
 

*Corresponding Author: gopi.r@dsengg.ac.in 
  

177 

DOI: https://doi.org/10.52756/ijerr.2024.v46.014                 Int. J. Exp. Res. Rev., Vol. 46: 177-190 (2024) 

 Automated Machine Learning Classification Framework to Predict Crop Yield and Detect Pest 

Patterns 

 Gopi R1*, Tamil Selvi M2, Saranraj G3, Nagaraj P4, Parthiban K5 and Ranjith Kumar A6 

1Faculty of Computer Science & Engineering, Dhanalakshmi Srinivasan Engineering College, Perambalur–621212, 

Tamil Nadu, India;  2Faculty of Computer Science and Engineering, Roever Engineering College, Perambalur-

621212, Tamil Nadu, India; 3Faculty of Artificial Intelligence and Data Science, Dhanalakshmi Srinivasan College of 

Engineering, Coimbatore 105, Tamil Nadu, India; 4Faculty of Artificial Intelligence and Machine Learning, K. 

Ramakrishnan College of Engineering, Samayapuram - 621112, Tamil Nadu, India; 5Faculty of Computer Science 

and Engineering, Dhanalakshmi Srinivasan College of Engineering, Coimbatore - 641105,  Tamil Nadu, India; 
6Faculty of Computer Science and Engineering, Lovely Professional University, Phagwara, Punjab, India 

E-mail/Orcid Id:  

GR,  gopi.r@dsengg.ac.in,  https://orcid.org/0000-0003-4957-1843; TSM,  tamilnaveena@gmail.com,  https://orcid.org/0009-0003-4642-2807;  

SG,  saranrajdsce@gmail.com,  https://orcid.org/0009-0000-6412-115X; NP,  pnagaraj.me@gmail.com,  https://orcid.org/0009-0007-9438-1973;  

PK,  janparthiban@gmail.com,  https://orcid.org/0009-0007-2385-5529; RKA,  ranjithdr.kumar@gmail.com,  https://orcid.org/0000-0003-4383-9212 

Introduction 

Machine learning has revolutionized plant disease 

detection and these algorithms improve diagnostic 

efficiency and accuracy (Gong, 2021; Kaur, 2023; Rao et 

al., 2024; Prasad and Agniraj, 2024). The first issue is 

that plant diseases are diverse and unpredictable, making 

them hard to control. Plant symptoms are diverse, making 

it difficult for models to generalize across contexts 

(Ahmed and Ganapathy, 2021; Chaudhary et al., 2023). 

Plant species, infection stage, and weather can affect 

symptom severity and these models struggle to prove 

generalisability (Huang et al., 2021). Training requires 

big, diverse datasets, which can be difficult to get due to 

unpredictability (Wang, 2023). Many plant diseases share 
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Abstract: Plant disease identification is crucial to food security and agricultural product 

availability. Traditional disease diagnosis can be tedious, annoying, and inaccurate. The 

investigation examines how modern machine learning algorithms might improve plant 

disease diagnostics for efficacy and precision. Despite this, machine learning faces 

many obstacles, including model training, processing costs, and rising demand for large 

data sets. This study proposes a novel method called Automated Machine Learning 

Classification Framework (AMLCF) to predict crop yield and detect pest patterns. This 

framework simplifies model selection, hyperparameter adjustment, and feature 

engineering for non-experts. The amount of time and computational resources needed 

have additionally been greatly reduced. The suggested AMLCF is evaluated on different 

unique agricultural datasets to validate its plant disease detection versatility. Our 

extensive simulation analysis found that AMLCF exceeds existing machine learning 

methods in speed, accuracy, and usability. AMLCF's detailed demonstration shows this; 

besides predicting plant illnesses, this system can predict crop yield and detect pests. 

Those findings suggest AMLCF could transform farming. Better plant health 

monitoring, early disease identification, and farmer selection could be achieved. The 

experimental results show that the proposed AMLCF model increases the accuracy ratio 

by 92.6%, computational efficiency analysis by 97.4%, versatility analysis by 98.3%, 

user accessibility ratio by 99.1%, and crop health tracking analysis by 94.8% compared 

to other existing models. 
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symptoms (Yang, 2020). This increases false positives 

and negatives and makes discrimination harder, along 

with data quality, soabelling is crucial (Ahmad et al., 

2022). Machine learning models need high-quality, well-

annotated datasets (Pei and Wang, 2022).  

Real-world agricultural applications of machine 

learning systems must understand the technology's limits 

(Yang et al., 2023). Portable or field-based computers 

have storage and processing limitations (Rong, 2021). 

Because farmers sometimes lack technical know-how, 

these devices must be straightforward (Shuliar et al., 

2023). Models may be hard to adapt to unique 

geographies and environmental variables, affecting 

performance and illness development (Barakina et al., 

2021).  

Quality and quantity remain issues; gathering large 

datasets with suitable tags is expensive and complex 

(Fitria, 2021). Poorly trained or chaotic models may not 

generalize or be accurate. Model training is complicated 

and constrained by plant disease variability by species 

and habitat. Plant diseases vary significantly, making 

generalizations problematic (Yanru, 2021). Due to 

memory and processing power requirements, deep 

learning may be too expensive for field applications. 

Integrating the idea into real agricultural systems needs 

many steps, including making it farmer-friendly and 

responding to field circumstances. These difficulties must 

be resolved quickly to improve machine learning-based 

plant disease diagnosis.  

The main contributions of the study are- 

#Designing the AMLCF  to employ contemporary 

machine learning to quickly and reliably diagnose plant 

diseases.  

#The proposed system performs model selection, 

tweaking, and feature engineering to solve machine 

learning problems. Complex models and high processing 

costs are hurdles. 

#The experimental results have been performed, and 

the suggested AMLCF model increases the accuracy 

ratio, computational efficiency analysis, versatility 

analysis, user accessibility ratio and crop health tracking 

analysis compared to other existing models. 

#This section of the written research paper will 

conclude with the following outline: Section 2 focuses on 

modern machine-learning methods for precise plant 

disease identification. Section 3 presents the AMLCF. 

Section 4 offers a comprehensive appraisal, covering all 

aspects, such as effects and drawing connections to 

previous endeavours. Section 5 displays the results. 

Related works 

This examination delves into many innovative ways 

that can be used to improve educational outcomes 

through the integration of AI. This study aims to analyze 

AI-driven systems for online art classes, online basic 

education assessments, online preschool AI curricula, and 

online English classes to improve learning results and 

student engagement. 

Sun et al., 2021 developed an AI-enhanced online 

English teaching system that employs deep learning and 

decision tree algorithms to deliver tailored lessons to each 

student. According to the test findings, the method 

significantly enhances students' learning capacity and the 

content's practicality. 

An article by He and Sun (2021) presents AI-CATM, 

an artificial intelligence-driven computer-assisted 

teaching model designed to collaborate with teachers in 

developing personalized art lessons tailored to the unique 

needs of each student. This method substantially 

enhances study depth, student involvement, and creative 

design compared to traditional methods. 

The study conducted by Li and Su (2020) employed 

EM-EW and grey clustering analysis to assess AI-

integrated online basic education training. The model 

improves online teaching and provides insights for AI-

driven basic education with its practical methods. 

The article by Sun (2021) integrates "5G +AI" and 

holographic technologies into online spoken education 

for interactive learning using gesture detection. The 

strategy improves students' comprehension, critical 

thinking, and involvement over traditional methods. 

The research by Su and Zhong (2022) uses problem-

based learning (P-L) and social robots to create an 

artificial intelligence (AI) curriculum for preschools that 

is based on goals, content, methodologies, and 

assessment. By focussing on problem-based learning in 

particular, the method enhances AI literacy and the 

efficacy of learning in young children. 

Nabarun Dawn et al. (2023) suggested that Artificial 

Intelligence, Machine Learning and the Internet of Things 

(IoT) revolutionize Agriculture. New tools, difficulties, 

and the potential future of artificial intelligence (AI) in 

agriculture are explored in depth in this study. In recent 

years, expert systems (ES), the IoT, and Artificial Neural 

Network (ANN) models may unleash AI's full potential 

in the agricultural sector. 

Hemanta Gogoi et al. (2023) proposed the avian 

diversity in the paddy field ecosystem surrounding the 

Assam university campus in Silchar during the rainy 

season. There is a significant correlation between the 

amount of wasted rice and rice yields, and birds often eat 

newly planted rice seeds. Insect pests abound in paddy 

fields, which are a semi-aquatic habitat. Waterfowl, 

wading birds, shorebirds, and other species of waterbirds 
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use these areas as staging grounds for migration and 

feeding grounds. We present 95 bird species, representing 

37 families and 14 orders, from this pilot research carried 

out in the paddy field environment around the Silchar 

campus of Assam University. 

In (Ilham Amani Rozaini et al., 2023) recommended 

the bilateral teleoperation with a shared design of master 

and slave devices for robotic excavators in agricultural 

applications. The operational complexity is greatly 

affected by the dynamic used in this teleoperation system, 

which is a master device that controls the activities of an 

agent device. Therefore, this work aims to improve the 

master-slave algorithm for teleoperation applications that 

depend on regulating the motions of robot arms. 

Although the master and slave devices are different in 

size, they are structurally similar. Ensing the 

understandable kinematic model that connects these parts 

is important for making the robot easy to manage and 

user-friendly. The robot arm's forward kinematics, 

computed using Denavit-Hartenberg parameters and 

transformation matrices, must be used to calculate the 

end effector movement and location. 

Abderraouf Amrani et al. (2024) discussed the multi-

task learning model for agricultural pest detection from 

crop-plant imagery. This approach uses a joint loss 

function, which merges a classification loss with a 

tailored size loss. An image containing an aphid may be 

located using the classification component, and its size 

can be approximated using the customized size loss 

function. The latter is personalized-made for a more 

precise size estimate to smooth out differences between 

predicted and measured ground truth sizes. This model is 

built with a ResNet18 backbone, which makes it very 

flexible and resilient. 

Kariyanna and Sowjanya (2024) deliberated on 

theunravellingf use of artificial intelligence in managing 

insect pests. Using sophisticated algorithms, AI provides 

a game-changing method for analyzing complex data 

patterns gathered from many sources, such as sensors and 

pictures. Reducing the need for random pesticide 

applications and making the most of interventions allows 

for precise identification of pests, early diagnosis of 

problems, and predictive modelling, all of which improve 

pest management decision-making. 

Philipp Batz et al. (2023) presented the potential of 

image recognition and artificial intelligence for aphid 

pest monitoring. Using aphids as an example, the 

author shows how future technological advances in 

systematic monitoring of insect pests, automated 

individual identification, and intelligent forecasting 

models might benefit from case data. Using aphids as an 

example, the author demonstrates how recent 

breakthroughs in image recognition technology can 

automate the process of identifying specific individuals in 

static images, opening the door to the possibility of 

systematic monitoring of insect pests. 

Sangyeon Lee and Choa Mun Yun (2023) introduced 

sequential environmental data based on predicting risks 

of crop pests and diseases using deep learning models. 

The author demonstrated the model's ability to forecast 

the risk score of agricultural diseases and pests using 

large-scale public data on strawberry, pepper, grape, 

tomato, and paprika crops. Its average AUROC was 

0.917, indicating strong predictive ability with these 

predictions, one may aid in preventing pests or post-

processing. Many different facilities and crops may 

benefit from this learning framework and model for 

predicting crop diseases based on environmental data. 

Sheela (2023) suggested Crop Yield Improvement 

with Weeds, Pest and Disease Detection. The data 

augmentation procedure is performed since Deep 

Learning performs better with bigger data sets. Various 

DCNN architectures were used to construct the neural 

model, and their accuracy and performance were used to 

interpret the models using hyperparameter-searching, 

InceptionV3, DenseNet201, Mobilenet, VGG16, and 

hyperparameter-tuning on data from agricultural picture 

sources. When comparing the end value, the tweaked 

InceptionV3 model performed 87.85% better. In contrast, 

Mobilenet and VGG16 got 91.85% and 78.71% accuracy, 

respectively. The DenseNet model outperformed the 

Hyperparameter Search with a 99.62% accuracy rate. 

In Md. Akkas Ali et al. (2023) proposed sound 

analytics in large agricultural fields for pest detection 

systems using high-performance-oriented AI-enabled 

IoT. To denoise the pest sound, remove spectral leakage, 

convert overlapping to non-overlapping frames, convert 

the time to the frequency domain, determine the 

frequency spectrum, detect the sinusoidal frequency and 

internal component, and extract the MFCCs feature, the 

proposed method utilized audio pre-processing 

techniques in sound analytics, such as HPF, Hann 

window, hop window, FFT, DFT, STFT and the MFCC 

algorithm.  

In Rashmi Priya Sharma et al. (2023) recommended 

the Internet of Farm Things-based prediction for crop 

pest infestation using an optimized fuzzy inference 

system (IoFT-FIS). Using these meteorological 

characteristics, the knowledge base of the proposed fuzzy 

inference system is constructed. The multi-objective 

evolutionary algorithm uses fuzzy criteria to determine an 

appropriate cropping window and breeding circumstances 



Int. J. Exp. Res. Rev., Vol. 46: 177-190 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v46.014 
180 

with low pest populations. Using an IEEE 802.15.4 

wireless IoT sensor network monitoring infrastructure in 

medium grass vegetation, this proposal finds crop-sowing 

windows based on fuzzy logic with optimum crop 

production and lowest insect development. Crops of 

sugarcane and rice are the subjects of current 

experiments. This study's experimental setting was a farm 

near Gwalior, Madhya Pradesh, India. The field-deployed 

wireless sensor network gathered soil moisture, rainfall, 

temperature, and more data. 

Galiya Anarbekova et al. (2024) discussed the fine-

tuning of artificial neural networks to predict pest 

numbers in grain crops. The transformer reliably shows 

better prediction accuracy in terms of mean squared error. 

The effect of several training hyperparameters on 

predicted accuracy, including batch size and epochs, is 

also shown in this paper. Season 2's unusual reactions 

highlight the impact of certain characteristics on model 

performance, which is an intriguing development. This 

study adds to the growing knowledge of optimizing 

ANNs for precise insect prediction in grain crops, which 

helps create more effective and efficient pest 

management methods. It is also well-suited for real-world 

applications due to the transformer model's persistent 

dominance. 

Materials and Methods 

The suggested approach uses an AMLCF, or 

Automated Machine Learning Classification Framework, 

to improve plant disease detection. AMLCF's use of 

advanced machine-learning techniques makes it easier for 

the system to capture images and the subsequent 

categorizing of diseases. The major goal is to increase 

agricultural production through improved efficiency and 

accuracy of plant disease detection, which helps crop 

health management. The suggested technique aims at a 

rapid, accurate diagnosis of plant diseases that strive for 

power with ease. 

The suggested technique presents the AMLCF to 

forecast agricultural yields and identify pest trends 

accurately. This framework incorporates state-of-the-art 

machine learning algorithms. It aims to improve 

adaptation across agricultural datasets by focusing on 

automated feature selection and model improvement. 

Computationally efficient, scalable, and easily accessible, 

the framework is designed to make it easy for farmers 

and other stakeholders in the agricultural sector to 

deploy. The AMLCF offers a centralized platform for 

tracking pest activity and crop health, promoting 

proactive management and well-informed decisions in 

precision agriculture. To promote sustainable agricultural 

methods, these contributions tackle important issues in 

contemporary agriculture, such as optimizing resources 

and controlling pests promptly. 

Contribution 1: Design of AMLCF 

The following are three stages the recommended 

AMLCF goes through to improve detection efficiency 

greatly: Auto-preprocessing, segmentation, and feature 

extraction. This simplified process reduces computation 

resources and time needed for plant disease detection. 

Moreover, state-of-the-art machine learning approaches 

used in this framework boost classification precision, 

resulting in reliable and accurate identification of various 

plant diseases. Improved crop health management 

follows, as well as timely intervention actions. 

 Figure 1 shows the data-gathering procedure used to 

identify plant diseases within an AMLCF framework. 

The initial step involves capturing raw pictures of plants 

using cameras or sensors, which is called image 

acquisition. Each picture is then annotated to show 

Figure 1. Block diagram for Data Collection. 
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relevant information, such as the kind of ailing plant, 

after which it is stored in an annotated dataset. 

Then, these photos are pre-processed during the image 

processing phase to be better enhanced to find patterns. 

For instance, this stage can utilize noise reduction, 

contrast adjustments or segmentation methods to separate 

areas of interest depicted in the photos from each other. 

Next comes feature extraction, where certain attributes or 

features are recognized and extracted from the processed 

pictures. These attributes could be texture, colour and 

form, among others. These characteristic features are 

necessary for differentiating between different illnesses in 

plants. Lastly is classification, where machine learning 

methods are employed to sort the images into different 

illness categories based on the retrieved attributes. The 

model trained on the identified dataset to make illness 

predictions in fresh, unlabelled photos. Improved plant 

health surveillance and early disease diagnosis are made 

possible by this simplified technique, which is made 

possible by AMLCF, which increases the effectiveness 

and reliability of plant disease identification. 

𝑠1𝑜𝑟(𝑎+𝑑) + 𝑜2𝑟−𝑟(𝑎+𝑑) =  𝑜3𝑟𝑟(𝑎) + 𝑜4𝑟−𝑟(𝑎)  

               (1) 

The Equation 1 may be connected to the suggested 

Automated Machine Learning Classification Framework 

𝑠1  as follows factors (𝑎 + 𝑑)  or elements that are 

tweaked 𝑜2  throughout −𝑟,  the procedure of machine 

learning is given by 𝑎 + 𝑑  and 𝑟(𝑎), but the scores or 

indices modified to maximize the reliability of the model 

are denoted by 𝑟−𝑟(𝑎) and 𝑜4.  
𝑣3

𝑣2
𝑔𝑟(𝑎+𝑑)+𝑟(𝑎) + 

𝑣4

𝑣2
ℎ𝑟(𝑎+𝑑)−𝑟(𝑎) −  

𝑣1

𝑣2
𝑓2𝑟(𝑎+𝑑) 

              (2) 

The equation 2 could be understood as 
𝑣3

𝑣2
 representing 

various plant health indicators 
𝑣4

𝑣2
, and  𝑔 and ℎ 

representing features 
𝑣1

𝑣2
 extracted 𝑎 + 𝑑 from agricultural 

datasets. Possible representations 𝑟(𝑎)  of the model's 

sensitivity to changes in data or circumstances may be 

found in the exponents of (𝑎 + 𝑑) and −𝑟(𝑎).  

This study's simulation environment was built using 

MATLAB Simulink, a powerful tool for modelling, 

simulating, and evaluating dynamic systems. The 

deciding factors were the environment's adaptability in 

incorporating machine learning models for prediction 

tasks and its capacity to manage massive agricultural 

information. Using past data on crop yields, patterns of 

pest infestation, and weather variables like temperature, 

humidity, and rainfall made the simulation seem like real-

life agricultural circumstances. Because of the system's 

adaptability, seasonality and other regional considerations 

might be dynamically important. This study verified the 

suggested framework's accuracy and resilience in this 

controlled setting, which minimized the time and money 

needed for actual field trials. 

Contribution 2: Implementation of Machine Learning 

Model selection, hyperparameter tweaking, and 

feature engineering are just a few of the frequent 

Figure 2. Process of Automated Machine Learning for Plant Disease 

deduction. 
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machine-learning difficulties the AMLCF automates. The 

barrier to entry is lowered, and complex machine learning 

methods are accessible to non-experts because of this 

simplicity. More people will use and put the framework 

to use in the field because of how easy it is to use, even 

for those without much technical training, which is great 

for the agricultural industry. 

The whole procedure of using machine learning 

technology to identify plant diseases is shown in Figure 

2. The first step is to get photos from field crops, 

specifically from leaves, using either cameras or sensors. 

You may find these pictures in the Leaf Image Database. 

Image pre-processing improves the quality of the photos 

by using cropping filters and separation algorithms, 

which then isolate the leaf region. This phase is critical 

for precise disease identification because it zeroes in on 

the leaf and eliminates extraneous background data. Data 

Splitting is the next step after pre-processing the photos; 

it involves dividing the dataset into three parts: training, 

validation, and testing. This guarantees accurate model 

validation and training as well as reliable performance 

evaluation. 

To train a machine learning model, one uses training 

and validation datasets. Here, the model is trained to 

recognize characteristics linked to different plant diseases 

in the training set, and its accuracy is adjusted with the 

help of the validation set. The trained model's 

performance is evaluated using the Test Set. In this stage, 

the model's accuracy in disease classification is tested 

with fresh, previously unseen photos of plants. Lastly, 

Plant Leaf Classification employs the performance-

assessed model, which enables precise disease 

identification for efficient plant surveillance and early 

disease treatment. To improve the accuracy and 

efficiency of plant disease diagnoses, this AutoML 

approach simplifies the workflow. 

𝜎3 (
𝜗1

√1+𝛽
+  

𝜗2

√1−𝛽
) =  𝜎1 (

𝜗1

√1+𝛽
−  

𝜗2

√1−𝛽
) = 0  

 (3) 

This is equation 3, seen as a balanced model inside 

(AMLCF), where various parameters (θ₁, θ₂) are 

standardized and changed according to a factor (β) to 

attempt to reach an ideal state. Machine learning relies on 

this equilibrium to achieve high accuracy and efficiency; 

it improves performance in agricultural applications like 

plant disease detection by ensuring features are 

appropriately scaled and weighted.  

𝑁(𝐹) =  
1

𝑔
√ℎ − 𝑟𝑙/𝜕(𝑟 − 𝑗𝑓) = 𝜏 ∫ 𝑖

−ℎ𝑠+
𝑟

𝑓𝑟 
∋

0
  

 (4) 

Equation 4 agreement with the suggested Automated 

Machine Learning Classification Framework 𝑁(𝐹) . 

Accuracy of disease identification analysis, such as 
1

𝑔
√ℎ − 𝑟𝑙, and 𝜕(𝑟 − 𝑗𝑓) reflect various model and data 

attributes that impact 𝜏  the learning process, whereas 

𝑖
−ℎ𝑠+

𝑟

𝑓𝑟  denotes the model's performance metrics. 

Simplifies difficult processes ∋  for enhanced plant 

disease detection 
𝑟

𝑓𝑟
 by balancing computing efficiency 

and accuracy. 

Contribution 3: Demonstrate Real-World Benefits 

and Versatility  

The AMLCF's flexibility in effectively identifying 

many plant diseases is shown by testing it on diverse 

agricultural datasets, showcasing its real-world 

application. The framework has other uses beyond only 

diagnosing diseases; it may identify pests and monitor the 

condition of crops. The impressive results in many 

settings highlight its ability to transform farming 

methods, leading to better yields and more efficient 

operations. The AMLCF's versatility makes it a useful 

tool in many agricultural settings. 

In Figure 3, machine learning for plant disease 

categorization is displayed. The Dataset has to be 

expanded as the first step so that the model can 

accommodate more data. To enhance the images further, 

Image Filtering is done on the dataset, removing noise 

and other irrelevant information. Attributes Selection is 

the next stage in illness classification that comes after 

image filtering to determine which pixels in an image are 

important. This processing stage determines what leaf 

traits indicate what diseases; hence, it’s crucial for the 

model's reliability. After this, datasets are separated into 

two parts, namely, training and test sets. Training data 

trains a machine learning model used by models, while 

test data assesses its performance in terms of accuracy 

and generalizability. This ensures that our model can 

generalize well even on unknown samples. 

The above approach gives us a Machine Learning 

algorithm that trains on our training data and finds 

features associated with various diseases of plants. The 

accuracy and efficiency of such a trained model are then 

determined when applied to test data. A trained model is 

applied to predict three diseases: brown spots, leaf 

bacteria blight, and leaf moulds. Like any other machine-

learning technique, this allows future detection of three 

crop sicknesses: brown spots, leaf bacteria blight, and 

leaf Molds. 

∑ 𝛼𝑙 +  𝑑𝑙+𝑟 −  𝑠𝑦𝑡+𝑘 > 0, ∝𝑞+ 𝑀𝑅                    𝑠
𝑘=1 (5) 

A representation of the classification model's  
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threshold-based decision-making 𝑘 = 1  process when 

Equation 5 is satisfied. The parameters or weights that 

have been learnt, 𝛼𝑙  and 𝑑𝑙+𝑟 , aspects or data elements 

from the dataset, 0, ∝𝑞  and 𝑠𝑦𝑡+𝑘 , computational 

efficiency analysis and a margin or regularization term, 

𝑀𝑅, are all presented this time. 

𝐺𝑖𝑅(𝑢𝑅(𝑥)) =  𝐺𝑖(𝑢𝑅(𝑥)) + 𝑎. 𝑒. 𝑥 ∈ 𝜏, 𝜎 𝑖 =

1, … , 𝑁                                                                                      (6) 

The Equation 6 may be linked to the offered 𝐺𝑖𝑅. To 

improve the algorithm for improved performance 𝑢𝑅(𝑥), 

this change is like application versatility analysis 

hyperparameter tweaking 𝐺𝑖 and feature engineering. The 

model's thresholds or limitations are represented by the 

variables 𝑎. 𝑒. 𝑥 and 𝜎 𝑖, guarantee the implementation of 

customized solutions 𝑁 for different agricultural datasets. 

The AMLCF, a computerized machine learning 

classification framework, is shown in Figure 4. The data 

are from the Agriculture Crop Images Kaggle Dataset. 

The Crop images dataset includes 40 or more images of 

every agricultural crop, including sugarcane, rice, jute, 

wheat, and maize. There are more than 160 enhanced 

crop images in each class in the dataset (kag2). Among 

the augmentation features are the ability to rotate, flip 

horizontally, and shift vertically. Images of each class 

show them at various stages of their life cycle, from 

above to below and from aerial to ground level. 

 
Figure 3.  Plant disease classification using machine learning. 

 

 
Figure 4.  The overall structure of AMLCF. 
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Improving the accuracy of crop image classification for 5 

agricultural crop types: wheat, rice, sugarcane, maize, 

and jute. 

First, cameras or sensors are used to take pictures of 

the plant's leaves, known as the Input Image Leaf. After 

that, it goes on to pre-processing, where contrast 

adjustment and noise reduction are used to improve the 

photos. After the pre-processing, the segmentation 

procedure is carried out to separate the leaf area from the 

backdrop. This ensures that the emphasis is on the correct 

area. Next, Feature Extraction finds the leaves' unique 

characteristics, such as their form, colour and texture, 

important for differentiating between healthy and sick 

leaves. The next step, Classification, uses the extracted 

data to classify the leaves as healthy or sick using 

machine learning algorithms.  

After completing the classification, the system creates 

Infected and Healthy Images to validate the findings 

visually. The Analysis of Disease section delves further 

into the recognized disorders to better understand them 

and record our findings. Reliable disease detection is 

achieved using Performance Measures to evaluate the 

classification model's accuracy and efficiency. The 

computational efficiency of the framework is maximized 

by reducing processing time and resource consumption. 

To facilitate successful interaction between the system 

and farmers and agricultural specialists, User 

Accessibility guarantees that the system is 

straightforward to use. Crop health tracking is another 

area where AMLCF has found use. This technology 

allows for the constant monitoring and control of plant 

health, which helps with improved farming methods and 

the early diagnosis of diseases. 

𝐼𝑎 =  [0, 𝑎]  ∩ 𝑇 =  {𝑡 ∈ 𝑇 ∶ 0 ≤ 𝑡 ≤ 𝑎} =  [0, 𝑎]𝑇 

               (7) 

The Equation 6 could help reduce computational 

resources and improve model efficiency 𝐼𝑎 and accuracy 

[0, 𝑎]  by selecting time-specific features or data points ∩

𝑇  for model training. Improved disease diagnosis 

alongside 𝑡 ∈ 𝑇  User accessibility analysis is possible 

because of 𝑡 ability to handle and evaluate 𝑎 the temporal 

features [0, 𝑎]  of agricultural information 𝑇  by 

concentrating on this subset. 

𝑓∆(𝑡) =  lim
𝑠→𝑡

𝑓(𝜎(𝑡))−𝑓(𝑠)

𝜎(𝑡)−𝑠
   𝑖 = 1, … , 𝑁   

               (8) 

This is the equation 8 function 𝑓∆about a timescale 

(𝑡) . By seeing 𝑓(𝜎(𝑡))  as the process (𝑓)  of adaptive 

feature selection lim
𝑠→𝑡

 and model tuning over time. The 

enhancer of the function 𝑓(𝑠)  crop health tracking 

analysis as AMLCF changes and modifies its models 

using fresh data (𝑡) demonstrates the system's capability 

for fluid adaptation 𝑖 = 1, … , 𝑁 and refining. 

According to its simplified and automated 

methodology, the suggested AMLCF technique shows 

substantial gains in plant disease diagnosis. Beginning 

with image capture, the approach consists of many fine-

tuned phases for accuracy and efficiency: pre-processing, 

segmentation, extracting features, and classification. 

Testing the framework on various agricultural datasets 

has shown that the approach outperforms conventional 

methods. In addition to detecting plant illnesses, the 

AMLCF helps monitor crop health and manage diseases 

early on. Intending to keep crops healthy, this method is 

useful for farmers and experts in agriculture as it 

guarantees efficient computing, high accuracy, and user 

accessibility. 

Result and Discussion 

Accuracy, computational efficiency, application 

adaptability, user accessibility, and crop health tracking 

are some metrics used to assess the efficacy of advanced 

machine learning algorithms in plant disease diagnosis. 

The MATLAB Simulink environment, a flexible tool for 

modelling and simulating dynamic systems, was used to 

perform the simulation tests. The capacity to include 

machine learning models with agricultural datasets and 

the simulator's reliability in handling time-series data 

were the deciding factors in its selection. A time step of 

0.01 seconds and a simulation length of 10,000 seconds 

were set up for the experiment. The environmental 

elements included temperature (20-35°C) and humidity 

(40-60%), while the crop-specific variables were growth 

rate and insect infestation thresholds. These parameter 

sets were evaluated against available literature to 

guarantee realism and derived from experimental 

findings. The system allowed for a comprehensive 

evaluation of the efficacy of agricultural production 

prediction and pest detection by creating a controlled 

simulation environment that successfully mimicked real-

world environments. 

In Figure 5 above, controlling plant diseases 

efficiently requires this ability; CNNs and deep learning 

are two methods that have substantially improved 

diagnostic accuracy. This has been achieved by carefully 

examining patterns in botanical images. Despite their 

ability to efficiently distinguish between different 

diseases, the effectiveness of these systems is greatly 

reliant on the diversity and quality of the training data 

utilized. It is critical to obtain high-quality, adequately 

tagged datasets to train an accurate model that produces 

92.6%. Furthermore, thorough model tweaking and 
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validation are required to reduce the number of mistakes. 

AMLCFs can improve accuracy; these frameworks 

streamline model selection and hyperparameter tuning, 

making these procedures more user-friendly and 

effective. There has been a lot of improvement; however, 

there are still problems like data unpredictability and the 

strain on computer resources. Consequently, constant 

improvement and updating are necessary. Nevertheless, it 

is crucial to address these concerns to keep performance 

consistent across various agricultural situations, even 

while strong machine learning algorithms greatly 

improve disease identification accuracy. 

In Figure 6 above, analyzing the computational 

efficiency of potential methods for plant disease 

diagnostics is a crucial part of evaluating advanced 

machine learning algorithms. Techniques like deep 

learning models and CNNs generally need a lot of 

memory and processing power yet produce very accurate 

results. In particular, when working with massive 

datasets, the complicated computations needed to train 

these models can drive up the associated costs and 

increase the implementation duration by 97.4%. The 

development of AMLCFs is a response to these 

problems. These frameworks can make procedures like 

model selection and hyperparameter tuning easier. 

Further, these frameworks expedite model deployment 

while reducing the amount of computational labour 

needed. Using AMLCFs will make getting optimal 

performance with fewer resources a lot easier. 

Simplifying and automating these processes will make 

this possible. Hardware efficiency and fine-tuned 

algorithms are prerequisites for capable control of 

 
Figure 5.  Accuracy of Disease Identification Analysis. 

 
Figure 6.  Computational Efficiency Analysis. 
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resource utilization. This is because, despite 

advancements, deep learning algorithms can still retain 

very high computing demands. Finding an appropriate 

balance between computational economy and efficiency 

is crucial for real-world applications in agricultural 

settings, even when modern approaches guarantee a high 

degree of accuracy. 

 In Figure 7 above, the wide range of applications of 

modern machine learning algorithms in plant disease 

identification demonstrates their versatility. Methods like 

CNNs prove their adaptability by detecting numerous 

plant diseases in various environments and with different 

species. This proves that CNNs can discriminate between 

various plant diseases with high accuracy. 

AMLCFs enhance this adaptability by making model 

modification easier and facilitating rapid adaptation to 

varied datasets and illness types. In addition to helping 

with disease identification, these frameworks could be 

useful for other agricultural tasks, including estimating 

crop yields and preventing pest infestations. Because of 

the adaptability of modern machine learning algorithms, 

they may be used for a broad range of agricultural tasks, 

allowing for comprehensive plant health monitoring, 

which produces 98.3%. To ensure consistent performance 

across a wide number of applications and conditions, it is 

necessary to continually improve and validate it, even if it 

is adaptable. This is the sole method to guarantee that 

there will be ongoing development. By offering complete 

solutions to numerous problems related to plant disease 

control, these strategies may cause an unprecedented shift 

in agricultural operations. The methods' broad adoption 

demonstrates their promise and highlights their ability to 

revolutionize agricultural operations. 

In Figure 8, when applying modern machine learning 

algorithms to the problem of plant disease diagnosis, it is 

essential to consider the user's accessibility initially. 

Technical proficiency and specialized knowledge are 

frequently required to apply and interpret new approaches 

that offer high accuracy, such as CNNs. Because they 

streamline the otherwise convoluted procedures of model 

selection, hyperparameter tuning, and feature 

engineering, AMLCF can alleviate this problem. This 

makes these tactics more accessible to those who may not 

have a strong background in technology. By automating 

formerly manual procedures, AMLCFs lessen the 

demand for specialized skills and facilitate their 

incorporation into real-world agricultural contexts. This 

paves the way for their usage to spread, producing 99.1%. 

The availability of user-friendly support tools and 

interfaces is crucial to ensuring farmers and agricultural 

professionals can effectively utilize new technologies. 

Although some success has been had, further work is 

required to make the design and support even more user-

friendly. Despite some success, this remains the case. By 

taking this route, we can make sure that innovative 

machine-learning methods are applied to farming in an 

approachable and beneficial way. 

In Figure 9, advanced machine learning methods 

greatly improve the capacity to monitor crop health by 

allowing for the rapid and precise diagnosis of diseases. 

Methods like CNNs do an excellent job of analyzing 

plant images, which can be used to detect disease signs in 

plants at an early stage. This enables the proactive 

management of crop health. The method is further 

optimized with AMLCFs, and improved access to 

advanced disease diagnostics results from these 

frameworks' efforts streamline model deployment and 

reduce processing requirements. Farmers can get real-

time alerts and information about possible problems by 

incorporating these techniques into crop health 

Figure 7. Application Versatility Analysis. 



Int. J. Exp. Res. Rev., Vol. 46: 177-190 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v46.014 
187 

monitoring systems, which produce 94.8%. Because of 

this, farmers can now control and intervene with their 

crops at the perfect moment. Additionally, this 

preventative measure encourages better crop treatment 

decisions and resource allocation and improves the 

accuracy of illness diagnosis. 

Ongoing issues, such as data quality and model 

flexibility, must be addressed if crop health tracking 

remains accurate and helpful across various agricultural 

contexts. Despite potential advantages, there will 

inevitably be obstacles that must be overcome. When 

considering all factors, crop health management benefits 

substantially from applying advanced machine learning 

algorithms. Table 1 shows the performance analysis. 

Despite these advancements, complications like data 

variability and computational resource demands persist. 

This highlights the critical need for ongoing improvement 

to ensure efficient and consistent application in various 

agricultural contexts. 

 
Figure 8.  User Accessibility Analysis. 

 

 
Figure 9.  Crop Health Tracking Analysis. 

Table 1. Performance Analysis. 

Parameter AMLCF AI-OETS AI-CATM EM-EW P-L 

Accuracy Ratio (%) 92.6 85.4 88.2 83.7 84.9 

Computational Efficiency (%) 97.4 89.3 91.1 87.6 88 

Versatility Analysis (%) 98.3 90.2 92.5 89 91.3 

User Accessibility Ratio (%) 99.1 92.4 94 91.2 92 

Crop Health Tracking (%) 94.8 87.5 89.8 86.2 88 
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Conclusion 

The following section of the paper describes how 

advanced machine-learning algorithms for plant disease 

identification can revolutionize the field. Traditional 

plant disease identification takes time and effort, reducing 

food safety and agricultural output. The research solves 

the issues completely. An AMLCF is developed to 

simplify feature engineering, model selection, and 

hyperparameter tuning. Advanced machine learning 

methods become more accessible and efficient. AMLCF 

exceeds standard accuracy, speed, and usability 

approaches when applied to agricultural datasets. This 

diagnostic paradigm helps agriculture anticipate crop 

yields, identify pests, and diagnose plant diseases. These 

findings suggest that AMLCF could revolutionize 

agriculture by improving crop health monitoring, early 

disease detection, and farmer decision-making. The fact 

that AMLCF can reduce computer expenses and simplify 

operations makes it suitable for modern agriculture. This 

improves sustainable and effective agriculture, and an 

AMLCF tool addresses crucial plant disease control 

challenges. The experimental results show that the 

proposed AMLCF model increases the accuracy ratio by 

92.6%, computational efficiency analysis by 97.4%, 

versatility analysis by 98.3%, user accessibility ratio by 

99.1%, and crop health tracking analysis by 94.8% 

compared to other existing models. Incorporating satellite 

images and data from IoT sensors for real-time 

monitoring, the framework may be enhanced to include 

more varied information from other geographies and 

crops in future research. Additionally, using advanced 

explainable AI approaches may make the model 

predictions more interpretable, which is great for farmers 

and agricultural professionals since it allows them to 

make better decisions. 
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