such as replication,

redundancy, and checkpointing and introduces predictive

machine learning models to provide a proactive approach

for mitigating potential failures. By employing predictive

analytics, the research seeks to anticipate failures before

they occur, thus improving the reliability and availability

of distributed systems.

Traditional fault tolerance techniques primarily focus

on reactive measures, addressing system failures only

after they have occurred. There is a lack of research on

proactive fault tolerance, especially leveraging predictive

machine learning models to pre-emptively identify and

mitigate faults before they impact the system. While fault

tolerance mechanisms are well-researched, their impact

on system performance, particularly in terms of

downtime reduction, mean time to recovery (MTTR), and

real-time responsiveness, has not been sufficiently

studied.

The proposed solution offers insights into how

proactive fault tolerance can enhance system reliability

while minimizing performance trade-offs. We utilize

supervised learning algorithms like Random Forests and

Gradient Boosting (Yadav et al., 2024) to achieve high-

accuracy fault predictions.

Related Work

Distributed systems are the backbone of modern

computing infrastructures, powering cloud services,

large-scale applications, and enterprise solutions. They

provide the scalability, flexibility, and resilience required

to handle vast amounts of data and serve millions of

users. However, the inherent complexity and

interdependencies within these systems make them

susceptible to various types of faults and failures.

Hardware malfunctions, software bugs, network

disruptions, and resource contention are just a few

examples of issues that can jeopardize system reliability

and availability (Srivastava et al., 2013).

Traditional fault tolerance techniques in distributed

systems typically involve reactive measures, such as

redundancy, failover mechanisms, and post-failure

recovery processes (Veer and Bhardwaj, 2024; Obadia et

al., 2014). While effective in many cases, these

approaches often address problems only after they have

impacted the system, leading to service interruptions,

data loss, and increased operational costs. In critical

applications, even brief downtimes can have significant

repercussions, from financial losses to reputational

damage (Kalaskar and Thangam, 2023).

To overcome the limitations of reactive fault

tolerance, there is a growing need for proactive strategies

that can predict and prevent failures before they occur.

This shift from reaction to anticipation is driven by the

advancements in machine learning (Mondal et al., 2023)

and artificial intelligence, which offer powerful tools for

analyzing and interpreting complex data patterns. By

harnessing these technologies, we can develop systems

capable of detecting early signs of potential issues and

taking preemptive actions to avoid faults (Gururaj et al.,

2023a). Table 2 shows the analyses of state-of-the-art

techniques of fault tolerance.

Int. J. Exp. Res. Rev., Vol. 44: 208-220 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v44spl.018
213

Methodology

The primary challenge in implementing proactive

fault tolerance in distributed systems is the ability to

accurately predict faults in a timely manner. This requires

sophisticated models that can process vast amounts of

real-time data, identify subtle anomalies, and forecast

impending failures with high precision. Additionally,

these models must be integrated seamlessly into existing

systems, providing actionable insights without

introducing significant overhead or complexity

(Venkataraman, 2023).

Traditional fault detection methods often rely on

predefined rules or simple statistical techniques, which

may not capture the dynamic and non-linear nature of

modern distributed systems. As a result, there is a

pressing need for more advanced approaches that

leverage the predictive power of machine learning. These

approaches must be capable of learning from historical

data, adapting to evolving system behaviours and

providing early warnings that enable preventive

maintenance and fault mitigation (Gururaj et al., 2023a).

Developing Predictive Models: Designing and training

machine learning models to predict a range of system

faults based on historical and real-time data (Haloi and

Chanda, 2024). This involves exploring various

algorithms, including supervised learning and deep

learning techniques, to identify the most effective models

for different types of faults.

Real-Time Fault Prediction: Implementing a real-

time monitoring and prediction system that can analyze

incoming data streams, detect anomalies, and forecast

potential failures. This system should provide sufficient

lead time for operators to take corrective actions before

faults occur (Gururaj et al., 2023b).

Integration and Scalability: Ensuring that the

predictive fault tolerance framework can be integrated

with existing distributed system architectures without

significant modifications. The solution should be scalable

to handle large volumes of data and adaptable to diverse

operational environments (Fox and Brewer, 1999).

Table 2. Critique of state-of-the-art techniques.

References Technique Finding

Dhingra and

Gupta, 2017

SVM, Decision Trees, Random Forest,

Fault Prediction, Preemptive

Migration

Machine learning can predict faults early,

reducing system downtime and operational

costs.

Yang et al.,

2023

LSTM, CNN, Hybrid Models,

Predictive Fault Management, Edge

Node Replication

Machine learning can predict faults early,

reducing system downtime and operational

costs.

Lima et al.,

2021

Neural Networks, Bayesian Networks,

Predictive Maintenance, Task

Migration

Neural networks effectively predict system

failures; proactive task migration minimizes

impact.

Bharany et al.,

2022

Various ML Algorithms (Survey),

Fault Detection, Resource

Redundancy

Ensemble methods generally outperform

individual models in predicting system faults.

Karadayi et al.,

2020

K-means, DBSCAN, LSTM, Anomaly

Detection, Preemptive Action

ML-based anomaly detection enhances early

fault detection in IoT systems.

AlOrbani et al.,

2021

Reinforcement Learning, Dynamic

Resource Allocation, Load Balancing

Reinforcement learning optimizes resource

allocation.

Chakrabarty et

al., 2019

Linear Regression, Gradient Boosting,

Fault Prediction, Redundant

Scheduling

Predictive models anticipate failures,

improving system reliability and uptime.

Al Qassem et

al., 2023

Random Forest, Logistic Regression,

Predictive Fault Management, Auto-

scaling

Random forest models are effective in

predicting cloud system faults; auto-scaling

improves robustness.

Seba et al., 2024

LSTM, CNN, Hybrid Models,

Predictive Fault Management, Edge

Node Replication

Combining temporal and spatial data in

hybrid models enhances fault tolerance in

edge computing.

Ren, 2021 Ensemble Methods (Bagging,

Boosting), Predictive Maintenance,

Hot Standby Redundancy

Ensemble learning methods significantly

reduce system downtime through effective

fault prediction.

Singh and

Singh, 2023
Feature selection and deep learning

Deep learning classifiers (CNN, FFNN,

RBN) improve fault prediction rate.

Int. J. Exp. Res. Rev., Vol. 44: 208-220 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v44spl.018
214

Result and Discussion

Conduction of extensive experiments to validate the

accuracy and effectiveness of the predictive models are

present in this section. This includes testing the system in

simulated and real-world distributed environments,

measuring its impact on system reliability, and comparing

it with traditional fault tolerance methods (Hien, 2023).

Table 3 displays the dataset.

In the table, the Event type attributes have various

numerical values, here 0 means submit an event, 1 means

scheduled event, and 2 means evict event. The priority

attribute, 0 means the lowest priority, and increasing

numerical value means the priority of the job is also

increasing. Task failure 0 means no failure and 1 means

the task failed. Task failure 0 means no failure and 1

means the task failed. Figure 2 displays the task failure

concerning CPU Req, Memory Req, and Disk Space Req.

Pre-process the Data

Read the data set and examine its contents. After

reading the data set, the next step is to understand the

structure, features, and target variables, Handle missing

values, encode categorical variables, and normalize

numerical features if necessary. In the next step Split the

data into features and target variables. For the training

purpose here the random forest (Swarnalatha et al., 2024)

machine learning techniques have been applied. We can

split the data set into several subsets of the data, build the

decision tree of all subsets of the data, and then we can

employ the approach of random forest to categorize the,

the new example will show the fault or not. Random

Forest is an ensemble machine learning algorithm that

combines the predictions of multiple decision trees to

improve accuracy and reduce overfitting. It is particularly

effective for classification tasks, such as predicting task

failures in distributed systems (Tiwari et al., 2024).

Table 3. Dataset for fault tolerance experimental validation.

Time Job_Id

Task

Index

Machine

Id

Event

Type Priority

CPU

Request

Memory

Requirement

Diskspace

Requirement

Task

Failure

1 1001 1 3001 0 0 0.5 0.1 0.02 0

2 1002 2 3002 1 1 0.7 .2 0.03 1

3 1003 1 3003 0 2 0.6 0.15 0.25 0

4 1004 2 3004 2 3 0.8 0.3 0.04 1

5 1005 1 3005 0 1 0.4 0.1 0.02 0

6 1006 2 3006 1 2 0.6 0.25 0.035 1

7 1007 1 3007 0 3 0.7 0.2 0.03 0

8 1008 2 3008 2 0 0.5 0.3 0.02 0

9 1009 1 3009 0 2 0.8 0.25 0.045 1

10 1010 2 3010 1 1 0.6 0.2 0.025 0

Figure 2. Task failure with respect to CPU Req, Memory Req, Disk Space Req.

0

0.2

0.4

0.6

0.8

1

1.2

Int. J. Exp. Res. Rev., Vol. 44: 208-220 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v44spl.018
215

Randomly samples subsets of the training data with

replacement to train each decision tree. Table 4 and Table

5 display the sample subset.

In the decision tree the target attribute is the task

failure, the main concern over here is to find out the

root node. In the above data set the feature is Time,

Task index, CPU request, and task failure. In the five

examples, we found three examples are the negative

example and two are the positive example. The

entropy of the entire data set is calculated by the

given mathematical model (Kirti et al., 2024b).

Figure 3 shows the Data subset of the Result for

ensemble model 1. Figure 3 shows the data subset of

the Result for ensemble model 1. Figure 4 and 5

demonstrate the decision tree 1 and 2.

 Entropy (𝑆) = −
2

5
log2 (

2

5
) −

3

5
log2 (

3

5
)

= (−
2

5
∗ −.397 −

3

5
∗ −.221)

= −4 ∗ −.397 − .6 ∗ −.221
= .2914

Similarly the entropy of task index calculated Entropy

of task index (Figure 4).

Figure 4. Decision tree 1.

Table 5. Samples subsets of the training data.

Time Task Index CPU

Request

Task Failure

6 2 0.6 1

7 1 0.7 0

8 2
0.5

1

9 1 0.8 0

10 2 0.6 1

We have another decision tree of above data set

Table 4. Samples subsets of the training data.

Time Task Index CPU Request Task Failure

1 1 .5 0

2 2 .7 1

3 1 .6 0

4 2 .8 1

5 1 .4 0

0

1

2

3

4

5

6

TIME TASK INDEX CPU REQUEST TASK FAILURE

Figure 3. Data subset of Result for ensemble model 1.

Int. J. Exp. Res. Rev., Vol. 44: 208-220 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v44spl.018
216

Figure 5. Decision tree 2.

After the ensemble learning, the new example

is classified according to the target attribute. The example

is given in the table (Sifat et al., 2024; Al-Dulaimy et al.,

2022). Table 6 displays the predicted task failure. Figure

6 shows the comparative model between actual or

predicted task failure.

The confusion matrix of above data set is given below

Predicted

Actual

TP TN

FP 3 1

FN 4 4

The accuracy of the model is calculated using the

formula (TP+TN)/(TP+TN+FP+FN)(TP+TN)/ (TP+TN+

FP+FN), which results in 70%. This means the model

correctly predicted 70% of the outcomes. The miss

classification rate is defined as (FN+FP)/

(TP+TN+FP+FN)*(FN+FP)/(TP+TN+FP+FN),

indicating the portion of incorrect predictions, while the

false positive rate (FPR) is 0.33, and the true positive rate

(TPR) is 0.75. Precision, which measures how many of

the predicted positives are correct, is also 0.75. A random

forest ensemble-based method was used by Lan and Li

(2008), which enhanced the model's fault prediction.

Because random forests are robust in forecasting

outcomes in complicated systems and can manage noisy

data, they are frequently used for fault tolerance.

The use of sophisticated machine learning models for

early failure detection is crucial, according to recent

research on fault tolerance in distributed systems.

Because of its intricacy, distributed systems are

vulnerable to errors that could seriously interrupt

operations. According to research, fault-tolerant systems

ought to strive for prompt fault detection and self-

recovery methods in addition to accuracy. To enhance

defect detection without depending on centralized

models, methods like federated learning, which handle

data in a decentralized fashion, are being investigated.

Hybrid models and deep learning are also important for

increasing fault tolerance, according to recent studies.

Techniques that combine ensemble approaches like

random forests and recurrent neural networks (RNNs) for

instance offer greater defect detection rates and flexibility

to changing contexts. Predictive maintenance and real-

time monitoring are also being used by fault tolerance

models nowadays to identify abnormalities early on, save

downtime, and maximize resource allocation. Therefore,

fault detection rates and system reliability can be greatly

increased by incorporating contemporary methods like

real-time monitoring and deep learning into conventional

fault tolerance models like the random forest.

Conclusion

The application of predictive machine learning models

significantly enhances fault tolerance in distributed

systems by proactively addressing potential issues. Our

analysis focused on employing Random Forest, a robust

ensemble learning algorithm, to predict task failures

within a distributed environment. The Random Forest

model exhibited high accuracy in forecasting task

failures, thereby substantially decreasing the likelihood of

unexpected system downtimes. By analysing historical

data, the Random Forest model identifies patterns and

Table 6. Predicted Task Failure.

Time Job_Id

Task

Index

Machine

Id

Event

Type Priority

Cpu

Request

Memory

Req

Diskspace

Req

Task

Failure

Predicted

Task

Failure

1 1001 1 3001 0 0 0.5 0.1 0.02 0 0

2 1002 2 3002 1 1 0.7 .2 0.03 1 1

3 1003 1 3003 0 2 0.6 0.15 0.25 0 0

4 1004 2 3004 2 3 0.8 0.3 0.04 1 1

5 1005 1 3005 0 1 0.4 0.1 0.02 0 1

6 1006 2 3006 1 2 0.6 0.25 0.035 1 0

7 1007 1 3007 0 3 0.7 0.2 0.03 0 0

8 1008 2 3008 2 0 0.5 0.3 0.02 0 0

9 1009 1 3009 0 2 0.8 0.25 0.045 1 1

10 1010 2 3010 1 1 0.6 0.2 0.025 0 1

Int. J. Exp. Res. Rev., Vol. 44: 208-220 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v44spl.018
217

anomalies that typically precede faults. This capability

allows for timely interventions, as the model can signal

potential issues before they develop into critical failures.

The proactive nature of this fault tolerance approach

facilitates preemptive maintenance and resource

reallocation; further minimizing system downtime and

enhancing overall reliability. Early detection of potential

failures empowers system administrators to take

corrective actions before issues escalate. For instance, if

the model predicts a hardware component is likely to fail,

administrators can replace the component during a

scheduled maintenance window, rather than waiting for it

to fail and cause an unscheduled outage. Similarly, if the

model identifies an application likely to experience a

software fault, administrators can deploy patches or

redistribute workloads to mitigate the impact. By

employing a Random Forest model to anticipate and stop

task failures, the suggested technique increases fault

tolerance in distributed systems. This proactive strategy

improves resource management, strengthens maintenance

plans, and decreases system downtime. It enables prompt

actions before problems worsen, which results in cost

savings and improved dependability. All things

considered, the approach guarantees improved scalability

and performance in big, complicated systems. The

Random Forest model may struggle with highly dynamic

environments where new failure patterns emerge rapidly,

limiting its ability to adapt. It also requires significant

historical data for accurate predictions, which may not

always be available. Additionally, the model's complexity

can lead to higher computational costs in large-scale

systems.

Conflict of Interest

The authors declare no conflict of interest.

Figure 6. Comparative model in between task failure

actual or task failure Predicted.

References

Al-Dulaimy, A., Sicari, C., Papadopoulos, A. V.,

Galletta, A., Villari, M., & Ashjaei, M. (2022,

September). Tolerancer: A fault tolerance approach

for cloud manufacturing environments. In 2022

IEEE 27th International Conference on Emerging

Technologies and Factory Automation (ETFA), pp.

1-8.

 https://doi.org/10.1109/ETFA52439.2022.9921606

Al Qassem, L. M., Stouraitis, T., Damiani, E., & Elfadel,

I. A. M. (2023). Proactive random-forest autoscaler

for microservice resource allocation. IEEE Access,

11, 2570-2585.

 https://doi.org/10.1109/ACCESS.2023.3234021

AlOrbani, A., & Bauer, M. (2021). Load balancing and

resource allocation in smart cities using

reinforcement learning. In 2021 IEEE

International Smart Cities Conference (ISC2), pp.

1-7.

https://doi.org/10.1109/ISC253183.2021.9562941

Bandari, V. (2020). Proactive Fault Tolerance Through

Cloud Failure Prediction Using Machine Learning.

ResearchBerg Review of Science and Technology,

3(1), 51-65. Retrieved from

https://researchberg.com/index.php/rrst/article/vie

w/54

Bessani, A., Sousa, J., & Alchieri, E. E. (2014, June).

State machine replication for the masses with BFT-

SMART. In 2014 44th Annual IEEE/IFIP

International Conference on Dependable Systems

and Networks, pp. 355-362.

 https://doi.org/10.1109/DSN.2014.43

Bharany, S., Badotra, S., Sharma, S., Rani, S., Alazab,

M., Jhaveri, R. H., & Gadekallu, T. R. (2022).

Energy efficient fault tolerance techniques in green

cloud computing: A systematic survey and

taxonomy. Sustainable Energy Technologies and

Assessments, 53, 102613.

 https://doi.org/10.1016/j.seta.2022.102613

Chakrabarty, N., Kundu, T., Dandapat, S., Sarkar, A., &

Kole, D. K. (2019). Flight arrival delay prediction

using gradient boosting classifier. In Emerging

Technologies in Data Mining and Information

Security: Proceedings of IEMIS 2018, 2, 651-659).

https://doi.org/10.1007/978-981-13-1498-8_57

Dhingra, M., & Gupta, N. (2017). Comparative analysis

of fault tolerance models and their challenges in

cloud computing. International Journal of

Engineering & Technology, 6(2), 36-40.

https://doi.org/10.14419/ijet.v6i2.7565

Eckart, B., Chen, X., He, X., & Scott, S. L. (2008).

0

10

20

30

40

50

60

FAILURE Task Failure

TIME TASK Predicted

Int. J. Exp. Res. Rev., Vol. 44: 208-220 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v44spl.018
218

Failure prediction models for proactive fault

tolerance within storage systems. In 2008 IEEE

International Symposium on Modeling, Analysis

and Simulation of Computers and

Telecommunication Systems, pp. 1-8.

https://doi.org/10.1109/MASCOT.2008.4770560

Elnozahy, E. N., Alvisi, L., Wang, Y. M., & Johnson, D.

B. (2002). A survey of rollback-recovery protocols

in message-passing systems. ACM Computing

Surveys (CSUR), 34(3), 375-408.

 https://doi.org/10.1145/568522.56852

Fox, A., & Brewer, E. A. (1999, March). Harvest, yield,

and scalable tolerant systems. In Proceedings of

the seventh workshop on hot topics in operating

systems, pp. 174-178.

 https://doi.org/10.1109/HOTOS.1999.798396

Garg, S. (2022). Task resource usage of Google Cluster

Usage Trace dataset [Data set]. Zenodo.

https://doi.org/10.5281/zenodo.6979672

Gossman, M. J., Nicolae, B., & Calhoun, J. C. (2024).

Scalable I/O aggregation for asynchronous multi-

level checkpointing. Future Generation Computer

Systems, 160, 420-432, ISSN 0167-739X.

https://doi.org/10.1016/j.future.2024.06.003

Gururaj, H. L., Flammini, F., Swathi, B. H., Nagaraj, N.,

& Ramesh, S. K. B. (2023a). Fault tolerance of

network routers using machine learning

techniques. In Big Data Analytics and Intelligent

Systems for Cyber Threat Intelligence, pp. 253-

274. River Publishers, eBook ISBN

9781003373384.

Gururaj, H. L., Flammini, F., Swathi, B. H., Nagaraj, N.,

& Ramesh, S. K. B. (2023b). Machine Learning

Techniques for Fault Tolerance Management. In

Computational Intelligence for Cybersecurity

Management and Applications, pp. 83-100. CRC

Press, eBook ISBN 9781003319917.

Haloi, R., & Chanda, D. (2024). Performance Analysis of

KNN, Naïve Bayes, and Extreme Learning

Machine Techniques on EEG Signals for Detection

of Parkinson’s Disease. International Journal of

Experimental Research and Review, 43(Spl Vol),

32–41.

https://doi.org/10.52756/ijerr.2024.v43spl.003

Hasan, D., & Zeebaree, S. R. (2024). Proactive Fault

Tolerance in Distributed Cloud Systems: A Review

of Predictive and Preventive Techniques.

Indonesian Journal of Computer Science, 13(2).

https://doi.org/10.33022/ijcs.v13i2.3808

Hien, P. T. (2023). Adaptive Fault Tolerance

Mechanisms for Enhancing Service Reliability in

Cloud Computing Environments. Eigenpub Review

of Science and Technology, 7(1), 252-265.

Retrieved from

https://studies.eigenpub.com/index.php/erst/article/

view/35

Kalaskar, C., & Thangam, S. (2023). Fault tolerance of

cloud infrastructure with machine learning.

Cybernetics and Information Technologies, 23(4),

26-50. https://doi.org/10.2478/cait-2023-0034

Karadayi, Y., Aydin, M. N., & Öǧrencí, A. S. (2020).

Unsupervised anomaly detection in multivariate

spatio-temporal data using deep learning: early

detection of COVID-19 outbreak in Italy. IEEE

Access, 8, 164155-164177.

 https://doi.org/10.1109/ACCESS.2020.3022366

Khan, W., & Haroon, M. (2022). An efficient framework

for anomaly detection in attributed social networks.

International Journal of Information Technology,

14(6), 3069-3076. https://doi.org/10.1007/s41870-

022-01044-2

Kirti, M., Maurya, A. K., & Yadav, R. S. (2024a).

Fault‐tolerance approaches for distributed and

cloud computing environments: A systematic

review, taxonomy and future directions.

Concurrency and Computation: Practice and

Experience, 36(13), e8081.

 https://doi.org/10.1002/cpe.8081

Kirti, M., Maurya, A. K., & Yadav, R. S. (2024b). A

Fault‐tolerant model for tuple space coordination

in distributed environments. Concurrency and

Computation: Practice and Experience, 36(1),

e7884. https://doi.org/10.1002/cpe.7884

Kochhar, D., & Jabanjalin, H. (2017). An approach for

fault tolerance in cloud computing using machine

learning technique. International Journal of Pure

and Applied Mathematics, 117(22), 345-351.

https://api.semanticscholar.org/CorpusID:1950630

43

Kumar, A., Dutta, S., & Pranav, P. (2023). Supervised

learning for Attack Detection in Cloud. Int. J. Exp.

Res. Rev., 31(Spl Volume), 74-84.

 https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.008

Lan, Z., & Li, Y. (2008). Adaptive fault management of

parallel applications for high-performance

computing. IEEE Transactions on Computers,

57(12), 1647-1660.

 https://doi.org/10.1109/TC.2008.90

Lima, A. L. D. C. D., Aranha, V. M., Carvalho, C. J. D.

L., & Nascimento, E. G. S. (2021). Smart

predictive maintenance for high-performance

computing systems: a literature review. The

Int. J. Exp. Res. Rev., Vol. 44: 208-220 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v44spl.018
219

Journal of Supercomputing, 77(11), 13494-13513.

https://doi.org/10.1007/s11227-021-03811-7

Lu, L. T., Zhu, S. L., Wang, D. M., & Han, Y. Q. (2024).

Distributed adaptive fault-tolerant control with

prescribed performance for nonlinear multiagent

systems. Communications in Nonlinear Science

and Numerical Simulation, 138, 108222.

 https://doi.org/10.1016/j.cnsns.2024.108222

Mondal, S., Nag, A., Barman, A. K., & Karmakar, M.

(2023). Machine Learning-based maternal health

risk prediction model for IoMT framework.

International Journal of Experimental Research

and Review, 32, 145–159.

 https://doi.org/10.52756/ijerr.2023.v32.012

Mukwevho, M. A., & Celik, T. (2018). Toward a smart

cloud: A review of fault-tolerance methods in

cloud systems. IEEE Transactions on Services

Computing, 14(2), 589-605.

 https://doi.org/10.1109/TSC.2018.2816644

Obadia, M., Bouet, M., Leguay J., Phemius K. and

Iannone L. , (2014) Failover mechanisms for

distributed SDN controllers, 2014 International

Conference and Workshop on the Network of the

Future (NOF), Paris, France, 2014, pp. 1-6.

https://doi.org/10.1109/NOF.2014.7119795

Polze, A., Tröger, P., & Salfner, F. (2011, March).

Timely virtual machine migration for pro-active

fault tolerance. In 2011 14th IEEE International

Symposium on Object/Component/Service-

Oriented Real-Time Distributed Computing

Workshops, pp. 234-243.

 https://doi.org/10.1109/ISORCW.2011.42

Power, A., & Kotonya, G. (2018, June). A microservices

architecture for reactive and proactive fault

tolerance in IoT systems. In 2018 IEEE 19th

International Symposium on" A World of Wireless,

Mobile and Multimedia Networks (WoWMoM),

pp. 588-599.

 https://doi.org/10.1109/WoWMoM.2018.8449789

Pal, R., Pandey, M., Pal, S., & Yadav, D. (2023).

Phishing Detection: A Hybrid Model with Feature

Selection and Machine Learning Techniques. Int.

J. Exp. Res. Rev., 36, 99-108.

 https://doi.org/10.52756/ijerr.2023.v36.009

Ren, Y. (2021). Optimizing predictive maintenance with

machine learning for reliability improvement.

ASCE-ASME Journal of Risk and Uncertainty in

Engineering Systems, Part B: Mechanical

Engineering, 7(3), 030801.

 https://doi.org/10.1115/1.4049525

Seba, A. M., Gemeda, K. A., & Ramulu, P. J. (2024).

Prediction and classification of IoT sensor faults

using hybrid deep learning model. Discover

Applied Sciences, 6(1), 9.

 https://doi.org/10.1007/s42452-024-05633-7

Siddiqui, Z. A., & Haroon, M. (2023). Analysis of

Challenges for Blockchain Adoption in Enterprise

Distributed Applications. International Journal on

Recent and Innovation Trends in Computing and

Communication, 11(8s), 474–482.

 https://doi.org/10.17762/ijritcc.v11i8s.7228

Siddiqui, Z. A., & Haroon, M. (2024). Ranking of

components for reliability estimation of CBSS: an

application of entropy weight fuzzy comprehensive

evaluation model. International Journal of System

Assurance Engineering and Management, pp. 1-

15. https://doi.org/10.1007/s13198-024-02263-5

Sifat, M. M. H., & Das, S. K. (2024). Proactive and

Reactive Maintenance Strategies for Self-Healing

Digital Twin Islanded Microgrids Using Fuzzy

Logic Controllers and Machine Learning

Techniques. IEEE Transactions on Power Systems.

https://doi.org/10.1109/TPWRS.2024.3408096

Singh, D. P., & Singh, S. K. (2023). Precision fault

prediction in motor bearings with feature selection

and deep learning. Int. J. Exp. Res. Rev, 32, 398-

407. https://doi.org/10.52756/ijerr.2023.v32.035

Srivastava, S., Haroon, M., & Bajaj, A. (2013,

September). Web document information extraction

using class attribute approach. In 2013 4th

International Conference on Computer and

Communication Technology (ICCCT), pp. 17-22.

https://doi.org/10.1109/ICCCT.2013.6749596

Sun, S., Yao, W., & Li, X. (2018). DARS: A dynamic

adaptive replica strategy under high load Cloud-

P2P. Future Generation Computer Systems, 78, 31-

40. https://doi.org/10.1016/j.future.2017.07.046

Swarnalatha, K., Narisetty, N., Rao Kancherla, G., &

Bobba, B. (2024). Analyzing Resampling

Techniques for Addressing the Class Imbalance in

NIDS using SVM with Random Forest Feature

Selection. International Journal of Experimental

Research and Review, 43(Spl Vol), 42–55.

https://doi.org/10.52756/ijerr.2024.v43spl.004

Tiwari, R. G., Haroon, M., Tripathi, M. M., Kumar, P.,

Agarwal, A. K., & Jain, V. (2024) A System

Model of Fault Tolerance Technique in Distributed

System and Scalable System Using Machine

Learning. In Software-Defined Network

Frameworks, pp. 1-16. CRC Press, eBook ISBN

9781003437482.

Veer, A. S., & Bhardwaj, S. (2024, February). An

Int. J. Exp. Res. Rev., Vol. 44: 208-220 (2024)

DOI: https://doi.org/10.52756/ijerr.2024.v44spl.018
220

Adaptive Storage Switching Algorithm for Fault-

Tolerant Network Attached Storage systems. In

2024 2nd International Conference on Computer,

Communication and Control (IC4), pp. 1-7.

https://doi.org/10.1109/IC457434.2024.10486061

Venkataraman, N. (2023). Proactive fault prediction of

fog devices using LSTM-CRP conceptual

framework for IoT applications. Sensors, 23(6),

2913. https://doi.org/10.3390/s23062913

Yadav, P., Bhargava, C. P., Gupta, D., Kumari, J.,

Acharya, A., & Dubey, M. (2024). Breast Cancer

Disease Prediction Using Random Forest

Regression and Gradient Boosting Regression.

International Journal of Experimental Research

and Review, 38, 132–146.

 https://doi.org/10.52756/ijerr.2024.v38.012

Yang, Y., Mei, J., Zhang, Z., Long, Y., Liu, A., Gao, Z.,

& Rui, L. (2023). Lightweight Fault Prediction

Method for Edge Networks. IEEE Internet of

Things Journal.

 https://doi.org/10.1109/JIOT.2023.3333293

Zou, Y., Yang, L., Jing, G., Zhang, R., Xie, Z., Li, H., &

Yu, D. (2024). A survey of fault tolerant consensus

in wireless networks. High-Confidence Computing,

4(2), 100202.

 https://doi.org/10.1016/j.hcc.2024.100202

How to cite this Article:

Mohd Haroon, Zeeshan Ali Siddiqui, Mohammad Husain, Arshad Ali, and Tameem Ahmad (2024). A Proactive Approach to Fault

Tolerance Using Predictive Machine Learning Models in Distributed Systems. International Journal of Experimental Research and

Review, 44, 208-220.

DOI : https://doi.org/10.52756/ijerr.2024.v44spl.018

https://creativecommons.org/licenses/by-nc-nd/4.0/

