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Introduction 

One of the greatest issues with IoT-powered EVs is 

that they use traditional methods (Rimal et al., 2022). 

Traditional methods sometimes struggle with IoT 

integration's complexity and scale. The lack of defined 

communication protocols is a major barrier to the 

interoperability of the electric vehicle's many systems and 

equipment that cause these issues (LV et al., 2021). 
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Abstract: Internet of Things (IoT) technology in Electric Vehicles (EVs) has the potential 

to enhance performance, connectivity, and the overall user experience. This connection 

improves EV efficiency, battery life, user interaction, charging infrastructure, and traffic 

management systems. Dependable communication networks, system compatibility, and 

data security are all essential. Several concerns must be solved before manufacturers can 

use the IoT in EVs. Internet of Things-based Accurate Estimation Monitoring Analysis 

(IoT-AEMA) is presented in this paper as a solution to address these problems. Intending to 

enhance energy management, safety, and predictive maintenance, the IoT-AEMA has taken 

the initiative. Electric vehicle (EV) performance can be monitored comprehensively and in 

real-time with the help of IoT-AEMA, which utilizes IoT technology. This technology 

makes monitoring metrics like energy use and battery health more accurate. Proactive 

maintenance is made possible, and communication with smart infrastructure is improved. 

Improving electric vehicle (EV) connection and efficiency has never been easier than with 

this scalable solution that prioritizes sustainability. This objective will be accomplished by 

providing extensive analysis and monitoring of vehicle parameters in real-time. These 

applications use this technology to enhance data accuracy, the decision-making process for 

drivers and manufacturers, and the development of intelligent transportation networks. The 

effectiveness of IoT-AEMA has been demonstrated through simulation studies in various 

circumstances. By giving accurate insights and encouraging collaboration, this research 

implies that the electric vehicle industry is on the verge of experiencing a paradigm change. 

According to the information presented in this article, the IoT and advanced energy 

management have the potential to make EVs more dependable, efficient, and integrated 

into the infrastructure of smart cities. The proposed method increases the Energy 

Management Optimization ratio by 97.6%, Data Accuracy ratio by 90.2%, Predictive 

Maintenance ratio by 95.7%, System Compatibility ratio by 93.4% and Reliability Analysis 

ratio by 98.4% compared to other existing methods. 
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Traditional vehicle communication systems are 

unprepared to handle IoT device data quantities, causing 

latency and capacity issues, which originate from poor 

system design (Vaidya and Mouftah, 2020). Important 

concerns include maintaining the confidentiality of data 

and safeguarding personal information. Cyberattacks on 

connected automobiles are too advanced for current 

security solutions. Low processing power and storage 

capacity are other issues with vehicle control systems 

(Elghanam et al., 2021). These machines are not designed 

to handle real-time data processing and analytics for IoT 

applications (Kahveci et al., 2022). The integration 

procedure often raises electricity management concerns 

and IoT systems' impact on the EV infrastructure 

(Garrido-Hidalgo et al., 2020).  

If this happens, vehicle handling and battery 

efficiency may suffer. Existing vehicle manufacturing 

methods cannot readily adopt IoT developments, 

prolonging development cycles and increasing 

operational expenses (Solanke et al., 2021). The IoT can 

easily incorporate new functionalities in automobile 

engineering, and IoT professionals are few, compounding 

these challenges (Florea and Taralunga, 2020). This 

insufficiency is one of the primary factors that contribute 

to the problem. The final point is that regulatory and 

compliance difficulties are additionally problematic 

(Bhaskar et al., 2022). Because electric vehicles 

connected to the IoT require new laws and regulations, 

present automotive standards do not meet their needs 

(Mahdavian et al., 2021). Solving these issues requires 

shifting from traditional tactics to more creative ones. 

This goal requires regulatory, technological, and 

automaker cooperation (Mierlo et al., 2021). The long-

term goal is to develop an ecosystem capable of 

supporting connected electric vehicles in the future. 

EVs using IoT technologies must overcome various 

challenges, which can hinder performance and 

relationship improvement (Mohd Aman et al., 2021). Due 

to their interconnectedness, electric vehicles are 

vulnerable to cyberattacks, making cybersecurity crucial; 

comprehensive cybersecurity must come first (Jiang et 

al., 2021). Enormous data demand appropriate processing 

and management systems, which strains the current 

infrastructure. Standardization across IoT devices and 

platforms complicates interoperability and smooth 

integration. Industrial companies and their customers 

may find the high costs of adopting complex IoT systems. 

Network latency and coverage in cities with low urban 

populations hinder real-time data transfer (Bhatti et al., 

2021). IoT components must be sturdy and reliable to 

withstand vehicle abuse. Due to the large volumes of data 

EV drivers collect, rigorous privacy laws are needed. 

Integrating the IoT into EVs and boosting their 

performance and connection requires solving many 

problems. 

The contributions of this paper are: 

#Conducting accurate real-time monitoring and 

analysis to extend the life of electric car batteries and 

increase their efficiency using Internet of Things-based 

Accurate Estimation Monitoring Analysis (IoT-AEMA). 

#Utilizing extensive data analysis to accomplish the 

objective of developing predictive maintenance and 

improving vehicle safety. 

#Developing smart transportation networks that are 

required to determine how easily the EVs are integrated 

with the users, charging stations, and traffic control 

information systems by communicating with one another. 

An examination of the literature presented in Section 

II acts as the basis for the subsequent inquiry that will be 

conducted. IoT technology should be included in EVs to 

improve performance and connectivity. The IoT-AEMA 

is an area of mathematics explored in Section III. Section 

IV contains the findings and discussion presentation, 

while Section V has an overview and the approved 

recommendations. 

Related works 

IoT technology rapidly expands and revolutionizes 

many industries, including the automotive and EV 

sectors. This is having a significant impact on both 

sectors. Researchers have explored many IoT 

applications to enhance electric and connected car user 

experience, connectivity, and overall performance. The 

IoT-based Centralised Control Strategy (IoT-CCS) (Islam 

et al., 2020) that was proposed by Islam, M. R. and 

colleagues, using the DE optimization algorithm, 

increases network performance, is less demanding on 

communication infrastructure, is convenient for owners 

of electric vehicles, and has a lighter data processing 

overhead. 

Rahim et al. (2021) conducted a survey of IoT 

technology in the automobile industry. They provide an 

overview of its development, uses, benefits, and 

problems. Additionally, they suggest a conceptual 

framework that will guide future improvements in IoT 

technology in automotive systems. Das et al. (2020) 

comprehensively evaluated the EV market, charging 

infrastructure, and grid impact. Additionally, it will 

evaluate control structures and analyze future 

developments, offering optimization tactics for improved 

EV grid integration and energy Internet development. 
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 Damaj et al. (2021) surveyed the performance of 

Connected and Autonomous Electric Vehicles (CAEVs), 

produce a quality of experience taxonomy that includes 

quality indicators, and provide a framework to integrate 

quality of experience concepts to guide and accelerate the 

development of future CAEVs.   Urooj et al. (2021) 

proposed IoT-based monitoring (IoT-bM) for electric 

vehicle battery life. This monitoring method uses Things 

Speak and a boosting algorithm, ultimately leading to a 

capacity gain of 74.3% and a reduction in implementation 

costs. The IoT-AEMA is much more efficient and 

effective than other currently used methods. The 

performance and cost-efficiency are both improved as a 

result. 

Pal et al. (2023) proposed the Integrated Entropy-

TOPSIS Approach for Electric Vehicle Selection. The 

purpose of this study was to examine the electric vehicle 

(EV) in the context of the Indian market and to use the 

TOPSIS method as an MCDM to determine which EV on 

the market in India is the best option for the consumer. 

The weights linked to the criterion are derived using the 

entropy approach. Thirteen different electric cars have 

been chosen as cases for this investigation. In addition to 

determining the best option among the current EVs, this 

research provides an actual preference order and 

considers various selection factors. 

Bondu Pavan Kumar Reddy and Vyza Usha Reddy 

(2024) suggested the PV-Based Design and Evaluation of 

Power Electronic Topologies for EV Applications. Using 

and without the MPPT algorithm, this research describes 

the revamped SEPIC converter design. The author 

provides optimized parameter selection, design approach, 

and simulation methodologies to analyze converter 

performance in electric vehicle charging applications. 

The effects on the converter switching time under typical 

settings for testing solar PV panels are examined and 

contrasted between two MPPT methods, Perturb and 

Observe (P&O) and incremental conductance (IC). The 

system's performance can be thoroughly assessed by 

creating a MATLAB/Simulink model miming a 48 V, 

200 Ah battery charging with a 2 kW solar PV input via 

the modified SEPIC converter. The model tracks changes 

in the battery's state of charge (SoC), voltage, and 

charging current. Highlighting the usefulness of the 

MPPT algorithms in optimizing gathered solar energy, 

the simulation results show that the battery SoC grows 

from 50% to 50.034% without MPPT and to 50.042% 

with MPPT under similar simulated circumstances (10 

Sec). 

Dontabhaktuni Jayakumar and Samineni Peddakrishna 

(2024) discussed the Performance Evaluation of the 

YOLOv5-based Custom Object Detection Model for 

Campus-Specific Scenario. An autonomous electric 

vehicle (AEV)-specific object detection model built on 

the YOLOv5 architecture is tested and shown to work 

adequately in this research. The model is prepared for 

training by applying pre-processing techniques to the data 

using the Roboflow computer vision platform's extensive 

set of capabilities. Pedestrians, cars, buildings, and 

obstructions were all part of the varied datasets used in 

the trials, designed to mimic campus-specific driving 

situations. A precision of 0.851, recall of 0.831, and mAP 

of 0.843 were the outcomes of the training procedure, 

which was carried out in a controlled setting. 

Avanish Kumar (2020) deliberated the ADVISOR-

Based Performance Analysis. Hybrid electric vehicles 

(HEVs) combine the best features of two types of 

powertrains: an electric motor and a more traditional 

internal combustion engine (ICE) to provide superior 

economy and more stable operation. The topological 

configuration of the drive train defines series and parallel 

HEVs. This research compares the performance of a tiny 

HEV in three different configurations: pure ICE, series 

HEV and parallel hybrid. The ADVISOR program is 

used with the Matlab/Simulink platform for simulation. 

Additionally, the author tested the acceleration 

performance and gradability, and we investigated the 

vehicle emissions to get the results. 

Kaushik Das et al. (2024) presented the supervised 

machine learning for electric vehicle battery health 

performance. An algorithm for estimating the state of 

health from directly measurable voltage, current, and 

temperature indices has been developed using various 

machine-learning techniques. These algorithms include a 

noble random forest (RF)  supervised K nearest 

neighbours (KNN), decision tree (DT), and support 

vector regressor (SVR). The goal is to eliminate inherited 

electrochemical characteristics such as voltage hysteresis, 

ageing, degradation level, and operational and 

environmental effects. This method works using data 

from batteries collected by Sandia National Laboratories. 

Using methods such as mean squared error (MSE), mean 

absolute per cent error (MAPE), mean absolute error 

(MAE), root mean squared error (RMSE), and this 

study may get the comparative features. 

Hassan Khalid et al. (2023) introduced the 

overcoming challenges and enhancements for static and 

dynamic electric vehicle applications. To demonstrate 

their viability for both static and dynamic applications, 

the study details several magnetic coupler designs and 

how they were optimized to enhance overall magnetic 

coupling efficiency, pulsations, and the power null zone. 
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The article also emphasizes the need to be safe while 

setting up wireless power transfer systems, whether on 

roadways or in one's own house. Consequently, this 

analysis proposes revised standards from IEEE/SAE and 

IEC that analyze system and equipment requirements. 

The most practical option with LCC-S compensation is 

the DD with DDQ receiver coil, which provides the best 

electrical performance characteristics and an efficiency of 

93% for current dynamic charging, according to the 

discussion. Lastly, to simplify control, it is proposed to 

use double-sided DD coils with voltage source output 

characteristics and LCC-S compensation. 

Ramanathan Gopalasami et al. (2023) were 

hybridizing the super lift luo converter and boost 

converter for electric vehicle charging applications is 

recommended. A novel DC-DC multiport converter that 

combines a Super-lift Luo and Boost Converter (SLBC) 

with dual inputs for photovoltaic (PV) and battery 

sources has been suggested to overcome existing 

obstacles. The suggested DIDO converter uses two step-

up voltages, one from the Luo converter and another from 

the Boost converter, to super-lift the input voltage, a 

major improvement over existing options. To achieve 

great voltage gain and power efficiency, the SLBC 

employs basic architecture without extra electric circuits 

or transformers. 

Rabia Sehab et al. (2023) suggested the Super-

Twisting Sliding Mode Control to Improve the 

Performances and Robustness of a Switched Reluctance 

Machine for an EV Drivetrain Application. Given the 

highly nonlinear nature of SRMs, this work aims to 

compare the robust controllers constructed in terms of 

performance and resilience. The control strategy's 

velocity and current control loops use SMC and STSMC, 

two types of SMC, which are created and verified by 

simulation. Nonetheless, their efficacy is tested compared 

to traditional PI controller-based classical control. The 

author can compare their resilience by simulating 

changes to the SRM parameters with each of the three 

controllers. Finally, the best controller for electric vehicle 

applications, Super-Twisting Sliding Mode Control 

(STSMC), is shown by experimental validation on a 

constructed test bench employing all three controllers. 

Min Hua et al. (2023) proposed the Energy 

management of multi-mode plug-in hybrid electric 

vehicles using multi-agent deep reinforcement learning. 

A multi-agent deep reinforcement learning (MADRL) 

based MIMO control approach for energy management of 

the multi-mode PHEV is studied in this work to optimize 

the vehicle on a global scale. To facilitate collaboration 

between two learning agents inside the MADRL 

framework and the deep deterministic policy gradient 

(DDPG) algorithm, a hand-shaking approach is 

suggested, which involves the introduction of a relevance 

ratio. By doing a sensitivity study on the elements that 

impact learning performance, the author can achieve 

unified settings for the DDPG agents. Using a parametric 

analysis of the relevance ratio, we find the best way to 

implement the hand-shaking approach. On a software-in-

the-loop testing platform, the suggested energy 

management strategy is shown to have an advantage. The 

research found that their learning rate is the most 

important aspect of DDPG agents' learning performance. 

Yuvaraj et al. (2023) investigated the EV Charging 

Stations and DSTATCOM in Practical Indian 

Distribution Systems Using the Bald Eagle Search 

Algorithm. The distribution static compensator 

(DSTATCOM) and the DS, which is connected to the 

charging station, collaborate to reduce the effect of the 

EVCS. The most efficient distribution of DSTATCOM 

and EVCS throughout the DS was determined using a 

novel optimization method based on the Bald Eagle 

Search Algorithm (BESA), which draws inspiration from 

nature. The 28-bus and 108-bus distribution networks in 

India have been evaluated to see how well the suggested 

method reduces actual power loss. Maximizing the 

system's net savings, voltage stability, and bus voltage 

may be achieved by minimizing power loss. The results 

of the test cases demonstrate that, in the DS, the 

optimization based on BESA is superior to the 

optimization based on BA in terms of reducing power 

loss, increasing bus voltage, and improving yearly net 

savings. 

Materials and Methods 

The IoT-AEMA is a suggested system that uses the 

IoT to improve EVs' user experience, connection, and 

performance. Using real-time data from car sensors, 

storage on the internet, and sophisticated analytics, IoT-

AEMA optimizes energy administration, improves safety 

and facilitates scheduled servicing to guarantee consistent 

and effective EV operations. 

The Figure can be used to observe the suggested 

system design. A solar photovoltaic (PV) panel, charging 

infrastructure, suggested Battery Management System 

(BMS), and IoT app make it up. When exposed to 

sunshine, the PV panel produces direct current voltages 

and sends them to the power grid. As seen in Figure 1, an 

EV charging station and microprocessor charge the 

engine's Lithium-ion battery. A battery is required to 

store the initial energy for the PV source. Since PV isn't 
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as efficient as fossil fuels, it needs to be stored when the 

sun doesn't shine. 

Therefore, it will be utilized when stored in the battery 

when needed. The BMS's principal role in EVs is to 

monitor key metrics such as battery life, charging phases, 

capability, voltage, temperature, state of the driver's seat 

consumption of energy, remaining runtime, and operating 

time. Employing a specialized user interface, the created 

system may provide electric vehicle owners with up-to-

the-minute details on the closest charging station that 

offers the most efficient and cost-effective charging 

options and a safe online method for viewing the EV's 

current battery status.  

𝐾(𝑣) =  ∫ ((∀𝑝)2 − 𝑅(𝑣))𝑒𝑧   𝜕𝑤 ≡ 𝑃0
3 (∀)

1

𝜕
 

 (1) 

The suggested IoT-AEMA method's control of energy 

is affected by the interaction between different vehicle 

parameters(∀𝑝)2 . In this case, the energy management 

measure is written as 𝐾(𝑣) , the performance 

measurements are represented by 𝑃0
3 (∀), the barriers or 

inefficiency are written as 𝑅(𝑣)𝑒𝑧 , and the efficiency 

coefficient integrated across the variable 𝜕𝑤 is written as 

𝑒 denoted in Equation (1). 
𝑥

𝑛+𝜕
− 

𝑑0+𝑟(𝑏)

𝑛
≥  𝑞∗(𝑥) ≥  

𝑥

𝑣
 𝑓𝑜𝑟 𝑎𝑙𝑙 ∝> 𝑈   

 (2) 

This Equation (2) is relevant to the IoT-AEMA 

approach because it limits the electric vehicle system's 

efficiency ∝> 𝑈  and performance measures 𝑞∗(𝑥) ). In 

this case, 𝑥 stands for the variable that is input, 𝑛 and 𝜕 

represents the system parameters, 𝑑0 and 𝑟(𝑏) deal with 

the initial and resistant factors, and 𝑣  is a performance 

component.  

 

 
Figure 1. Diagram depicting the components of an EV battery management system. 

 
Figure 2. Schematic of the planned system's components. Electric vehicle: EV 
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The suggested system's structure is shown in Figure 2. 

The system's bulk comprises the data analysis, 

simulation, and processing modules. The input data for 

the estimating model is processed in the data preparation 

stage. The data processing unit generates a model that can 

predict electricity usage based only on charging time and 

number. The computerized database part receives real-

time data about car charging stations and uses it to build a 

database that calculates electric power use. The suggested 

system uses location and real-time data to track how 

much electricity each charging station uses. A 

malfunctioning charger or a data storage or transfer 

mistake might lead to distorted data from the real 

charging station. These could severely impact the 

creation of the electric power consumption estimate 

model. Consequently, this stage eliminates errors in 

preparing the data to be included in the estimating model 

of electricity use before the data is used in the modelling 

process. 

𝑞 ∗ (𝑥) = 𝑏 ≤ 𝑑𝑟(𝑏) − 𝑠𝑝 + 𝑏 (𝑐 − 1)𝑚(𝑢 − 𝑤)  

  (3) 

By outlining the performance measure 𝑞 ∗ (𝑥) 

Equation (3) aligns with the IoT-AEMA technique 

regarding several impacting elements. This is where 𝑏 

stands for baseline performance, 𝑑𝑟(𝑏)  is a constant 

resistance factor, 𝑠𝑝  is a parameter of the system, and 

𝑏 (𝑐 − 1)  takes into consideration changed variables, 

including effectiveness adjustments (𝑐), mass (𝑚), and 

the environment (𝑢 − 𝑤).  

∫ 𝑑(𝑦) − 𝐻(𝑝 − 𝑘) + (𝑦)𝑑𝑧 >  
1

𝑛+𝑠1
−  ∫ 𝑧2 

1

∝

1

∞
 

  (4) 

The system-specific adjustment is denoted by 

𝐻(𝑝 − 𝑘) and the variables impacting performance are 𝑦 

and 𝑧. The differential parameter (∞, 1) is represented by 

the Equation (4), 𝑧2. Because of this disparity 𝑑𝑧, know 

that these variables' combined impact on performance 

indicators will always be more than a certain threshold 

𝑛 + 𝑠1on Energy Management Optimization Analysis. 

The schematic of the suggested system is seen in 

Figure 3. The system's bulk comprises the data 

evaluation, modelling, and pre-processing modules. The 

input data for the estimating model is processed in the 

data preparation stage. With only the duration of the 

charge and the total number of charges, the data 

modelling unit may create a model that can predict 

electric power usage. By obtaining real-time data on car 

charging stations, the database system division builds the 

database that calculates electric power usage. The 

proposed system uses location and real-time data to track 

how much electricity each charging location uses. In the 

event of a charger malfunction, data transfer or storage 

mistake, the real data from the charging station can be 

inaccurate. These could severely impact the creation of 

the power consumption estimate model. Consequently, 

this stage eliminates mistakes in preparing the data to be 

utilized in the estimating model of power use when the 

raw data is used in the modelling process. 

∫ 𝑥(𝑧 − 1)𝐻(𝑞 − 1)𝑑𝑓 >
1

𝑛−𝑑2
− ∫ (𝑦)𝑑𝑤

2

𝜕

1

𝜕
  

 (5) 

Equation (5) shows the equilibrium of the many 

variables (𝑛 − 𝑑2)impacting the functioning of the EV 

system. Adjusted performance metrics are represented by 

𝑥(𝑧 − 1) and 𝐻(𝑞 − 1)  in this context, whereas 

differential variables reflecting the system's settings are 

denoted by (𝑦) and 𝑑𝑓 and 𝑑𝑤 on data accuracy analysis. 

𝑔(𝑞 − 1) <  
1

2
[

1

𝑛−∀
− 

1

𝑛−𝑠𝑒
] ||𝑛||𝑒𝑒

𝑤−1(𝑑 − 𝑞) 

  (6) 

Figure 3. A schematic depicting the major components of a standard PEV system. 
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Based on system settings and external conditions ∀, 

the efficiency function 𝑔(𝑞 − 1)  is constrained by the 

Equation (6). The modified performance metric is 

represented by, in this context, the system variables 𝑛 and 

𝑠𝑒  respectively, the exponential influence of the 

environment is 𝑒𝑒
𝑤−1  and the resulting variation of 

performance is 𝑑 − 𝑞 reflected on predictive maintenance 

analysis. A Plug-in Electric Vehicle, or PEV, is a vehicle 

that can be charged while driven. Charging this car by 

connecting it to a power outlet or a charging station is 

possible. Plug-in hybrid electric vehicles (PHEVs) 

combine a standard gasoline engine with an electric 

motor; Battery Electric Vehicles (BEVs) are all-electric 

vehicles. A plug-in electric vehicle's (PEV) capacity to 

recharge itself is its defining feature, as opposed to more 

conventional cars that use fossil fuels exclusively. 

The design of an EV system that incorporates the IoT 

is shown in Figure 4, which highlights how different parts 

work together to improve the EV's performance, 

connection, and user experience. For the vehicle's 

functionality and security, sensors track vital metrics like 

battery life, temperature, and pressure in real-time. This 

data is communicated via the IoT communications 

module, which utilizes Bluetooth, Wi-Fi, and cellular 

networks to ensure effective data flow to other system 

components. Safe and flexible data management is made 

possible by sending the data to a server in the cloud, 

where it may be stored and processed further. Using 

automated alarm systems, predictive analytics, and real-

time data monitoring, the suggested IoT-AEMA strategy 

guarantees safety. IoT sensors constantly monitor vital 

signs like battery life, temperature, tyre pressure, and 

object proximity. To promptly notify the driver and 

system administrators, this data is evaluated using 

sophisticated algorithms that identify any irregularities or 

possible dangers. Integrating secure communication 

protocols further improves operations and cybersecurity 

by protecting data integrity and preventing cyber attacks. 

A driver may monitor the vehicle's health and adjust 

its settings using an in-vehicle screen and control system, 

providing real-time data from the sensors to help them 

drive more safely and efficiently. A mobile app further 

improves user involvement by facilitating remote vehicle 

monitoring and control, alerting the user, and showing 

pertinent data. A data machine learning and analytics 

engine analyses the gathered data, producing useful 

insights, forecasts when maintenance will be required, 

and optimizes the vehicle's performance using 

sophisticated algorithms. The design incorporates third-

party services for optimal integration with its natural 

setting, including charging and traffic control 

infrastructure. Using strong privacy and security data 

management strategies, the system ensures that all data, 

whether transported or stored, is secure and private. Full 

IoT integration in electric vehicles is a prime example of 

how cutting-edge tech can improve a vehicle's 

functionality, connection, and user experience. 

𝑒

𝑑𝑤
− 𝑔(𝑣𝑓−1 +  𝑒𝑤) =  ∫ (𝑞 ∗ (𝑤1 + 𝑓𝑧) − 𝐸(𝐻𝑧 − 1))

1

𝑣
 

  (7) 

Equation (7), ( 𝑞 ∗ (𝑤1 + 𝑓𝑧) ) describes the link 

between the conservation of energy 
𝑒

𝑑𝑤
, system 

modifications ( 𝑣𝑓−1 +  𝑒𝑤 )), and the IoT-AEMA 

approach. In this case, the rate of change (𝑣, 1) in energy 

use is represented by ( 𝑞 ∗ (𝑤1 + 𝑓𝑧) ), system-related 

modifications are denoted by 𝐸(𝐻𝑧 − 1) , and the 

Figure 4. IoT-Based Electric Vehicle System Design. 
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accumulated performance effect is captured by the 

integral of System compatibility analysis. 

∫ 𝐸
1

𝑒
𝑑𝑓(𝑛+1) =  ∫ (𝑦𝑤𝑧 − (𝑑𝑓 + 1)𝑑𝑧) + (𝑎𝑉𝑤−1 +

1

𝑧

𝑛𝑎2)   (8) 

Efficiency (𝑒 ,1) and adjustment variables (𝑧, 1) are 

included in the energy efficiency (𝐸) and dynamics of 

systems (𝑑𝑓(𝑛+1) ) Equation (8). In this case 𝑦𝑤𝑧 , the 

entire effect on energy efficiency is shown on 𝑑𝑓 + 1, 

while the performance impacts 𝑎𝑉𝑤−1  and adjustment 

variables 𝑛𝑎2 are balanced on reliability analysis. 

By offering accurate real-time monitoring and 

thorough analysis of several vehicle metrics, IoT-AEMA 

presents an opportunity for the EV ecosystem. This 

technology improves the reliability, efficiency, and 

integration of electric vehicles into the infrastructure of 

smart cities by enhancing decision-making skills for both 

drivers and designers. It helps to construct intelligent 

public transit systems. 

Result and Discussion 

The reliability, interoperability, predictive 

maintenance, data accuracy, energy management 

optimization, and other important studies are discussed in 

this introduction. To help enhance smart and sustainable 

transport networks as a whole, each study focuses on a 

different set of problems and opportunities. The simulator 

includes essential IoT components such as advanced 

sensors, connectivity modules, and a data processing 

framework that resembles real-world EV operation 

circumstances. Accurate simulation of EV characteristics, 

such as battery charge, energy consumption rates, and 

thermal performance, under different driving situations 

becomes possible in this virtual environment. Integrating 

with the cloud for sophisticated analytics and storage and 

edge computing capabilities for local processing are 

crucial simulator setups. Due to the system's ability to 

provide Vehicle-to-grid (V2G) connection, testing the 

effects of various connectivity features on smart grid 

integration can be conducted.   Various scenarios, 

including urban and highway travel, different weather 

conditions, and varying loads, were included to verify the 

dependability and scalability of IoT-AEMA. 

Dataset description  

Between November 2014 and October 2015, a group 

headed by professor of public policy Omar Asensio 

recorded 3,395 instances of electric vehicle charging 

using a field experiment [20]. Details such as total energy 

consumed, cost, date and duration of each session, and 85 

EV drivers with recurrent use at 105 stations across 25 

locations at a workplace charging program are included 

in the dataset. 

In Figure 5 above, real-time data monitoring and 

advanced analytics enhance performance and efficiency 

in Energy Management Optimisation Analysis, as 

Equation (4) explains. This research focused on EV-IoT 

integration. This approach uses internet-connected 

sensors and other technology to track energy usage, 

battery health, and vehicle performance. Data analysis 

can improve energy distribution, waste reduction, and 

battery life. This research allows vehicles to adapt their 

power consumption to driving circumstances and 

manoeuvres. Results enable adaptive energy management 

systems. Enabling energy management with IoT 

improves predictive maintenance by detecting issues 

early. Both downtime and maintenance costs drop. 

Integration with charging infrastructure and smart grids 

Figure 5. Energy Management Optimization Analysis. 
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ensures energy reliability and grid stability. Using smart 

grids ensures this produces 97.6%. This increases EV 

performance and reliability and creates a smart, 

sustainable mobility environment. The goal of smart city 

programs is intelligent and eco-friendly transportation. 

 

EV performance improved when IoT technology was 

applied, which demands reliable data processing. Data 

gathering and processing enable precise vehicle 

monitoring of battery life, energy usage, and system 

health. All IoT sensors and devices must communicate 

data with high data integrity. In Figure 6 above, 

inconsistencies that could cause danger or poor 

performance must be eliminated. Building effective data 

validation and error correction mechanisms helps ensure 

integrity and reliability. Advanced algorithms and 

machine learning models analyze this data to provide 

actionable insights. Results include better energy 

management and predictive data accuracy maintenance, 

as explained in Equation (5). Data accuracy helps users, 

vehicles, and third-party systems like charging stations 

and traffic control networks connect seamlessly, 

producing 90.2%. This maintains a healthy and functional 

commodity and service transfer ecology. EVs with IoT 

technology provide drivers and manufacturers with more 

data for decision-making, enhancing dependability, 

efficiency and connectivity.  

Integrating IoT technology into EVs is vital for 

predictive maintenance analysis, as Equation (6) explains. 

Continuous monitoring of vehicle components and 

systems throughout operation is achieved through IoT 

sensors. Figure 7 above uses this data to assess real-time 

wear and tear, usage patterns, and potential problems. 

The data is processed by advanced analytics and machine 

learning models, allowing for the prediction of when 

maintenance is needed. Reduced downtime, longer 

component life, and less chance of unexpected problems 

are all benefits of this preventative method. In addition to 

 
Figure 6. Data Accuracy Analysis. 

 
Figure 7. Predictive Maintenance Analysis. 
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ensuring that necessary parts and resources are available, 

predictive maintenance also helps optimize maintenance 

schedules and inventory management. Connectivity to the 

IoT additionally paves the way for remote diagnostics, 

which can shed light on issues without physically 

inspecting them, producing 95.7%. Using IoT for 

predictive maintenance has several benefits, including 

making EVs more reliable, safer, and efficient, improving 

the user experience in terms of cost and effort, and laying 

the groundwork for smarter, more connected 

transportation systems. 

 When introducing IoT technology into EVs, it is 

necessary to carry out a System Compatibility Analysis, 

which is explained in Equation (6). This is done to 

guarantee that the operation operates without problems 

and that the performance is improved. A wide variety of 

communication protocols and devices are linked to the 

IoT. Hence, robust frameworks for standardization and 

interoperability are necessary. %Figure 8 ensures their 

compatibility because numerous sensors, software 

platforms, and network interfaces exist. Because of this, 

data exchange and integration will be facilitated, leading 

to trouble-free system operation. Achieving this objective 

will need standardization across manufacturer-specific 

protocols, data formats, and technologies, which 

produces 93.4%. 

Research on potential incompatibilities between EVs 

and other systems covers their integration with smart 

grids, charging infrastructure, and traffic management 

networks. Therefore, to achieve this integration, it is 

necessary to introduce defined communication protocols. 

Successful energy management, precise real-time 

monitoring, and enhanced predictive maintenance depend 

on fixing these compatibility problems. In addition, it 

ensures everything is interdependent, improving the user 

experience and reducing the likelihood of system failures. 

Thoroughly analyzing system compatibility helps build 

an electric vehicle ecosystem that is more reliable, 

 
Figure 8. System Compatibility Analysis. 

 
Figure 9. Reliability Analysis. 
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efficient, and networked through improved connectivity. 

This helps get smart transport and eco-friendly city 

mobility closer to their objectives. 

Reliability analysis is essential to these cutting-edge 

systems, as explained in Equation (7). The IoT for 

electric vehicles enables predictive maintenance, energy 

management, and real-time data monitoring. In Figure 9 

above, these upgrades boost vehicle performance and 

driver satisfaction. Analysing IoT component 

dependability can help manufacturers identify failure 

sites and improve system design. Thus, the product will 

be more durable and safe. Strong connectivity from the 

IoT ensures two-way communication between the car and 

external networks. This allows enhanced navigation, 

over-the-air upgrades, and remote diagnostics to be 

integrated. Electric vehicles' smooth connection adds 

convenience and innovative features while increasing 

lifespan. These advantages contribute to the rising 

popularity of electric automobiles, producing 98.4%. 

Because of this, a comprehensive reliability study is 

necessary for EVs to benefit fully from the IoT. 

Therefore, this will guarantee both the product's 

performance over time and the customer's satisfaction. 

The IoT-AEMA is nearly unanimously acknowledged 

as the most effective method compared to other methods. 

It outperforms competing options in terms of 

performance, reliability, and cost-effectiveness. Table 1 

shows the abbreviations. 

Table 1. Abbreviations. 

Acronyms Abbreviations 

IoT Internet of Things 

EVs Electric Vehicles 

IoT-AEMA Internet of Things-based Accurate 

Estimation Monitoring Analysis 

IoT-CCS IoT-based Centralized Control Strategy 

PV Photovoltaic Panel 

SEPIC  Single-Ended Primary Inductor Converter 

TOPSIS  Technique for order performance by 

similarity to ideal solution 

MPPT  Maximum Power Point Tracking 

BMS Battery Management System 

CAEVs Connected and Autonomous Electric 

Vehicles 

PEV Plug-in Electric Vehicle 

Conclusion 

Integrating IoT technology into EVs is a huge leap 

forward in usability, connectivity, and performance. EVs 

are becoming progressively growing in popularity. For 

major issues, including communication network 

dependability, system interoperability, and data security, 

a method called IoT-AEMA has been proposed. With 

IoT-AEMA, various vehicle attributes may be precisely 

tracked in real time and analyzed in detail. A combination 

of better energy management, enhanced safety, and the 

ability to perform predictive maintenance on a predictive 

basis achieves this goal. Electric vehicles have become 

more efficient, and their battery life has been extended 

because this reinforces the interaction between users, 

vehicles, and external systems like charging 

infrastructure and traffic management. By conducting 

simulation experiments in various settings, the 

practicality of IoT-AEMA has been proven, highlighting 

its ability to revolutionize engine production. This study's 

results show that reliable data is crucial for advancing 

intelligent transportation networks. The improvement of 

drivers' and manufacturers' decision-making abilities is 

where this becomes pertinent. A completely linked and 

optimized transport ecology is starting to sound 

increasingly like a realistic possibility as EVs keep 

becoming increasingly successful at integrating into 

smart city infrastructure and positively impacting 

pollution levels. An alliance between the IoT and the 

Automotive Electronics Association has been formed to 

provide the groundwork for electric vehicles to become 

an integral part of urban regions' sustainable 

transportation systems in the future. Another factor that 

has contributed to preparing for this future is the 

implementation of better energy management 

technologies. The arguments presented in this paper 

favour a team effort, which promotes the growth of an 

ecosystem where different groups work together to 

maximize the potential of the IoT in EVs. A more 

reliable, efficient, and integrated transportation landscape 

is expected to emerge from this research, which 

ultimately shows how the IoT has been disruptive to the 

manufacturing of electric vehicles. The proposed method 

increases the Energy Management Optimization ratio by 

97.6%, Data Accuracy ratio by 90.2%, Predictive 

Maintenance ratio by 95.7%,  System Compatibility ratio 

by 93.4%, and Reliability Analysis ratio by 98.4% 

compared to other existing methods. Using the most 

advanced machine learning techniques for predictive 

analytics can improve the accuracy of battery life and 

energy consumption forecasts. Improvements to 

scalability can be achieved by connecting the system with 

a more diversified smart grid infrastructure and 

broadening its support for a wider variety of electric 

vehicle types. Optimal energy distribution via real-time 

V2G communication is another area that will be 

investigated in future studies. Essential areas of 

investigation will include testing the system in real-world 
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conditions and measuring its influence on EV 

performance and user experience. 
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