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Introduction 

In the last few decades, sensors have been used to 

manage and sense different parameters in agriculture. For 

example, a prototype portal was designed for integrated 

data visualization, applying context-based cartographic 

methods to agricultural and meteorological data gathered 

from Wireless Sensor Networks (WSN) (Kubicek et al., 

2013). Each sensor was assigned a specific location 

within a wider spatial context. The geospatial data, 

sourced both locally and via Web Map Services (WMS), 

was merged with sensor readings—such as soil and air 

temperature, moisture levels, and humidity—

automatically tracked at regular intervals. Built on an 

open-source and interoperable platform, the prototype 

acts as an experimental gateway, facilitating geospatial 

and sensor data integration and visualization. Agricultural 

applications, modern technology is becoming more and 

more crucial, especially when it comes to controlling 

vital nutrients like potassium (K), phosphorus (P), and 

nitrogen (N), which directly improve crop productivity 

and resource efficiency (Al-Mamun et al., 2021; Potdar et 

al., 2021; Yohannes et al., 2024). Nonetheless, over use 
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Abstract: Prediction of various parameters in the agriculture field using sensors is a 

significant topic nowadays. However, in many scenarios, the sensor data does not 

accurately detect the real parameter(/s) in the agriculture field. The sensor data may 

vary due to various external factors, whereas the real parameters don’t vary too much 

for a particular agriculture field. The present work introduces a modified neural 

network approach to predict real agricultural parameters from sensor data with 

accuracy caused by several external factors and demonstrates enhanced predictive 

accuracy and adaptability. The neural network takes the sensor data as input in various 

weather conditions and tries to find out the original real parameters of that sensor 

data. The real-time sensor data was collected from multiple agricultural sites. The 

results demonstrated high predictive accuracy, with the neural network outperforming 

traditional statistical methods in forecasting soil moisture and other vital variables. 

Additionally, the model’s ability to generalize across different environmental 

conditions enhances its applicability in various crop management scenarios. The study 

concludes that neural networks hold significant potential for improving the efficiency 

of smart agriculture systems by providing timely, data driven insights for farmers and 

agronomists. Further research will explore the integration of deep learning models and 

edge computing to enhance scalability and realtime responsiveness in field 

applications. The aforementioned research highlights the significance of NPK sensors 

in sustainable farming methods, namely in enabling accurate nutrient management via 

real-time data. 
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of fertilizers in conventional farming frequently results in 

financial inefficiency and environmental harm (Hafsi et 

al., 2014; Leghari et al., 2016). One potential solution is 

the use of NPK sensors, which allow farmers to make 

accurate, data-driven decisions by giving them real-time 

information on soil nutrient levels (Zhang et al., 2021). 

According to Pooniya et al. (2018) and Eli et al. (2019), 

this method helps match fertilizer application with crop 

needs, lowering environmental concerns, including 

phosphorus runoff and nitrogen leaching. Further 

enhancing resource efficiency is automated nutrition 

management made possible by NPK sensors coupled with 

Internet of Things (IoT) devices (Ahmed et al., 2020; 

Sangwan et al., 2022). According to Mohanty et al. 

(2020) and Park et al. (2017), these sensors also improve 

fertilizer recommendations by making sure nutrients are 

only supplied when necessary, increasing productivity 

and sustainability. According to Lee et al. (2021) and 

Islam et al. (2022), NPK sensors are crucial for 

sustainable agriculture in the context of climate change 

due to their exceptional precision and flexibility in 

response to shifting environmental conditions (Al-

Mamun et al., 2021; Ahmed et al., 2020; Ada˜o  et al., 

2020). To develop a more efficient four-layer, twelve-

level (FLTL) remote sensing data management 

framework for handling and utilizing agricultural remote 

sensing big data in precision agriculture where sensors 

are typically deployed on high-resolution satellites, 

manned aircraft, unmanned aerial vehicles, and ground-

based platforms-a five-layer, fifteen-level (FLFL) 

satellite remote sensing data management structure was 

outlined and adopted. This study presents a survey that 

includes hyperspectral sensors, inbuilt data processing 

and applications focusing on forestry and agriculture, 

where the use of UAVs in conjunction with hyperspectral 

sensors plays a key role (Ada˜o et al., 2017). First, the 

benefits of hyperspectral data over multispectral and 

RGB imaging are emphasized. Subsequently, 

hyperspectral acquisition devices are discussed, 

encompassing sensor varieties, modalities of acquisition, 

and UAV-compatible sensors suitable for both 

commercial and research applications. It is indicated that 

pre-flight procedures and post-flight pre-processing are 

required to guarantee that hyperspectral data may be 

processed further to obtain definitive information. Many 

toolboxes that provide direct access to level-one 

hyperspectral data are offered to simplify the processing 

of hyperspectral data by removing the common user from 

the mathematical complexity of the procedures.  Machine 

learning (ML), in conjunction with data analysis, 

generates possibilities to understand and reconnoiter in 

the field of agriculture more effectively (Jhajharia and 

Mathur, 2022; Jain et al., 2023). When a sensor collects 

data from the environment, censor-collected data sheets 

are trained using different ML algorithms and models. 

After the performance of training, a trained model can be 

used to predict new inputs. Keeping this in mind, a 

modified neural network is used here. Now, in many 

cases, the ground sensor data do not accurately detect the 

original parameters of an agriculture field. To resolve this 

issue, in the proposed method, we create a neural network 

so that, if sensor data are inputted into the neural 

network, the real lab test data is the neural network’s 

output. 

Materials and Methods 

The samples of soil were taken from different parts of 

the Gajapati district, Odisha. Five different places are 

Tikamala, Podasing, Ramapur, Anukumpa and 

Kankadaguda of Mohana and Gosani block of Odisha. 

We go over the experimentation process in this part. A 

modified neural network (NN) is employed to compute 

every operation. Let us first describe the NN that we 

employed in this experiment. Next, we go through how to 

train NN and how to test it using the trained NN. 

Neural Network Architecture 

The input layer, hidden layers, and output layer are the 

three components that make up a neural network (NN). 

Let our suggested NN model have a single hidden layer. 

The first layer has p input characteristics, also known as 

the input layer. There are q nodes in the second layer, or 

the hidden layer and each node’s activation function is 

δ(.). The intended output of the jth node of the kth datum is 

in the final layer or the output layer; the overall number 

of datums is n, and r indicates the output node's number. 

In the literature, NN comes in a variety of forms. The 

model which uses the NN, as explained by Choudhury 

and Pal (2021). A fan-out layer is the first layer in an NN, 

also known as the input layer. This indicates that the first 

layer’s input and output are identical in terms of 

mathematical equation express below. 

δ (xki) = xki, i = 1, · · · , p; 

δ (xk0) = 1, ∀k; ……………………………(1) 

In this case, Xki is the ith feature of the input vector xk, 

and δ (X k0) is the bias of the input layer. Regarding the 

second layer, or the layer that is hidden: 

zkh = ∑ 𝑤
𝑝
𝑖=0 𝑖ℎ δ (xki) , h = 1, · · · , q 

δ (zkh) = max(0, zkh), h = 1, · · · , q; 

δ (zk0) = 1, ∀k;……………………………….(2) 

where the bias of the hidden layer is δ (z0), the bias 

connection of the hth hidden neuron is w0h, and the 
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connection between the ith input node and the hth hidden 

node is wih. Regarding the final layer and the output layer 

ykj = ∑ 𝑤𝑖ℎ
𝑞
ℎ=0  δ (zkh) 

okj = δ (ykj) = max(0, ykj), j = 1, · · · , 

r…………………(3) 

Here, the bias of jth node is w0j , the weight between 

the jth output node and the hth hidden node is whj . Thus, 

the instantaneous system error for the kth training 

pattern 𝑖𝑠 𝑎𝑠        

𝐸𝑘 = ∑(𝑡𝑘𝐽̇
−0𝑘𝑗)

2
𝑟

𝐽=1

 

One can utilize different loss functions, like cross-

entropy, in place of square loss. Likewise, alternative 

options, such as the sigmoidal function, can be used as an 

activation function. The back-propagation approach is 

one of several learning techniques (Choudhury and  Pal, 

2021). The proposed neural network architecture 

pictorially described in (Figure 1). 

Algorithm 1 : Training and testing of the proposed 

method for prediction of sensor data INPUT: XT R: 

Training data set; XT E: Training data set; p: Number of 

features of training data set; r: Number of features of 

target; N1: Number of epochs for training; LR: Learning 

rate; TT R: Target data set for training; TT E: Target data 

set for Testing.  

BEGIN  

1: Set N1, LR.  

2: Trained a NN by XT R for N1 epochs where the error 

function is defined by Eq. 4.  

The target vector is the same as the corresponding 

field target t ∈ TT R.  

3: Pass XT E through the trained neural network and 

find out the error using TT E.  

END 

Analysis of nutrient availability and nutrient uptake 

used the Kelplus Nitrogen auto-analyzer (Kelplus: Model 

classic DX) to estimate nitrogen following the Kjeldahl 

method. To find the phosphorus content vanado-

molybdo-phosphate method was used. The flame 

photometric method was used to determine the potassium 

concentration in the laboratory.  

NPK Sensor for Soil 

The soil NPK sensor (Figure 2) is made to monitor 

potassium, phosphorus, and nitrogen levels precisely and 

accurately. This sensor offers real-time data with a 

precision of ±2%FS and a response time of ≤1 second, 

and it runs on a 5V power source. The sensor has a robust 

316 stainless steel probe for long-lasting field use and 

employs the RS485 communication standard for output. 

In this work, we use ground sensors to collect the data 

Specifications: 

Range: 0 mg/kg to 1999 mg/L 

1 mg/kg (mg/L) is the resolution. 

Range of operation: -40 to 80°C 

IP68 is the protection grade. 

With its easy insertion design and ability to accurately 

monitor nutrient levels, the sensor is perfect for usage in 

various soil situations. 

Data Transfer 

A Max485 RS485 (Figure 3) to TTL converter 

module is utilized to enable communication between the 

Nano V3.0 board and the soil NPK sensor. This module 

translates the sensor's RS485 output into TTL signals that 

are compatible with the Nano V3.0 and enables half-

duplex communication over long distances. The module 

enables the system to scale for larger applications and 

guarantees stable data transmission even in noisy 

situations. 

Result and Discussion 

Numerous sites utilized the Arduino Nano 

microcontroller for field experiments after it was built 

with a variety of sensors. An evaluation of the NPK 

sensor's performance for precise nutrition control 

involved a comparison of sensor and laboratory data. 

Samples of soil were taken from Tikamala, Podasing, 

Ramapur, Anukumpa and Kankadaguda, five different 

places in the Indian state of Odisha. The nitrogen (NPK) 

and potassium (PPK) levels determined using the two 

methods are displayed in table 1. The sensor recorded 

somewhat lower NPK levels than the lab results; there 

was an 11% variation in nitrogen, a 12% difference in 

phosphorus, and a 9% variation in potassium. Despite 

these variations, the sensor results are sufficiently stable 

for real-world field applications. The sensor recorded 

lower values for all nutrients, with nitrogen displaying a 

10% fluctuation, phosphorus 12%, and potassium 9%, 

similar to the findings from Tikamala. The near 

alignment points to the sensor's dependability in 

determining nutrient concentrations. The nitrogen, 

phosphorus, and potassium sensor data displayed 

differences of roughly 10%, 12%, and 9%, respectively, 

indicating a trend of continuous sensor underestimating 

in comparison to laboratory values. Nonetheless, the 

disparities stay within reasonable bounds for pragmatic 

agricultural choices. Sensor readings in Anukumpa 

revealed reduced levels of potassium (9%), phosphorus 

(12%), and nitrogen (10%). This is consistent with the 

general pattern seen in other places. With an approximate 

variance of 10%, the nitrogen levels at Kankadaguda 

showed the most significant fluctuation. Additionally, 
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there was a 9% and 12% variation in the potassium and 

phosphorus readings, respectively (Hua  et al., 2020; 

Thompson et al., 2015). 

Experimental set up 

The specifications that were utilized to train our NN 

model are provided in this section. Here, we outline the 

hidden layer nodes (q), the number of epochs (N1), and 

the learning rate used to train the network. Every 

outcome presented here is the mean of twenty-five 

random runs. In our experiment, we utilize N1 =   1000 in 

all circumstances. Our NN model employs the 1 hidden 

layer in every scenario. However, depending on the input 

features, different nodes exist in the hidden layer. The 

total number of nodes in the second layer i.e., in the 

hidden layer is 10p. We set the learning rate for the 

proposed method as (LR) = 0.001. Here, we take 7 sensor 

data as input and 4 real lab test data as output in the 

neural network. Four of the seven sensor input data are 

moisture sensor data of different time frames, and the 

three are sensor data of soil N-P-K. The lab test data are 

soil N, P and K for a particular field. Here, the input data 

is Sensor data and the target data is Soil data (Table 2 and 

3). 

Discuss the MSE loss of the proposed neural network 

using different parameters. As far as we know, this type 

of network has not yet been proposed, and we haven’t 

compared our proposed method with any other methods. 

Using LR = 0.001, the training loss is 0.5748, and, the 

testing loss is 0.6523. Now, using LR = 0.001, we always 

don’t get optimal results. To check which LR is good, we 

perform various experiments. Using Table I, we illustrate 

the variation in training loss with variable learning rates. 

Table I shows that when LR = 0.004, the training loss is 

minimum within the seven instances. 

Now, in Tables 2 and 3, we use 1000   epochs and 

various LR to do the experiments. Now, using 1000 

epochs and LR =0.001 always we don’t get optimal 

results. So, using Table II, we perform different LR with 

different epochs to check the proposed method’s 

performance. Here, we take two sets of LR (0.004, 0.005) 

and two sets of epochs (1000, 10000) to do the 

experiments. In total, here, we take total (2 x 2 =4) types 

of experiments to check the performance. From Table II 

we can find that when LR= 0.004 and the number of 

epochs = 10000, then the training loss is minimum. 

Table 2. Loss variation with variable learning rates. 

LR Loss 

0.08 0.8836 

0.07 1.1278 

0.09 0.8722 

0.001 0.5748 

0.004 0.5539 

0.005 0.6108 

0.008 0.6620 

Table 3. Loss variation with variable learning rates 

and EPOCHS. 

LR Epochs Loss 

0.004 1000 0.5539 

0.005 1000 0.6108 

0.004 10000 0.5426 

0.005 10000 0.5514 

 

Figure 1. Proposed neural network architecture. 

Table 1. Soil test data from Laboratory and from sensor. 

Location Latitude Longitude Data Type 
Nitrogen 

(kg/ha) 

Phosphorus 

(kg/ha) 

Potassium 

(kg/ha) 

Tikamala 19.178418° 84.157859° Laboratory 125.4 50.4 492.8 

   Sensor 112.86 44.3 448.4 

Podasing 19.173651° 84.149551° Laboratory 137.9 51.52 392.0 

   Sensor 124.11 45.33 356.7 

Ramapur 19.176435° 84.164624° Laboratory 139.9 42.56 347.2 

   Sensor 125.9 37.45 315.9 

Anukumpa 19.184965° 84.186024° Laboratory 150.5 31.36 436.8 

   Sensor 135.4 27.59 397.4 

Kankadaguda 19.166454° 84.170097° Laboratory 200.7 26.88 302.4 

   Sensor 180.6 23.6 275.1 
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Figure 2. Ground N-P-K sensors with display. 

 

Figure 3. MAX485 TTL to RS485 Converter Module. 

Conclusion 

Here, we suggested a novel approach to training a 

neural network (NN) that can forecast a soil’s actual 

parameters based on the ground sensor placed there. As 

far as we know, this is the first study using modified NN, 

in which we attempt to forecast the actual parameters of 

an agricultural field using a ground sensor placed there. 

We do not compare our work with any current methods 

because this kind of work has not been done previously. 

To verify how the suggested method’s result varies, The 

results from our study indicate that neural networks 

provide superior accuracy in sensor data prediction 

compared to traditional methods, demonstrating their 

robustness in diverse agricultural environments. 

Furthermore, the scalability of neural networks makes 

them suitable for integration into various crop 

management systems, enabling farmers to adapt to 

changing conditions in real time. Neural network-based 

sensor data prediction holds great promise for 

revolutionizing decision-making processes in smart soil 

sensors, contributing to more sustainable, efficient, and 

productive farming practices. 
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