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Introduction 

Medical imaging is the technique used to generate 

visual representations of interior structures of the human 

body for diagnostic purposes. This term covers various 

technologies used to diagnose the human body, to monitor 

the human body and to treat medical conditions. Medical 

imaging is a multidisciplinary field that includes machine 

learning, computer vision, and image processing (Elyan et 

al., 2022). It plays a vital role in various areas of medical 

research, including ophthalmology. The optic nerve serves 

as the pathway for transmitting signals from the eye to the 

brain. Glaucoma is an eye disease that causes damage to 

the optic nerve. Such damage disrupts signal transmission 

to the brain, potentially resulting in blindness. As per a 

survey conducted by WHO, the prevalence of glaucoma, 

an age-related eye condition, is projected to increase by 1.3 

times from 76 million in 2020 to 95.4 million by 2030. 

Figure 1 illustrates the estimated global population 

affected by degeneration and glaucoma according to the 

WHO survey (2022). According to Prevalence surveys, 

111.8 million people worldwide will suffer from glaucoma 

by 2040 (Tham et al., 2014). 

Glaucoma is a progressive eye disease which can be 

identified by analyzing damages in the optic nerve; this is 

the leading cause of irreversible vision loss if untreated. 

Elevated intraocular pressure (IOP), also known as ocular 

hypertension, is responsible for this damage. When the 

eye's fluid does not drain properly, it creates high IOP 

inside the eye and damages the optic nerve head, and the 

result is abnormal optic cup and disc size. The peripheral 

neuro-retinal rim and the bright central optic cup are the 

two zones that form the optic disc in fundus imaging 

(Govindan et al., 2024). All people possess optic disc (OD) 

and cup. However, abnormal cup and disc size shows 

glaucoma. The abnormal size of the optic cup and optic 

disc can be evaluated using the cup-to-disc ratio (CDR). 
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Abstract: A progressive optic nerve condition called glaucoma causes irreversible 

eyesight loss. Retinal fundus imaging has been used in recent years to diagnose retinal 

diseases. Analyzing these images effectively requires pinpointing the areas of interest, 

which can be tricky due to fundus images' anatomy and vascular patterns. Different 

image segmentation techniques are used to extract the area of interest from the fundus 

images. This paper explores the various segmentation methodologies, emphasizing 

conventional and modern retinal fundus image segmentation approaches. Evaluation 

measures such as the Disc damage likelihood scale, Inferior superior temporal region, 

Dice similarity coefficient, Jaccard index, Sensitivity and Specificity are used to 

measure the effectiveness of segmentation algorithms, which detect small structural 

changes that indicate glaucomatous damage. Furthermore, this paper also provides a 

detailed analysis of deep learning algorithms used for optic cup and optic disc 

segmentation. It shows that the deep learning model achieved higher accuracy on small 

datasets, but the accuracy percent is degraded on larger datasets. This detailed analysis 

demonstrates that accurate disc and cup segmentation remains a significant challenge 

and suggests that effective segmentation strategies and deep learning approaches are 

required for vast and complex datasets. 
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The CDR ranges from 0.1 mm to 0.9 mm, 0.5 mm or more 

CDR value is seen as indicative of glaucoma. If it is less 

than 0.5 mm, CDR is considered normal. 

 

High intraocular pressure depends on the drainage 

capability of the aqueous humor drainage system inside the 

eye  (Gupta et al., 2021). This system depends on genetic 

predispositions and age-related changes. High aqueous 

humor production and high intraocular pressure depend on 

the drainage capability of the drainage system of aqueous 

humor inside the eye (Gupta et al., 2021). This system 

depends on genetic predispositions and age-related 

changes. High aqueous humor production and high 

drainage lead to no IOP, high aqueous humor production 

and low drainage lead to high IOP, Low aqueous humor 

production and high drainage lead to No IOP and in case 

of low drainage and low aqueous humor, production may 

be the cause of glaucoma. Table 1 shows the relationship 

between IOP and the Eye fluid drainage system. 

Other reasons for glaucoma include ethnicity (certain 

ethnic groups, such as African Americans and people of 

Asian descent, have a higher risk of developing glaucoma 

and high intraocular pressure), eye conditions like uveitis, 

certain medical conditions such as diabetes, and some 

medications like corticosteroids (Delgado et al., 2019; Una 

et al., 2019). Figure 2 shows the major risk factors of 

glaucoma. 

In recent years, a combination of computer vision 

techniques and clinical attributes of fundus images like an 

optic cup, optic disc, ISNT, etc. have been employed to 

effectively detect and monitor glaucoma. Prominent 

computer vision techniques like object detection, semant- 

Figure 1. Estimated global population affected by age-related macular 

degeneration and glaucoma. 

Figure 2. Glaucoma Risk Factor. 
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ic segmentation, panoptic segmentation, etc. have been 

used for glaucoma detection. These computer vision 

techniques are used to analyze glaucoma using clinical 

attributes. Clinical attributes required for glaucoma 

detection include cup-to-disc ratio, disc and cup shape, 

RNFL thickness, blood vessel analysis, Inferior, superior 

nasal temporal (ISNT) rule (Sivapriya & Keerthika, 2022), 

etc. These attributes are important for the glaucoma 

detection process because they help in standardization 

(Automated analysis helps ensure consistency in 

evaluating these parameters across different exams.), 

quantification (Computer vision allows for objective 

measurement of these parameters, reducing subjectivity 

compared to manual assessment.), and early detection 

(Some parameters may be able to detect subtle changes 

earlier than traditional methods.). However, the accuracy 

of the analysis depends heavily on the quality of retinal 

images. Retinal images are captured through the fundus 

cameras; the fundus camera captures color photographs of 

the retina and posterior segment of the eye. These images 

are valuable in evaluating the structural alterations in the 

eye related to glaucoma. An important structural change in 

glaucoma is the modification in the shape of the optic disc, 

which is seen as a bright elliptical structure in the color 

fundus images, as depicted in Figure 3. 

 
Figure 3. Anatomy of Eye Image. 

Fundus imaging is now considered as an aspect of 

identifying and monitoring glaucoma. However, analyzing 

these images effectively requires pinpointing the areas of 

interest, which can be tricky due to fundus images' 

anatomy and vascular patterns (Medhi et al., 2023). Image 

segmentation techniques are used to extract the region of 

interest from these complex images.  Segmentation 

involves separating and outlining structures or areas of 

focus in an image (L. K. Singh et al., 2020). Segmentation 

algorithms play a role in extracting features linked to 

glaucoma in fundus images, such as the optic cup and optic 

disc. In this paper, an analysis has been done by applying 

different segmentation approaches to some datasets. The 

major contributions of this research paper are as follows: 

#This paper presents a systematic review of literature 

in the broad domain of glaucoma detection using image 

segmentation and presents datasets, techniques, and 

evaluation measures used in this domain.  

# To the best of our knowledge, no work thoroughly 

applies different image segmentation techniques on a 

dataset to provide a comprehensive comparison. 

The rest of this paper is structured as follows: Section 

2 discusses the commonly used terminologies used for 

glaucoma detection using Fundus. Further, this section 

describes the different types of image segmentation 

techniques. Section 3 reviewed the existing segmentation 

methods used for glaucoma detection. Section 4 describes 

various fundus image data sets, Evaluation matrices to 

check the effectiveness of the glaucoma detection methods 

and comparative studies of deep learning-based and non-

deep learning-based segmentation methods. Section 5 

describes the conclusion and future scope of this study. 

Background 

This section discusses the preliminaries required for a 

better understanding of the remaining parts of this paper. 

This section discusses commonly used terminologies 

related to Fundus images and segmentation. It further 

provides an overview of various available image 

segmentation techniques. 

# Optic disc: The optic disc is the point in the eye where 

the optic nerve and retina meet. Visual information from 

the eye to the brain is transmitted through the cluster of 

around 1.2 million densely packed nerve cells, which 

creates a slightly elevated region with a central depression. 

A typical optic disc in a healthy eye has a diameter of 

around 1.5 mm and appears orange to pink, whereas a 

glaucomatous optic disc is pallid (Rawat & Kurmi, 2020).  

# Optic cup: The optic cup is a central depression 

located within the OD. It is created by the densely packed 

Table 1. Relation between IOP and eye fluid drainage system. 

 

 

Drainage 

Aqueous Humor Production 

 High Low 

High No IOP No IOP 

Low  IOP May be 



Int. J. Exp. Res. Rev., Vol. 42: 328-342 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v42.029 
331 

nerve cells passing through a small eye-opening. A healthy 

optic nerve exhibits a tiny optic cup as a result of the 

presence of thick, densely packed nerve cells along its 

margins. In disorders such as glaucoma, the nerve cells are 

damaged, leading to an expansion of the optic cup. In 

individuals without any abnormalities, the OC size is one-

third of the OD size (Sahu and Kaur, 2021). 

# Optic cup to optic disc ratio: Optic cup to optic disc 

ratio (CDR) evaluated as the ratio of OC length to OD 

length as shown in Equation 1. It is a diagnostic measure 

used to identify glaucoma. A high CDR value is usually 

indicative of optic nerve damage. Figure 2 illustrates the 

OD and OC within the human eye (Chan et al., 2017). 

    𝑐𝑑𝑟 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑝𝑡𝑖𝑐 𝑐𝑢𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑝𝑡𝑖𝑐 𝐷𝑖𝑠𝑐
            (1) 

# Retinal vessels: The arteries and veins that are near to 

one another are referred to as retinal vessels. Retinal 

vessels in fundus images play a critical role in glaucoma 

detection by indicating structural changes and 

abnormalities such as vessel thinning, occlusions, and 

altered blood flow patterns. Analysis of retinal vessel 

parameters like diameter, tortuosity, and the ISNT rule 

aids in early diagnosis and monitoring of glaucomatous 

optic nerve (Thakur and Juneja, 2021). 

Segmentation Techniques 

A retinal fundus image consists of multiple 

physiological parts; only a few parts are important in 

determining glaucoma. Retinal fundus image 

segmentation helps segregate these crucial aspects from 

the image. Traditionally, retinal image segmentation for 

glaucoma detection has relied on techniques like 

thresholding, edge detection, and region-based methods. 

These approaches often require parameter tuning and can 

struggle with variations in image quality and illumination. 

However, recent advancements have seen the rise of deep 

learning-based segmentation. Convolutional neural 

networks (CNNs) have demonstrated remarkable 

capabilities in accurately segmenting the OD and OC from 

complex retinal images. These deep learning models can 

learn intricate hidden patterns from large datasets and 

achieve impressive accuracy compared to traditional 

methods. Moreover, hybrid methods that combine 

traditional techniques with deep learning frameworks have 

emerged, leveraging the strengths of both approaches to 

achieve even greater segmentation performance. This 

diverse array of segmentation techniques underscores the 

ongoing efforts to refine glaucoma detection methods, 

aiming to improve patient outcomes through early 

diagnosis and intervention. Figure 4 shows various types 

of segmentation techniques. 

 
Figure 4. Types of Segmentation Techniques. 

Threshold-based segmentation technique: Thresholding is 

a basic segmentation method employed to convert 

grayscale or coloured images into binary representations. 

This technique creates a segmented image by using a 

threshold value to differentiate colours below and above 

the threshold. Pixels are divided into partitions based on 

their intensity values (Chatterjee et al., 2021). The process 

of global thresholding involves segmenting the image into 

segments using Equation 2. 

𝑡(𝑟, 𝑠) = {
1, 𝑖𝑓 𝑡(𝑟, 𝑠) > 𝑇𝑑

0, 𝑖𝑓 𝑡(𝑟, 𝑠) ≤ 𝑇𝑑
 

}                                   (2) 

Here t(r, s) is the value of the binary image at the 

coordinates (r, s) and Td is the optimal threshold value. 

When using variable thresholding, the value of T might 

vary across the image based on the surrounding pixels at 

(o,p) as given in Equation 3. However, the process of 

multi-thresholding involves specific thresholds, Td1 and 

Td2. 

  t(o,p= {

𝑎, 𝑖𝑓 𝑓(𝑜, 𝑝) > 𝑇𝑑2
𝑏, 𝑖𝑓 𝑇𝑑1 < 𝑓(𝑜, 𝑝) ≤ 𝑇𝑑2

𝑐, 𝑖𝑓 𝑓(𝑜, 𝑝) ≤ 𝑇𝑑1
}                    (3)           

Otsu's Method is a widely used technique for 

automatically determining the optimal threshold value in 

image segmentation. By maximising the pixel values 

between class variations, the threshold is determined. The 

drawbacks of the threshold-based approach include that it 

may not work well for images with low contrast or 

overlapping intensity distributions, and it is challenging to 

handle intricate retinal features like blood vessels.  

# Edge-based segmentation technique: Edge-based 
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segmentation in computer vision and image processing 

focuses on identifying and analyzing object boundaries 

within images by detecting edges, which are sharp changes 

in color or intensity that signify divisions between 

different sections or objects (Ilesanmi et al., 2023). The 

process involves two main steps: edge detection and edge 

linking. Common edge detection techniques include 

Scharr, Canny, Sobel, and Prewitt operators. Methods such 

as the Hough Transform or contour tracing are used to 

connect detected edges. Clinicians can use edge-based 

segmentation to enhance glaucoma diagnosis and 

monitoring by classifying image pixels based on texture, 

color, and gray discontinuities. This approach helps in 

feature extraction, OD and OC detection, and RNFL 

thickness estimation. Algorithms like Canny, Sobel, and 

Laplacian of Gaussian (LoG) are frequently applied in 

edge-based segmentation. 

# Watershed-based segmentation technique: The 

Watershed algorithm is used for segmenting images with 

touching or overlapping objects by treating the grayscale 

image as a topographic surface, where pixel values 

represent elevation (Rao et al., 2021). This method views 

the image as a landscape with ridges and valleys, with 

elevation defined by pixel grey values or gradient 

magnitudes. Researchers utilize this approach to partition 

images into distinct regions based on gradient information, 

accurately delineating key anatomical structures. This 

segmentation technique helps identify structural 

abnormalities associated with glaucoma, such as OD 

cupping and RNFL thinning, allowing for precise disease 

severity assessments. Additionally, it facilitates extracting 

quantitative measurements like disc-to-cup ratio and 

RNFL thickness, enhancing automated glaucoma 

detection systems and improving patient management.  

# Clustering-based segmentation technique: 

Clustering-based segmentation offers an approach to 

analyze images and spot changes related to the glaucoma 

disease. Considering factors like pixel intensity, color and 

texture, this method employs clustering algorithms such as 

k and fuzzy c means to divide the image into regions with 

characteristics. This process of grouping pixels into 

clusters assists in outlining anatomical features. These 

methods are beneficial in pinpointing abnormalities such 

as cupping of the disc (OD) or thinning of the nerve fiber 

layer (RNFL) (Jiang et al., 2012). 

# Label set approach-based segmentation: Topology 

issues that arise during the evolution of curves can be 

successfully resolved with the level-set method. The 

fundamental concept is to depict the surfaces or curves as 

the zero-level set of a hyper-surface with higher 

dimensions, manages topological change very well and 

also yields more accurate numerical implementations 

(Saha et al., 2023). The term "level set" refers to the closed 

curve C with auxiliary function W that is represented in 

two dimensions. In Equation 4, C is regarded as the zero 

level of ø. 

 𝐶 = {(𝑜, p)|ø(𝑜, 𝑝) = 0}            (4) 

The evolution of ϕ is governed by the level set equation, 

as given in Equation 5. 

  
𝜕𝜙

𝜕𝑡𝑖
+ 𝐹|𝛻𝜙| = 0             (5) 

Where: ϕ(o,p,t) is a level set function at time ti, the time 

derivative of ϕ is, ∇ϕ is the gradient of ϕ, and F is the speed 

function that controls the motion of the level set. 

# Deep learning-based segmentation technique: Deep 

learning-based segmentation techniques have been an 

advanced approach for detecting glaucoma in recent years, 

bringing a revolution in medical imaging. Convolutional 

neural networks (CNNs) are essential in deep learning to 

extract hierarchical features from images [24]. It can 

effectively identify features once it has been trained on 

extensive data sets of annotated retinal images. These 

networks capture complex spatial dependencies and image 

variations by using multiple convolutional layers and 

provide accurate and reliable segmentation. Deep 

learning-based methods are scalable and adaptable, 

enabling models to generalize across various datasets and 

imaging modalities(Saha et al., 2023). By using deep 

learning techniques, researchers can develop automated 

tools for early diagnosis, monitoring disease progression, 

and disease treatment (Ma et al., 2024). 

Related Work 

This section discusses the techniques used by different 

researchers to segment the OD and OC, as indicated in 

Section II. Zahoor & Fraz (2017) proposed a method for 

the localization of the optic disc in fundus images using a 

combination of the circular hough transform and a polar 

transform-based adaptive thresholding technique. On the 

MESSIDOR dataset, the method achieved 99.18% 

accuracy in 1.8 seconds. For the DIARETDB1 dataset, the 

accuracy was 99.37%, with a processing time of 1.3 

seconds. The DRIONS-DB dataset yielded an accuracy of 

99.86% and a processing time of 1.6 seconds. Similarly, 

the DRIVE dataset achieved an accuracy of 99.80% with 

a processing time of 1.6 seconds. Lastly, the RIM-ONE 

dataset resulted in an accuracy of 97.7%. However, small 

and imbalanced datasets may limit the generalizability and 

robustness of the proposed methodology. The restriction of 

optic disc retinal image has been removed by 

Sevastopolsky (2017) as their research proposes the 
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segmentation of optical disc and optic cup. This paper 

utilized a modified U-Net deep learning model with a 

processing time of 0.1 seconds. The performance of the 

proposed models was evaluated on DS and IoU. On the 

RIM-ONE database, the modified U-Net model achieved 

an impressive dice score of 0.89 and an IoU of 0.95, 

indicating excellent segmentation accuracy. These quality 

metrics are independent of class imbalance, object scale, or 

image scale, but the size of the data size very small.  

An automated adaptive system for segmenting the optic 

disc using intensity-based thresholding and the optic cup 

via vessel bend points inside the optic disc was proposed 

by M. et al. (2018). The model was validated on a 225-

image database with expert labels and achieved 96.85% 

accuracy for normal, and 95.56% accuracy for glaucoma 

suspect cases. The presence of bright and dark pixels 

around the optic disc boundary, known as peri-papillary 

atrophy and the small dataset size may impact 

segmentation accuracy and reliability. Fu, Cheng, Xu, 

Zhang, et al. (2018) proposed a segmentation-guided 

network that detects the disc from the whole fundus image. 

This network, including a U-net with an additional branch 

from the saddle layer, achieved an accuracy of 84.29% on 

the SCES dataset and 74.95% on the SINDI dataset. 

Sensitivity and specificity on the SCES dataset were 

84.78% and 83.80%, respectively, while on the SINDI 

dataset, they were 78.76% and 71.15%. The SCES dataset 

contains 1,676 images and the SINDI dataset contains 

5,783 images. The results indicated lower accuracy for 

larger datasets, influenced by peri-papillary atrophy and 

blood vessel interference.  

Al-Bander et al. (2018) proposed a model that integrates 

DenseNet with a convolutional network; the method 

achieves pixel-wise delineation of OD and OC borders. It 

was evaluated on the ORIGA dataset and achieved 99.89% 

accuracy, 96.09% sensitivity, 99.95% specificity for OD, 

and 99.85% accuracy, 91.95% sensitivity, and 99.91% 

specificity for OC. Despite the short testing time of less 

than 0.5 seconds, training took 15 hours only for 455 

images. Athab et al. (2019) used global and multilevel 

thresholding on the DRISHRHI-GS data set to segment the 

OD and OC, achieving 94.75% and 94.32% accuracy, 

respectively. Liu et al. (2019) used contrast-limited 

adaptive histogram equalization (CLAHE) to enhance 

image quality and a single-label modified U-Net model for 

segmenting the optic disc and cup. For this method RIGA 

dataset gives average dice scores of 97.31% (disc) and 

87.61% (cup), DRISHTI-GS scores were 97.38% (disc) 

and 88.77% (cup), and RIM-ONE scores were 96.10% 

(disc) and 84.45% (cup). The model performance may be 

affected by poor-quality images since it was trained on the 

high-quality RIGA dataset Yu et al. (2019). Thakur & 

Juneja (2019) segmented the OD and OC using a Level set 

Adaptively Regularized Kernel Based Intuitionistic Fuzzy 

C-Means (LARKIFCM), with initial manual cropping for 

accuracy. The method achieved OD segmentation 

accuracies of 94.84%, 93.23%, and 95.34% on 

MESSIDOR, RIM,-ONE and DRISHTHI-GS datasets and 

OC segmentation accuracies of 93.4% and 92.6% on RIM-

ONE and DRISHTHI_GS. This project shows low OC 

precision in this research project. 

G-net, a modified U-Net with two neural networks, 

achieved 95.8% accuracy for optic disc segmentation and 

93% for optic cup segmentation, tested on 50 fundus 

camera images. The segmentation module returns the optic 

disc's mask Juneja et al. (2020). Juneja et al. (2020) 

proposed the Disc Cup Segmentation Glaucoma Network 

(DC-Gnet) model to extract glaucoma-related parameters 

and segment the optic cup and disc. Using RIM-ONE and 

Drishti-GS datasets, DC-Gnet achieved 97.8% accuracy on 

RIM-ONE and 90% on Drishti-GS. While the G-net model 

excels in segmentation, DC-Gnet performs better on the 

RIM-ONE dataset Juneja et al. (2020). A CAD model, Le-

Net architecture to validate input images and the brightest 

spot algorithm to identify the Region of Interest (ROI) from 

the validated images was introduced by Shinde et al. 

Shinde (2021). In this work, U-Net was used for optic disc 

and cup segmentation on the DRIONS-DB dataset and 

achieved 93% accuracy for the OD and 87% for the OC. 

The performance of this model was affected by 

parapapillary atrophy.  

Ganesh et al. (2021) proposed the GD-Ynet model for 

segmenting the optic disc and detecting glaucoma, 

achieving accuracies of 99.72%, 98.02%, 99.50%, and 

99.41% on ACRIMA, DRISHTHI-GS, REFUGE, and 

RIMOne-V1 datasets, respectively. This model employs a 

hierarchical strategy relying on aggregated transformations 

and CAM to segment the ROI. The model addresses 

overlooked neuroretinal rim losses, disc cupping, and 

multiclass segmentation pathologies. Ray et al. Ray et al. 

(2022) introduced a mean-C thresholding method where 

each pixel's threshold value is determined based on local 

statistical measures such as the mean and median values of 

neighbouring pixels. This method was evaluated on the 

HRF-DR dataset and achieved 94.27% Sensitivity, 87.86% 

Specificity, and 95.61% Accuracy. The INSPIRE AVR 

dataset achieved 91.10% Sensitivity, 86.97% Specificity, 

and 95.16% Accuracy. The limited dataset size remains a 

persistent challenge. 

Gampala et al. (2022) introduced a deep neuro-fuzzy 

network (DNFN) for glaucoma detection. After noise 

removal, the DeepJoint model segments blood vessels and 
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blackhole entropy fuzzy clustering locates the optic disc. 

The DNFN, trained with MultiVerse Rider Wave 

Optimization (MVRWO), classifies the final output based 

on the DNFN's loss function. Au-Net model was used to 

extract the borders of OD and OC proposed by P. et al. 

(2021). Sanghavi et al. Sanghavi & Kurhekar (2024) 

introduced a technique using Simple Linear Iterative 

Clustering (SLIC) and the normalized graph cut algorithm 

for OD segmentation, followed by a thirteen-layer CNN for 

classification. This method created superpixels based on 

color similarity and spatial proximity. The normalized 

graph cut algorithm then used these superpixel clusters to 

produce a region of interest, effectively minimizing the cut 

value and achieving superior image partitioning. Tadisetty 

et al. (2023) employed the U-Net model on various fundus 

datasets, using segmentation measures for performance 

evaluation. The canny edge detection operator is utilized 

for edge detection. The process includes five steps: noise 

reduction with Gaussian blur, gradient computation, 

minimum suppression, double thresholding, and edge 

tracking using hysteresis. The authors Sujithra & Albert 

Jerome (2024) proposed the ACBSS (adaptive cluster-

based superpixel segmentation) technique for extracting 

retinal blood vessels from improved image sequences. 

Adaptive K-means clustering efficiently forms clusters 

with a precise K value using a gray-level cooccurrence 

matrix for feature extraction. The technique employs 

picture gradients for contour and texture characteristics, 

automatically calibrating attribute weights. Multiple 

iterations ensure accurate segmentation, effectively 

distinguishing between different pixel groups and 

producing favourable outcomes in the final segmentation 

result. Chaurasia & Culurciello (2017) proposed LinkNet 

to link each encoder and decoder for semantic 

segmentation. There is some spatial information lost in the 

encoder during the numerous downsampling processes. 

Every encoder layer's input is also bypassed to reach the 

output of the matching decoder to retrieve the lost data 

utilising residual block rather than concatenation, LinkNet 

additionally employs ResNet-18 as an encoder. 

Research and Methodology 

This section discusses the different evaluation metrics 

used to check how well segmentation techniques identify 

pertinent anatomical structures and abnormalities in retinal 

images. Further, various fundus image data sets and the 

comparative study of existing segmentation techniques are 

also discussed in this section. 

Dataset 

Commonly used datasets for glaucoma detection are 

DRISHTHI, RIM-ONE, REFUGE, ACRIMA, ORIGA, 

DRIONS-DB, HRF-DR, SECES, SINDI, PAPILA, and 

G1020. Table 2 shows the different datasets available for 

glaucoma diagnosis. 

Evaluation Metrics 

The performance of segmentation techniques must be 

evaluated to gauge how well they identify pertinent 

anatomical structures and abnormalities in retinal images. 

The effectiveness of segmentation algorithms is often 

assessed using several measures, including DDLS, ISNT, 

DSC, Jaccard index, accuracy, dice coefficient, and 

sensitivity. 

# DDLS(Disc damage likelihood scale) 

The OD's damage level is measured using a grading 

system called the DDLS. It provides a standardized way 

for medical professionals to assess structural alterations in 

the optic nerve head. Higher scores on the scale, which 

normally runs from 0 to 10, indicate more severe disc 

injury (Zangalli et al., 2011).  

# Inferior superior nasal temporal (ISNT) 

ISNT stands for inferior, superior, nasal, and temporal 

rim width sequence. The order of I, S, N, and T will 

increase for the aberrant eye, i.e., Inferior < superior < 

nasal < temporal (Maupin et al., 2020). 

# Dice similarity coefficient (DSC) 

Segmented region and ground truth region overlap is 

measured using DSC. The ratio of the sum of the 

segmented and ground truth regions to twice the 

intersection of the two regions is the formula used to 

compute it, as shown in Equation 6. A higher DSC 

indicates better segmentation accuracy. 

𝑑𝑠 =
2|𝐷𝐴∩𝑆𝐴|

|𝑆𝐴|+|𝐷𝐴|
                                                         (6) 

# Jaccard Index (JI) 

JI, also known by the name Intersection over Union 

(IoU), evaluates how similar the segmented and ground 

truth regions are to one other. It is computed as the ratio of 

segmented and ground truth regions intersection and their 

unions. As stated in Equation 7, a greater JI value denotes 

superior segmentation performance (Coan et al., 2023). 

   𝑗𝑖 = 1 −
𝐷𝐴∩𝑆𝐴

𝐷𝐴∪𝑆𝐴
                                                   (7) 

# Sensitivity and specificity 

Sensitivity quantifies the proportion of true positive 

(properly segmented) points relative to all points in the 

ground truth, as demonstrated in Equation 8. Specificity 

(true negative rate) quantifies the proportion of real 

negative points (properly segmented background points) 

relative to all negative points in the ground truth as 

demonstrated in Equation 9. To accurately identify both  
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the target structures and the background, it is important to 

evaluate the ability of a segmentation technique, including 

both sensitivity and specificity (Coan et al., 2023).  

          Sf  =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                      (8) 

                         𝑆𝑣 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (9)  

# Accuracy 

By computing the ratio of perfectly classified pixels to 

the pixels count in the image, as provided by Equation 10, 

accuracy assesses the overall correctness of the 

segmentation findings.  

𝑎𝑦 =
𝑆𝑣+𝑆𝑓

2
            (10)           

Recall, also known as sensitivity, quantifies the 

percentage of real positive pixels to all positive pixels in 

the ground truth, whereas precision measures the 

percentage of true positive pixels to all positive pixels in 

the segmented region. Recall shows how comprehensive 

positive predictions are, whereas precision shows how 

accurate positive predictions are (Thakur & Juneja, 2021). 

 

Result and Analysis 

This part extensively reviews segmentation 

methodologies employed in retinal image analysis during  

 

 

the glaucoma detection process, from conventional to 

computational methods. Furthermore, the role of  

 

evaluation matrices is examined in assessing the 

performance of these segmentation algorithms. Table 3 

presents a comparative study of different segmentation 

strategies that do not employ deep learning approaches, 

whereas Table 4 presents a comparative study of various 

segmentation techniques that utilise deep learning 

approaches. By critically analyzing different metrics, this 

study aims to provide insights into their effectiveness in 

capturing the subtle variations associated with glaucoma 

in retinal images.  

Using the DRISHTHI-GS dataset, figure 5 displays the 

accuracy percentage of the several segmentation 

approaches utilised from the year 2018 to 2024 to segment 

the optic disc. It is observed that many researchers have 

used the DRISHTI-GS data set for their research purposes 

as it provides a fair amount of malignant and benign data. 

However, variations exist in the performance across 

segmentation tasks and this paper highlights the technique-

specific strengths and its use in various clinical and 

research contexts for the diagnosis and monitoring of 

glaucoma. 

 

Table 2. Different datasets are used for glaucoma diagnosis. 

References Dataset Images 

Zhuo Zhang et al. 

(2010) 

ORIGA light Out of the 650 retinal images, 168 images are glaucomatous and 

Normal images are 482 

Fumero et al. 

(2011) 

RIM-ONE It comprises 313 retinal images of normal eyes and 172 images of 

glaucoma patients. 

Staal et al. (2004) DRIVE At a resolution of 584 × 565 pixels, there are 40 fundus images. 

Saba et al. (2018) DRION-DB At a resolution of 600 × 400 pixels, There are 110 retinal images 

Kauppi et al. 

(2007) 

DIARETDB1 There are 84 fundus images of 1500 × 1152 pixels in size. 

Muchuchuti & 

Viriri (2023) 

SCES Contains 46 glaucomatous and 1630 normal images 

Sikder et al. 

(2019) 

APTOS 3662 images 

Fu et al. (2019) REFUGE Contains 1200 color fundus images. 

Almazroa et al. 

(2018) 

RIGA dataset 750 images 

Sivaswamy et al. 

(2014) 

DRISHTHI-

GS 

101 image, 70 glaucoma 31 Non glaucomic 

Bajwa et al. 

(2020) 

G1020 dataset 1020 photos, 296 from 110 patients had glaucoma, while 724 from 

322 patients showed normal 
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Table 3.  comparative study on Segmentation Techniques without Deep Learning Approach. 

S.N. Authors Approaches used for 

Segmentation 

Performance Data Set 

Technique Used Approach Measure OD 

Values 

OC 

Values 

1 M. et al., 

2018 

Adaptive threshold, 

corner threshold 

and Intensity-based 

threshold 

Thresholding Execution 

time 

0.39 sec 0.0003 

sec 

Private 

data set 

2 Athab, 2019 Global thresholding 

and Otsu 

thresholding 

Thresholding Accuracy 

Sensitivity 

Specificity 

94.75% 

95.06% 

95.93% 

94.32% 

78.77% 

98.48% 

DRISHTI-

GS 

3 Thakur & 

Juneja, 2019 

LARKIFCM Level set-based 

and Clustering 

Accuracy 

Dice 

similarity 

 

94.84% 

93% 

 

93.4% 

91% 

RIM ONE 

DRISHTI-

GS 

4 Rao et al. 

(2021) 

Watershed 

algorithm for 

contour shape 

extraction 

Watershed Dice 

Metric 

IOU 

Accuracy 

98.76% 

93.23% 

98.45% 

97.13% 

92.10% 

97.32% 

DRISHTI 

– GS 

 

5 Natarajan et 

al., 2021 

fuzzy C-means 

algorithm 

Clustering 

based 

Accuracy 

Sensitivity 

Specificity 

94.7% 

95.6% 

90.4% 

_ DRIONS-

DB 

6 Pathan et al., 

2021 

Clustering based 

threshold 

Thresholding Accuracy 99.1% 97.42% DRISHTH

I-GS 

7 Ray et al., 

2022 

Mean-C 

thresholding 

Thresholding Accuracy 

Sensitivity 

Specificity 

95.61% 

94.27%, 

87.86% 

_ HRF-DR 

8 P. B. Singh 

et al., 2023 

Modified level set 

algorithm 

 

Level set Dice 

coefficient 

Jaccard 

Index 

_ 91.8% 

75.6% 

ACRIMA 

9 Sanghavi & 

Kurhekar, 

2024 

Normalized graph 

cut algorithm and 

Simple linear 

iterative clustering 

Clustering 

based 

Accuracy 

 

Precision 

96.3% _ DRISHTH

I-GS1, 

ACRIMA, 

RIM-ONE 

R3, 

ORIGA, 

PAPILA , 

G1020 

 



Int. J. Exp. Res. Rev., Vol. 42: 328-342 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v42.029 
337 

Table 4.  Literature Survey on Deep Learning-based Segmentation Techniques. 

S.

N 
Authors 

Approaches used for 

segmentation 
Performance Measures 

Data Set 
Technique 

used 
Approach Measure 

OD 

Values 

OC 

values 

1 
Sevastopolsky, 

2017 

Modified U-

Net 

Deep 

learning 

IOU 

Dice 

Prediction 

time 

89% 

96% 

0.1 sec 

69% 

82% 

0.06 

sec 

RIM-

ONE v.3 

2 Fu et al.,  2018 

Modified 

deformable 

model (M-net) 

Deep 

learning 

and polar 

transform 

Accuracy 

 
98.3% 93.0% 

ORIGA 

and 

SCES 

datasets 

3 Fu et al., 2018 DENet 
Deep 

learning 

Accuracy 

Specificity 

Sensitivity 

Accuracy 

Specificity 

Sensitivity 

 

84.29% 

83.80% 

84.78% 

74.95% 

71.15% 

78.76% 

 

_ 

SCES 

 

 

 

SINDI 

4 

Al-Bander et 

al., 2018 

 

 

FC-DenseNet 
Deep 

learning 

Dice 

coefficient 

Jaccard 

index 

Accuracy 

Sensitivity 

Specificity 

96.53% 

93.34% 

99.89% 

96.09% 

99.95% 

86.59% 

76.88% 

99.85% 

91.95% 

99.91% 

ORIGA 

5 Yu et al., 2019 

U-net modified 

from Resnet-34 

 

Deep 

learning 

Dice 

coefficient 

Jaccard 

index 

Dice 

coefficient 

Jaccard 

index 

97.38% 

94.92% 

96.10% 

92.56% 

 

88.77% 

80.42% 

84.45% 

74.29% 

DRISHT

I-GS 

 

RIM-

ONE 

6 
Shoukat et al., 

2021 

Neuroretinal 

area 

segmentation 

Deep 

learning 
Accuracy 91.25% -- 

DRIHST

HI 

7 
Juneja et al., 

2020 
G-net 

Deep 

learning 

Dice 

metric 

Jaccard 

Index 

93.6% 

90.6% 

98.7% 

88% 

DRIHST

HI 

8 
Sreng et al., 

2020 

modified 

DeepLabv3+ 

Deep 

learning 
Accuracy 86.8% -- 

DRISHT

HI-GS1 

9 

Krishna 

Adithya et al., 

2021 

EffUnet+ResN

et-Unet 

 

Deep 

learning 

(Joint cup 

and disc ) 

Jaccard 

index 

Dice score 

Accuracy 

85.4% 

91.6% 

99.68% 

_ 

ORIGA 

DRISHT

HI 

10 Liu et al., 2019 GD-CNN 
Deep 

Learning 
Sensitivity 97.8% 92.2% 

DRISHT

HI-GS1 

11 P. et al., 2021 Au-Net 
Deep 

learning 

Accuracy 

Sensitivity 

Specificity 

99% 

87% 

92% 

99% 

86% 

95% 

DRISHT

I-GS 

12 
Ganesh et al., 

2021 
GD-YNet 

Deep 

learning 

Accuracy 

Sensitivity 

Specificity 

99.8% 

98.1% 

98.1% 

_ 
DRISHT

HI-GS1 
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Conclusion and Future Scope 

This paper provides a detailed analysis of various 

segmentation approaches utilized for the optic disc and 

optic cup segmentation from retinal fundus images. 

Different data sets of fundus images have been analyzed, 

and the study shows that most of the researchers have used 

the DRISHTHI-GS data set for optic disc  

segmentation, whereas limited research has been done on 

optic cup segmentation. The results provide high accuracy 

of the segmentation using deep learning-based techniques, 

but efficient computational techniques for optic disc and 

optic cup segmentation on complex data sets are still 

required. Variability in data set size, poor illumination, 

contrast, and image quality may not give a promising result 

using traditional deep learning techniques. Additionally, 

there is a problem of data imbalance that may lead to under- 

 

segmentation or over-segmentation. Innovative approaches 

are required to address all these challenges, which can 

robustly handle size variations, contrast issues, and the 

presence of interfering structures in retinal images. Future 

research efforts should prioritize using complex and large 

data sets, enhancing segmentation techniques and an 

efficient deep learning algorithm that can handle the 

variability and variety of the retinal image data set. 
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