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Introduction 

Although the application of deep learning techniques 

for spectrum allocation in in CRNs has been widely 

studied, the problem of channel allocation, which is 

essential for routing, has not been dealt with extensively. 

Most of the existing algorithms are focused on efficient 

spectrum allocation. These techniques focus strictly on a 

few particular aspects, such as effective queuing of the 

secondary users or classifying the secondary users based 

on their priority levels. Some of these techniques focus 
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Abstract: A multi-variable relationship exists in Cognitive Radio Networks (CRNs) 

where factors such as Energy efficiency, Throughput, Delay and Signal Noise Ratio 

(SINR) are related. The SINR shows the quality of the signal and is defined as the total 

power of a specific signal over the total power of an inter signal plus noise. This work 

proposes an effective energy and delay-efficient channel allocation strategy for CRNs 

(Cognitive Radio Networks) using Q-Learning and actor-criticism algorithms that 

maximize rewards. We also propose a Proximal Policy Optimization (PPO) algorithm 

that uses clipping of surrogate objectives to prevent large policy changes and ensure that 

the other parameters remain stable over time. We study the tradeoff between rewards, 

energy efficiency and other parameters and compare the algorithms with respect to the 

same. Results show that the proposed PPO method, while using optimally increased 

energy consumption, significantly reduces the delay, improves the thought and reduces 

the packet loss ratio for efficient channel allocation. This is positive with our findings 

shown in the results section and by comparing the proposed method with other 

algorithms to identify improved throughput and channel utilization. As the simulation 

results indicate that the PPO algorithm has very high throughput and significantly 

minimizes the delay and packet loss, it is suitable for application in all sorts of services 

such as video, imaging or M2M. The results are also compared with two of the existing 

channel allocation schemes and they confirm that the proposed algorithm performs 

better in terms of throughput discussed in one scheme and channel efficiency in the 

other. 
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on assigning frequency bands to services based on the 

type and the Quality of Service requirements. Much of 

the work pertains to different strategies such as game-

theory-based, centralised dynamic channel allocation 

using SDNs, Fuzzy logic-based allocation etc. At a 

deeper level, channel allocation consists of assigning 

specific frequency channels to the users within the 

identified spectrum.  

Moreover, existing channel allocation algorithms 

using Deep or Reinforcement Leaning focus on 

optimizing the rate and transmission power allocation 

based on SINR, energy optimization, collision detection 

and a few other aspects. Very few algorithms have 

performed effective channel allocation based on the QoS 

parameters, viz., delay throughput and SINR, while 

optimizing the energy efficiency in Cognitive Radio 

Networks (Madhuri et al., 2022; Kumar et al., 2024; 

Varshney et al., 2024). There have only been a few 

algorithms that address two or three of these parameters 

at the most. 

In cognitive radio networks (CRNs), the relationship 

between energy efficiency, throughput, delay, and signal-

to-noise ratio (SINR) is complex and has 

interdependencies. The SINR indicates the signal quality 

and is the ratio of the power of a desired signal to the 

power of interference plus noise. Higher SINR enables 

better modulation schemes, resulting in an increased 

throughput. The total Energy consumption depends on 

the transmission, reception, and processing power of 

CRN nodes. Throughput refers to the amount of data 

transmitted successfully in a given time frame on a 

network (Nayani et al., 2021). Delay is the total time for 

packets to reach from a sender to a receiver. Both 

throughput and delay are affected by poor channel 

allocation.  

To achieve a higher SINR, more energy is required. 

But again, too high energy would lead to reduced 

throughput due to failures. Thus, finding the right balance 

of energy in order to optimize the other Quality of 

Service (QoS) parameters remains a difficult challenge 

due to the dynamic nature of channel allocation, 

particularly to the Secondary Users(SUs) in CRNs. 

Efficient channel allocation in Cognitive Radio Networks 

results in proper spectrum utilization, interference 

mitigation, scalability and QoS, ensuring critical services 

operate without interruptions. This is a particularly 

necessary requirement with CRNs, where SUs need to 

vacate quickly as soon as the primary users (PUs) re-

occupy the channels. 

Related work 

El-Toukhy et al. (2016) propose a Markovian-based 

queuing approach that reduces the number of states for 

priority Secondary Users by reducing their blocking and 

dropping probability and optimizing their throughput, 

both in case of the arrival of other higher-priority SUs or 

with increasing number of PUs. Results show that in the 

case of the arrival of more PUs, the blocking probability 

of SUs reduces, being the least for higher priority SUs. In 

the case of the' arrival, SUs' blocking probability of SUs 

increases, still being the least for higher priority SUs.  In 

case of the arrival of more PUs, the dropping probability 

of SUs increases, again being the least for higher priority 

SUs. This results in better throughput of higher priority 

SUs with increasing PUs and other SUs. However, the 

throughput keeps reducing in the case of PU arrivals, 

while it increases in the case of SU arrivals. This is 

obvious since, with the proposed approach, secondary 

users need to vacate immediately irrespective of the PUs 

priority, whereas in the case of SU arrivals, only the 

lower priority SUs will have to vacate, resulting in 

improved throughput.  

Azaly et al. (2020) suggest an SDN controller-based 

channel allocation scheme for CRNs using efficient 

spectrum allocation. They state that the dynamic channel 

allocation for SUs can be performed by the SUs 

themselves using distributed channel allocation without 

the need for a centralized controller channel or a common 

control channel that collects information from all the 

SUs. However, the authors focus on the centralized 

approach of using the SDN controller. Two separate 

algorithms are proposed for Dynamic Channel 

Reservation (DCR), one to increase the SU retainability 

by assigning a higher number of channels when the PU 

load increases. The SU retainability is obtained by 

subtracting the probability of an SU successfully 

completing its service request from 1. The second 

algorithm maximizes the channel availability of the SUs 

by lowering the blocking probability, i.e., releasing the 

reserved channel in case of increased SU load. The PU 

and the SU probabilities are calculated separately based 

on the steady-state probability matrix. The SU Handover 

probability is the probability that at least one SU will be 

holding one channel, which will be handed over to a PU 

upon its arrival. The throughput of PU is calculated based 

on the PU availability and the PU arrival rate. The 

throughput of the SU is calculated based on the SU 

arrival rate, SU availability, and SU retainability. SU 

throughput probability decreases with the SU arrival rate. 

The SU cost function is higher in case of a higher arrival  
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rate of SUs. The cost function for the SU is defined as 

one that minimizes the Retainability and the Availability 

and maximizes the Handover probability. Results show 

that the DCR is superior to Static Channel 

Reservation(SCR) in terms of availability for higher or 

lower secondary user arrival rates and particularly for 

high primary user arrival rates. Also, DCR is superior to 

Static Channel Reservation(SCR) in terms of 

attainability, particularly for lower primary user arrival 

rates where the second algorithm is recommended. 

Overall, the proposed DSA algorithms significantly 

enhance the system performance in terms of both 

availability and retainability. 

Zhang et al. (2023) propose a dynamic channel 

allocation protocol DPrA and compare it the Maximum 

Throughput Allocation(MTA) protocol. After calculating 

the steady state probability vector based on the transition 

state probabilities of the SUs and the activity state of the 

PUs, performance metrics for queuing analysis, 

throughput, queue length and the packet rejection state 

are found to assess the SUs' performance. The proposed 

algorithm was observed to perform better than the MTA 

on all fronts, i.e., improved thoughput, reduced queue 

length and reduced packet rejection rate.   

Scientists are measured user satisfaction based on the 

index of the preferred channel allocated. The channel 

might or might not be allocated to the user based on the 

utility offered for the channel. Authors compare their 

strategy with SMC-MAC where random allocation of 

channels takes place and PPDA, where allocation takes 

place based on the offered price for the channel. 

According to the proposed method, preferred channels 

are not always assigned to the same users; instead, every 

user gets a fair share of their prioritized channels, 

improving channel utilization and user satisfaction.  

Azaly et al. (2020) define a SU cost function as a 

weighted sum of channel non-availability (blocking 

probability), forced termination due to PU arrival and SU 

handover probability. Authors propose and compare two 

algorithms, one of which SU retainability by assigning 

higher number of reserved channels when the PU arrival 

rate increases and the second maximizes the Sus's 

availability by lowering the number of reserved channels 

and making them available for other SUs. Results show 

that the introduction of reserved channels improves SU 

performance by reducing the cost of over-SU. Also, the 

service completion rate of the secondary users increases 

with an increase in the number of reserved channels. 

Dey and Misra (2018) propose a channel allocation 

method in CRNs for video traffic by calculating the 

Channel Quality Index based on the packet error and the 

channel data rate. The probability of a false alarm and the 

probability of detection calculated earlier is used to 

determine the channel data rate and the collision 

rate(used to determine the packet error rate). The Quality 

of Experience is evaluated based on the difference in the 

mean opinion scores obtained for different video types. 

The proposed schemes in this work are compared with 

traditional random and uniform channel assignment 

schemes where the channel quality estimation and QoS 

requirements are not considered for channel allocation 

and it was observed that there was a huge improvement in 

the Quality of Experience of Gentle Motion and rapid 

Motion videos (Malik, 2020). 

Nayak et al. (2020) propose an Energy detection-

based channel allocation technique for Cognitive Radio 

Networks. Two registers are used, one to count the 

number of samples up to eight and the other to add the 

energy of all the cumulative samples, the operations 

synchronized by a Multiplexer through a counter. The 

signals are produced using the modulation techniques 

BPSK and QPSK and are checked for different 

probability detection techniques. It was observed that for 

a very signal-to-noise ratio, the proposed energy 

detection technique works much better than the matched 

filter or cyclostationary feature detection technique. 

Ye et al. (2020) propose a Deep reinforcement 

learning-based technique for maximizing the rewards, 

determined by the SINR of both the primary and the 

secondary users on different channels, that is also 

regulated by the power constraints of PUs using an 

improved strategy. This strategy alleviates the energy 

consumption for frequent power adjustments, using the 

SINR prediction based on the current SINR, during 

which only the transmitted power has been adjusted. The 

proposed LSTM-DQN algorithm was compared with two 

existing algorithms, DQN and Priority Memory 

DQN(PM-DQN), for various transmit power ranges of 

Primary and Secondary users under SINR thresholds 

using a two-ground reflection. Five hidden layers, with 

the topmost being the LSTM layers, are employed. RELU 

activation function for three layers and tanh for the other 

layer were used. Adam optimizer is used to update the 

weight of the Nueral Network. Results show that the 

proposed method yields higher rewards compared to the 

other two methods, confirming the effectiveness of the 

joint rate and power control strategy. 

Jang et al. (2019) propose an optimal method for band 

selection and channel selection in Cognitive Radio 

Adhoc-Networks (CRAHNs) using a Q-learning strategy. 

The reward function is designed to maximize the SU 

network average operation time, desired data rate, and 
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channel utilization by providing a fair allocation of 

channels between users. The reward function is 

readjusted based on the Q-Learning learning parameters, 

which in turn allows the Q-Learning module to determine 

the channel as well as it’s band group such that the 

channel is efficiently utilized while ensuring it’s data rate 

demand. 

Xu et al.  (2024) model channel assembling in CRNs 

by prioritizing elastic services into high, medium and low 

categories. Information validity is measured by the time 

that remains before the deadline. Message correlation 

measures the importance of information, message size 

measured as the proportion of the SUs message to the 

average length of messages. These are the three dynamic 

parameters to determine whether elastic services have 

higher priority over real-time services. Elastic services 

with lower priority are always scheduled after real-time 

services. Separate reserved queues are used for elastic 

and real-time traffic and whenever a Secondary User is 

interrupted by a Primary User, the SU is sent to a separate 

packet classifier to determine its priority mentioned 

above. To prevent starvation of this quote, another packer 

classifier is used in case of partial interruption of a high-

priority SU in order to provide differentiated service. 

Results show that while the network capacity of both 

elastic and real-time SUs decreases as the PU arrival rate 

increases. However, this decrease is smaller for real-time 

SUs compared to elastic SUs. The spectrum utilization of 

the secondary network was found to increase with the 

increase in the queue capacity, and the blocking 

probability of high-priority elastic SUs reduced 

significantly compared to real time SUs, with an increase 

in the PU arrival rate. 

Wang and Liao (2018) propose a centralized Fuzzy 

Inference based channel allocation scheme for SUs. The 

cumulative signal power is used to detect the presence of 

a PU if it falls above a threshold. In order to avoid 

incorrect detection due to hidden terminal problems, 

when a minimum of n SUs detect the presence of PU, 

then the channel will be unavailable for the SU. For the 

priority of allocation of the channel, a membership 

function is defined using four input variables – Spectrum 

utilization efficiency, distance, mobility and signal 

strength and 81 rules that classify the priority as High, 

Very High, Medium, Low and Very Low are defined in 

the rule base. Authors compare their scheme with the 

random and Kaniezhil’s schemes and observe that SU 

throughput is better with increasing SNR. 

Chakraborty and Misra (2020) have proposed a three-

phase approach that uses a proactive, reactive target 

channel sequence determination followed by CCC 

allocation to minimize the handoff delay call drop 

probability and improve channel prediction. 

Tlouyamma and Velempini (2021) provide an 

improved channel selection algorithm based on sensing 

probability. The probabilities of the on-off periods of the 

SUs are determined from the PDF. 

Pal and Dahiya, (2020) use an objective function that 

minimizes the chance of a PU arrival. The consistency of  

level of channel occupancy, consistency of occupancy 

and the difference between current and previous channel 

capacities are used in the objective function to determine 

the rewards. Higher rewards refer to the arrival of PU, in 

which case the above factors are dynamically adjusted. 

Authors compare this Q-Learning-based approach with 

three other existing methods and observe that the 

throughput and the PDR reduce as the number of vehicles 

increases. 

Hossen and Yoo (2019) have worked on a Q-

Learning-based clustering method that performs spectrum 

sensing based on a reward function that finds the channel 

availability subject to the received signal's energy 

threshold. Further, the cluster objective function finds the 

fitness value based on the residual energy, fitness of 

channel associated with the node and the number of 

clusters that can be reached through the node. This 

method is compared with the k-means and the multi-

channel-based clustering methods and was observed to 

yield an improved lifetime of clusters with reduced 

interference between clusters. 

Srivastava et al. (2024) propose a Q-Learning based 

channel selection method that considers the channel 

capacity, interference power and the cumulative distance 

from the transmitters to the receiver. The reward function 

is updated based on the probability of channel availability 

or non-availability (i.e., increased or decreased). The 

packet deliver ratio. Throughput was observed to have 

been higher compared to random allocation and CCCA, 

while the delay and PU collision ratios were lower. 

Jang et al. (2019) use a Q-Learning approach, where 

the reward function is designed to optimize the data rate, 

occupancy, band change and date rate efficiency. Results 

show an increase in data rate efficiency of the proposed 

scheme compared to random selection or Max-Q 

selection. 

Pal and Dahiya (2022) and Pal et al. (2020) have 

improved channel selection in Cognitive Radio Adhoc 

Networks by using a weight function that includes 

channel occupancy and considering several parameters. 

The solution to this Linear Programming Problem allows 

the selection of optimal channels. 
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Existing System 

Zhao et al. (2019)  have proposed a joint Power and 

interference mitigation-based channel allocation 

method(JPCRL). This method finds the SINR by 

subtracting the path loss, interference power from 

neighbouring transmitters and noise from the Direct 

Received Signal Strength(DRSS). If the interference and 

the noise are larger compared to the received signal 

strength, it would result in  a low SINR, severely 

affecting the communication. Authors focus on 

maximizing the throughput subject to the SINR and other 

association constraints. The difference of the total 

throughputs between consecutive states measures the 

immediate rewards, while the long time rewards are 

measured by a cumulative rewards measured by a utility 

function and for the purpose of maximizing the sytem 

throughput, the network with the maximum average 

utility is chosen.  

Qt+1(S,A)=Qt(S,A)+α[R+β⋅A′maxQt(S′,A′)−Qt(S,A)] 

According to this Q-Learning update policy, the Q-

value is updated in the current state, considering the 

rewards obtained in the previous state and the expected 

rewards in the future. β is the discount factor that 

balances immediate and future rewards, and α is the 

learning rate that updates the Q-value based on the 

(predicted-observed) rewards. Although channel 

utilization is not directly measured in the method, the 

DRSS affects the SINR, which determines the channel 

utilization. Only when the SINR is above a threshold will 

the signal be transmitted successfully and the channel 

utilization be efficient.  Results focus on the throughput 

with increasing users. 

 

A Deep Q-learning-based algorithm was proposed by 

Pavan et al. (2024) for channel allocation in Cognitive 

Radio Networks. This is an extension of the above work. 

The reward function is defined as the ratio of SINR to the 

SNR in each state, and the optimal policy maximizes the 

rewards. The channel assignment to the SU is done based 

on the updated Q value, if it falls below the threshold 

value. Authors compare the utilization of the channels 

with the JPCRL and observe that their proposed method 

DRLCA outperforms the latter JPCRL in terms of both 

the maximum and the minimum channel utilization and 

with increasing thresholds as well as with the increasing 

number of iterations. However, the System throughput 

comparison is not done with the above work. 

Materials and Methods  

Q-Learning Algorithm 

Q-Learning is a model-free reinforcement learning 

method that finds the optimal action-selection policy for an 

agent that interacts with an environment. The main 

element of Q-Learning is the Q-table, which stores the 

expected utility of taking a given action in a given state. 

Following is the learning process: 

#The agent will explore the environment and choose an 

action using a ε-greedy strategy (it explores random 

actions with some probability. It will not choose the best-

known action). 

#After taking the action, the agent receives some 

reward and proceeds to observe the next state. 

#The Q-value will be updated as   

            Q(s,a)←Q(s,a)+α[r+γmaxa’ Q(s′,a′)−Q(s,a)] 

Figure 1. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
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Here: 

• Q(s,a) is the Q-value for state s and action a 

• α is the learning rate 

• r is the received reward  

• γ is the discount factor  

• s′ is the next state  

• maxa’ Q(s′,a′) is the Maximum Q-value for 

the next state s′, among all possible actions a′ 

 α, γ, ℇ and the number of episodes are the 

hyperparameters in Q-Learning algorithm. 

Actor-Critic Algorithm 

The Actor-Critic method offers the combined benefit 

of the value-based and the policy-based approaches. The 

actor will suggest actions based on the current policy, and 

the critic will evaluate the action taken by the actor, 

giving feedback on how good the action was. 

Following is the learning process 

• The actor will update the policy based on the 

critic’s feedback. 

• The critic will evaluate the action taken by using 

the Temporal Difference (TD) error 

δ=r+γV(s′)−V(s) 

Here: 

• δ is the Temporal difference error (TD error). 

• V(s) is the value function for the state s 

• r is the reward received after taking an action in 

the state s 

• V(s′) is the value estimation for the next state s′ 

The value function will be updated as: 

V(s)←V(s)+βδ 

Here, β is the learning rate of the value function. 

During the learning process, the actor will update 

it’s policy, using the Temporal Difference error (δ) to 

improve it’s selection of it’s future action as: 

π(a∣s)←π(a∣s)+αδ 

Here:  

• π(a∣s) is the probability of taking action a in state 

s. 

• α is the Learning rate for the policy. 

    α , β, γ are the hyperparameters in Actor-Critic 

algorithm. 

Proximal Policy Optimization (PPO) 

PPO is a policy gradient method that aims to improve 

the stability and reliability of policy updates. It will 

restrict the change to policy updates by means of a 

surrogate objective function. 

The advantage estimates are calculated as 

At=rt+1+γVw(st+1)−Vw(st) 

During the learning process, the objective function 

used is 

Lclip(θ)=Et[min(rtAt,clip(rt,1−ϵ,1+ϵ)At)] 

Here: 

• rt=πθ(at∣st) / πθold(at∣st) is the probability ratio. 

• At is the estimated advantage. 

• ϵ is the hyperparameter that would control the 

allowed deviation of the new from the old policy. 

Policy parameters θ are updated using gradient 

descent using 

θ←θ+αθ∇Lclip(θ) 

Value function parameters are updated using 

w←w+αw∇MSE(Rt−Vw(st)) 

αθ, αw, clip ratio ϵ and number of epochs K are the 

hyperparameters to be set during initialization. 

 Reward Calculation 

The reward is calculated by combining all the 

performance metrics into a reward function defined as 

R=Wthroughput.TPUT+WEnergy.ENER−Wdelay

.DEL−Wpacket_loss.PL+WSINR .mean(SINR), Where R is the 

Figure 2. The PPO algorithm. 
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total reward,TPUT is the throughput achieved, ENER is 

the energy consumed, DEL is the delay, PL is the packet 

loss incurred. 

Wthroughput,WEnergy,Wdelay,Wpacket_loss,WSINR  are the 

respective weights assigned to each performance metric 

based on their priority. 

Let ENER represent the energy consumption, TPUT 

the throughput, and DEL the delay. In order to obtain the 

optimal energy, ENER needs to be maximized, subject to 

constraints on TPUT and DEL on the Langrangian 

function 

L(ENER,TPUT,DEL, λTPUT, λDEL)=ENER+ λTPUT ( 

TPUTmin −TPUT)+ λDEL ( DELmax −DEL) 

Here, λTPUT and λDEL are the Lagrange multipliers 

corresponding to the throughput and delay constraints. 

The solution for the optimal energy can be obtained 

by 

∂L/∂ENER =0, ∂L/∂TPUT =0 and ∂L/∂DEL =0 

Which means for the optimal energy consumption 

ENER,  the constraints if any, on the throughput and the 

delay must be optimized. 

A similar approach might be adapted for throughput 

optimization 

L(TPUT,ENER,DEL,λENER,λDEL

)=−TPUT+λENER(ENERmax−ENER)+λDEL(DELmax

−DEL) 

Here, ∂L/∂TPUT, ∂L/∂ENER and ∂L/∂DEL can be 

calculated respectively, which means for optimal 

throughput TPUT,  the constraints, if any, energy 

consumption and delay must be optimized. 

For an optimal solution to the relaxed objective 

function,  the multi-optimization equation given below can 

be solved by 

minimizing ENER subject to TPUT≥TPUTmin, 

DEL≤DELmax  

LRelaxed(ENER,TPUT,DEL)=ENER+WTPUT⋅max(0, 

TPUTmin−TPUT)+WDEL⋅max(0,DEL− DELmax) 

Evaluation metrics 

For the purpose of comparing the proposed method 

with the other methods, the following metrics were used. 

#Throughput: The rate of successful transmission of 

data in the network 

#Energy Consumption: The energy consumed by the 

nodes in the CRN. 

#Delay: The time taken by the packets to reach the 

destination from a source. 

#Packet Loss: The percentage of packets lost during 

the transmission. 

#Channel utilization is measured by the number of 

active channels whose SINR is above the 

specified threshold. 

#Reward: The maximum total reward obtained by 

optimizing the above QoS parameters, subject to 

the constraints. 

The following are the simulation parameters, and the 

rewards are calculated using the reward function. 

#Number available channels - n_channels: 5  

#Number of SUs - n_users: Varies from 10 to 90 

#The Signal to Noise Threshold-sinr_threshold: 15  

#Number of iterations:env_steps: 500  

Reward weights 

#Throughput weight-w_throughput: 0.5 

#Energy consumption weight-w_energy: -3  

#Delay weight-w_delay: -1 

#Packet Loss weight-w_packet_loss: -1 

#SINR weight-w_SINR: 1 

Three agent classes were created: the Q-

LearningAgent, the ActorCriticAgent and the PPOAgent. 

The Q-LearningAgent uses  ℇ greedy strategy for action 

selection to balance exploration and exploitation. 

Results and Discussion 

The proposed method implements three reinforcement 

learning algorithms Q-Learning, Actor-Critic and 

Proximal Policy Optimization algorithms and highlights 

the advantage of PPO over other methods in terms of 

optimizing most of the QoS parameters in the reward 

function.  

It can be observed from the results that while the PPO 

algorithm results in more Energy consumption for 

channel allocation compared to the other two methods, it 

far out performs the Q-Learning and the Actor-Critic 

algorithms in terms of delay, throughput as well as the 

packet loss. The reason is that the PPO algorithm favours 

exploration compared to other methods, owing to its 

policy updating mechanism that uses a clipped objective 

to ensure that policy updates do not diverge too much 

from the previous policy. This might result in suboptimal 

choices that increase energy consumption while trying to 

discover better strategies. However, PPO incorporates the 

Generalized Advantage Estimation (GAE) to estimate the 

advantage function, leading to more informative updates 

and improved learning signals. This is particularly 

beneficial in optimizing for throughput and minimizing 

delay and packet loss. In other words, since PPO updates 

its policy continuously based on new experiences, it 

explores more aggressive actions that will maximize 

throughput or reduce delay, even if they consume more 

energy. It can be seen that the PPO algorithm offers 

lesser rewards when compared to the Actor-Critic 

algorithm. This is because the clipping in PPO prevents 

the policy from changing too much during updates, 
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resulting in stable but slow exploration. On the other 

hand, Actor-Critic follows an aggressive policy 

adaptation, resulting in more rewards in complex 

environments. As the considered environment is 

particularly dynamic, with varying delay, throughput etc., 

PPO tends to be less aggressive. Q-Learning and Actor-

Critic algorithms are able to gather higher rewards more 

quickly without reference to the policy changes. For a 

similar reason, Q-Learning’s focus on exploiting energy-

efficient policies means it overlooks other critical factors 

like throughput and delay. Since actions that save energy 

might not be optimal for maximizing throughput, Q-

Learning tends to get stuck in the previously known 

optimal values. It over-prioritizes minimizing the energy 

without considering throughput and other values.  

A few earlier methods have implemented Q-Learning 

and considered one or two QoS parameters in the reward 

function. Our proposed method also compares and 

evaluates PPO's throughput and channel utilization with 

two of these earlier methods in the existing work. For the 

purpose of evaluating the effectiveness of our proposed 

method against existing schemes, the results are 

compared with the system throughput and the channel 

utilization of the JPCRL and the DRLCA algorithms 

(Zhao et al., 2019; Pavan et al., 2024), respectively. 

Results also show a clear improvement in both the 

parameters for the proposed PPO method. For even more 

complex environments, such as larger channels with 

continuous state spaces, Deep Q-Learning or Double 

Deep Q-Learning (DDQN) would be required. 

 

 
Figure 3.  Energy Consumption graph for Q-Learning. 

 

 
Figure 4.  Delay graph for Q-Learning. 



Int. J. Exp. Res. Rev., Vol. 46: 326-341 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v46.026 
334 

  

 
Figure 5. Throughput graph for Q-Learning. 

 
Figure 6. Packet Loss graph for Q-Learning. 

 
Figure 7. Reward graph for Q-Learning. 
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Figure 8. Energy Consumption graph for Actor-Critic. 

 
Figure 9. Delay graph for Actor-Critic. 

 
Figure 10.  Throughtput graph for Actor-Critic. 
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Figure 11.  Packet Loss graph for Actor-Critic. 

 
Figure 12.  Reward graph for Actor-Critic. 

 
Figure 13.  Energy Consumption graph for PPO 
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Figure 14. Delay graph for PPO 

 

 
Figure 15. Throughput graph for PPO. 

 

 
Figure 16. Packet Loss graph for PPO. 
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Figure 17. Reward graph for PPO. 

 
Figure 18. Throughput graph for PPO vs JPCRL. 

 
Figure 19. Channel Utilization graph for PPO vs DRLCA. 



Int. J. Exp. Res. Rev., Vol. 46: 326-341 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v46.026 
339 

 Conclusion 

In this work, we propose reinforcement learning 

strategies that can optimize energy consumption in some 

cases and throughput in other cases in a CRN. The QoS 

requirements guide the choice of strategy to use with 

CRNs for channel allocation. The effectiveness of a 

particular strategy for parameter optimization depends on 

the design of the reward function. In the case of a 

weighted reward function used here, the proper choice of 

weights would certainly impact the strategy, particularly 

the PPO, which can be used for optimizing the energy. 

Still, then the other parameters would be suboptimal. Put 

another way, PPO consumes more energy as it 

emphasizes finding a balance between all the 

performance metrics, not just energy efficiency, 

improving throughput, delay, and packet loss. 

Comparison of the proposed method with existing 

algorithms also confirms its effectiveness in terms of 

Table 1. Throughput Table for PPO vs JPCRL. 

Number of Users Average Throughput (PPO) Average Throughput 

(JPCRL) 

10.0 99.02 99 

20.0 200.38 180 

30.0 302.13 250 

40.0 402.66 330 

50.0 494.62 400 

60.0 601.3 450 

70.0 705.49 500 

80.0 802.85 570 

90.0 899.94 580 

Table 2. Channel Utilization Table for PPO vs DRLCA. 

SINR Threshold Channel Utilization (PPO) Channel Utilization 

(DRLCA) 

0.0 1.0 0.9 

2.5 0.88 0.21 

5.0 0.8 0.1 

7.5 0.72 0.075 

10.0 0.68 0.06 

12.5 0.54 0.05 

15.0 0.52 0.05 

17.5 0.42 0.04 

20.0 0.44 0.04 

Figure 20. Performance metrics comparison for the three RL strategies. 
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improved throughput and channel utilization. Since PPO 

algorithm performs exceedingly well in terms of 

throughput and substantially reduces the delay and packet 

loss, it is an ideal choice for applications such as video, 

imaging or M2M communications.  

Conflict of interest 

None 

References 

Azaly, N., Badran, E., Kheirallah, H., & Farag, H. 

(2020). Centralized Dynamic Channel Reservation 

Mechanism via SDN for CR Networks Spectrum 

Allocation. IEEE Access, 8, 192493-192505. 

https://doi.org/10.1109/ACCESS.2020.3032666 

Chakraborty, T., & Misra, I. S. (2020). A novel three-

phase target channel allocation scheme for multi-

user Cognitive Radio Networks. Computer 

Communications, 154, 18–39. 

https://doi.org/10.1016/j.comcom.2020.02.026  

Dey, S., & Misra, I. (2018). A Novel Content Aware 

Channel Allocation Scheme for Video Applications 

over CRN. Wireless Personal Communications, 100.  

https://doi.org/10.1007/s11277-018-5650-4 

El-Toukhy, A., Tantawy, M., & Tarrad, I. (2016). QoS-

driven channel allocation schemes based on 

secondary users' priority in cognitive radio networks. 

International Journal of Wireless and Mobile 

Computing, 11(1), 91. 

https://doi.org/10.1504/IJWMC.2016.080182 

Hossen, M. A., & Yoo, S.J. (2019). Q-Learning Based 

Multi-Objective Clustering Algorithm for Cognitive 

Radio Ad Hoc Networks. IEEE Access, 7, 181959–

181971. 

https://doi.org/10.1109/access.2019.2959313 

Jang, S.J., Han, C.H., Lee, K.E., & Yoo, S.J. (2019). 

Reinforcement learning-based dynamic band and 

channel selection in cognitive radio ad-hoc 

networks. EURASIP Journal on Wireless 

Communications and Networking, 2019(1). 

https://doi.org/10.1186/s13638-019-1433-1 

Kumar, A., Dutta, S., & Pranav, P. (2023). Prevention of 

VM Timing side-channel attack in a cloud 

environment using randomized timing approach in 

AES – 128. Int. J. Exp. Res. Rev., 31(Spl Volume), 

131-140. 

https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.

013 

Madhuri, T. N. P., Rao, M. S., Santosh, P. S., Tejaswi, P., 

& Devendra, S. (2022). Data Communication 

Protocol using Elliptic Curve Cryptography for 

Wireless Body Area Network. 2022 6th 

International Conference on Computing 

Methodologies and Communication (ICCMC), 

pp.133–139. 

https://doi.org/10.1109/iccmc53470.2022.9753898 

Malik, S. A. (2020). Efficient channel allocation using 

matching theory for QoS provisioning in radio 

networks. Sensors, 20(7), 1872. 

https://doi.org/10.3390/s20071872   

Nayak, D., Muduli, A., Hussain, M., Mirza, A., 

Gummadipudi, J., & Kumar, N. (2020). Channel 

allocation in cognitive radio networks using energy 

detection technique. Materials Today: Proceedings, 

33. https://doi.org/10.1016/j.matpr.2020.06.491 

Nayani, A. S. K., Sekhar, C., Rao, M. S., & Rao, K. V. 

(2021). Enhancing image resolution and denoising 

using autoencoder. In Lecture Notes on Data 

Engineering and Communications Technologies, pp. 

649–659. https://doi.org/10.1007/978-981-15-8335-

3_50 

Pal, R., & Dahiya, S. (2022). Optimal Channel Selection 

algorithm for CRahNs. Physical Communication, 54, 

101853. 

https://doi.org/10.1016/j.phycom.2022.101853 

Pal, R., Gupta, N., Prakash, A., Tripathi, R., & 

Rodrigues, J. J. P. C. (2020). Deep reinforcement 

learning based optimal channel selection for 

cognitive radio vehicular ad‐hoc network. IET 

Communications, 14(19), 3464–3471. Portico. 

https://doi.org/10.1049/iet-com.2020.0451 

Pavan, M.N., Kumar, S., Nayak, G., & Narender, M. 

(2024). Deep Reinforcement Learning based channel 

allocation (DRLCA) in Cognitive Radio 

Networks. Journal of Electrical Systems. 

Srivastava, A., Pal, R., Prakash, A., Tripathi, R., Gupta, 

N., & Alkhayyat, A. (2024). Optimal Channel 

Selection and Switching Using Q-Learning in 

Cognitive Radio Ad Hoc Networks. IEEE 

Transactions on Consumer Electronics, 70(3), 

6314–6326. 

https://doi.org/10.1109/tce.2024.3413333 

Tlouyamma, J., & Velempini, M. (2021). Channel 

Selection Algorithm Optimized for Improved 

Performance in Cognitive Radio Networks. Wireless 

Personal Communications.  

Varshney, P., Singh, R. P., & Jain, R. K. (2024). 

Performance Analysis of Millimeter-Wave 

Propagation Characteristics for Various Channel 

Models in the Indoor Environment. International 

Journal of Experimental Research and Review, 

44, 102–114. 

https://doi.org/10.52756/IJERR.2024.v44spl.009 

https://doi.org/10.1007/978-981-15-8335-3_50
https://doi.org/10.1007/978-981-15-8335-3_50


Int. J. Exp. Res. Rev., Vol. 46: 326-341 (2024) 

DOI: https://doi.org/10.52756/ijerr.2024.v46.026 
341 

Wang, Y.H., & Liao, S.L. (2018). Dynamic channel 

allocation scheme in CRN applied fuzzy-inference 

system. Journal of Computers (Taiwan). 29, 141-

155. 

http://dx.doi.org/10.3966/199115992018062903013. 

Xu, Q., Li, S., Gaber, J., & Han, Y. (2024). Modelling 

Analysis of Channel Assembling in CRNs Based on 

Priority Scheduling Strategy with Reserved 

Queue. Electronics, 13(15), 3051. 

https://doi.org/10.3390/electronics13153051 

Ye, Z., Wang, Y., & Wan, P. (2020). Joint Channel 

Allocation and Power Control Based on Long Short-

Term Memory Deep Q Network in Cognitive Radio 

Networks. Complexity, 2020, 1-11. 

http://dx.doi.org/10.1155/2020/1628023 

Zhang, M., Zhu, X., Jiang, H., Bian, T., & Yang, Y. 

(2023). A dynamic channel allocation protocol based 

on data traffic characterization for cognitive-radio 

wireless sensor networks. SSRN. 

http://dx.doi.org/10.2139/ssrn.4457362       

Zhao, G., Li, Y., Xu, C., Han, Z., Xing, Y., & Yu, S. 

(2019). Joint Power Control and Channel Allocation 

for Interference Mitigation Based on Reinforcement 

Learning. IEEE Access, 7, 177254–177265. 

https://doi.org/10.1109/access.2019.2937438 

 

How to cite this Article: 

Kalyana Chakravarthy Chilukuri, N Chaitanya Kumar, T. Vidhyavathi, Regidi Suneetha, V Sita Rama Prasad, Badugu Samatha and 

Mahanty Rashmita (2024). Proximal Policy Optimization for Efficient Channel Allocation with Quality of Service (QoS) in Cognitive 

Radio Networks. International Journal of Experimental Research and Review, 46, 326-341. 

DOI : https://doi.org/10.52756/ijerr.2024.v46.026 

 

https://creativecommons.org/licenses/by-nc-nd/4.0/

