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Introduction 

In the past few years, the landscape of cyber-attacks 

has evolved significantly, largely driven by the inherent 

vulnerabilities of various internet-connected devices, 

making them prime targets for malicious exploitation. 

These cyber-attacks often compromise sensitive data and 

pose substantial threats to essential infrastructures across 

industries. Among the myriad types of cyber-attacks, 

Distributed Denial of Service (DDoS) attacks have 

emerged as one of the most pervasive and damaging due 

to their ability to cause widespread service disruption. 

The unique complexity and rapid proliferation of DDoS 

attacks distinguish them from other forms of cyber 

threats, presenting new challenges for timely and accurate 

detection. As such, the development of robust DDoS 

detection mechanisms has become a critical focus of 

ongoing research. DDoS attacks typically operate through 

distributed vectors, overwhelming target systems or 

networks with massive volumes of traffic, intending to 

render critical services inoperable. Frequently, these 

attacks are aimed at high-value targets such as financial 

institutions, corporate websites, e-commerce platforms, 

and payment processing systems. The growing scale of 

DDoS attacks is evident in the data, which shows a 192% 

surge in the size of the largest recorded attacks and an 

81% rise in maximum attack intensity. In June 2020, the 

peak attack volume reached 12 Gbps, a significant 

increase compared to the 11 Gbps recorded in the same 
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Abstract: In today's digitally connected world, Distributed Denial of Service (DDoS) 

attacks remain a formidable challenge, undermining the stability of network 

infrastructures and demanding robust detection strategies. This research explores 

advanced methodologies for DDoS detection by conducting a comparative analysis of 

machine learning and deep learning approaches using the CICDDoS2019 dataset. 

Initially, a hybrid machine learning framework is implemented, integrating K-Means 

clustering for pre-labeling the dataset and employing supervised models such as 

Random Forest (RF), Extreme Gradient Boosting (XGBoost), Adaptive Boosting 

(AdaBoost), Support Vector Machine (SVM), and Artificial Neural Network (ANN). 

This approach achieves an accuracy of 99.46%, showcasing its effectiveness while 

highlighting challenges like manual feature selection and limited scalability for complex 

datasets. A novel hybrid deep learning architecture is proposed to overcome these 

challenges, combining Convolutional Neural Networks (CNN) for spatial feature 

extraction and Long Short-Term Memory (LSTM) networks for temporal sequence 

learning. This automated feature extraction mechanism eliminates reliance on manual 

intervention, ensuring adaptability to evolving attack patterns. The proposed CNN-

LSTM model demonstrates an impressive accuracy of 99.84%, significantly 

outperforming traditional machine learning models. Additionally, the model's 

adaptability and resilience against dynamic attack behaviours position it as a reliable 

solution for real-time DDoS mitigation. This study emphasizes the growing relevance of 

deep learning techniques in enhancing cyber security and underscores the potential of 

hybrid architectures in effectively detecting and mitigating modern cyber threats. The 

findings provide valuable insights into developing scalable, high-performance systems 

capable of addressing the ever-evolving nature of DDoS attacks. 
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period of 2019 (Alanazi et al., 2022). Given these 

alarming trends, the need for effective and scalable DDoS 

detection solutions has become increasingly urgent. A 

visual representation of the various types of DDoS 

attacks is provided in Figure 1. 

sAs the threat of Distributed Denial of Service (DDoS) 

attacks continues to escalate, the necessity of building 

resilient defense mechanisms becomes increasingly 

urgent. An effective cyber-attack detection system must 

be powered by a deep learning (DL) model that ensures 

high accuracy while minimizing the rate of false positives. 

Both supervised and unsupervised learning techniques 

have been leveraged to enhance model performance in 

cybersecurity applications. Over recent years, numerous 

machine learning (ML) and DL-based approaches have 

been adopted to combat DDoS attacks. These methods 

encompass a variety of algorithms, including Decision 

Trees (DT), Logistic Regression (LoR), Linear Regression 

(LR), Naive Bayes (NB), Support Vector Machines 

(SVM), K-Nearest Neighbors (KNN), Random Forest 

(RF), XGBoost, AdaBoost, and sophisticated deep models 

such as ResNet, Artificial Neural Networks (ANNs), 

Recurrent Neural Networks (RNNs), Long Short-Term 

Memory (LSTM), and Convolutional Neural Networks 

(CNNs). These models have been extensively trained and 

validated on datasets such as CICDDoS2019, which is 

widely regarded for DDoS attack detection tasks. 

Additionally, other prominent datasets, including 

CICIDS2017, KDD, CAIDA 2007, IoT NI, BoT IoT, 

MQTT, MQTTset, IoT-23, IoT-DS2 and UNSWNB15, 

have been employed in DDoS detection research, further 

contributing to the ongoing efforts in enhancing cyber 

resilience (Seifousadati et al., 2021; Sharma and Shakya, 

2022;  Sharma et al., 2024a,b &c). 

Incorporating deep learning (DL) architectures and 

developing innovative network models present a 

significant advancement in detecting Distributed Denial of 

Service (DDoS) attacks, thereby fortifying modern cyber 

defence strategies. With the surge of big data, the 

detection of DDoS threats is becoming increasingly 

intertwined with advancements in data analytics and 

large-scale data processing. Given the massive amounts of 

traffic data in cyber security, identifying complex, multi-

faceted patterns within network traffic presents a 

substantial challenge. While effective on smaller datasets, 

traditional machine learning (ML) algorithms are often 

prone to high false-positive rates and misclassification 

issues, ultimately complicating security management. This 

has led to the increased reliance on advanced DL models, 

which outperform ML techniques in terms of detection 

accuracy and scalability. DL excels in tackling the 

computational and data-scale challenges pervasive in 

cyber security due to its ability to automatically extract 

and learn complex features from large datasets. This 

capability makes DL especially well-suited for identifying 

cyber threats, including DDoS attacks, by detecting 

intricate patterns across vast network data (Effah et al., 

2024). One of the core strengths of DL models lies in their 

feature learning capacity, enabling them to extract, 

classify, and analyze data, even when some information is 

incomplete or obscured. By employing multiple hidden 

layers and complex mathematical operations, DL models 

can provide a higher level of abstraction for feature 

extraction. This study introduces novel DL models, 

integrating Convolutional Neural Networks (CNNs) and 

Long Short-Term Memory (LSTM) networks to address 

both binary and multi-class DDoS attack detection. The 

combined architecture enhances the ability to learn 

temporal and spatial features from network traffic data, 

thereby offering an improved and scalable solution for 

modern cyber defence systems (Zhou et al., 2022). 

The primary purpose of this study is to develop and 

evaluate advanced methodologies for the detection of 

Distributed Denial of Service (DDoS) attacks, which pose 

Figure 1. Categorization of DDoS attacks (Ramzan et al., 2023). 
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significant threats to network infrastructures. This 

research aims to address the limitations of traditional 

detection systems by leveraging state-of-the-art machine 

learning techniques to enhance detection accuracy, 

scalability, and adaptability to dynamic attack patterns. 

Propose and implement a novel deep learning-based 

hybrid parallel architecture, combining Convolutional 

Neural Networks (CNN) for spatial feature extraction and 

Long Short-Term Memory (LSTM) networks for temporal 

sequence learning.  

Problem Statement 

The continuous escalation in both frequency and 

complexity of Distributed Denial of Service (DDoS) 

attacks presents a critical challenge to the stability and 

security of network infrastructures globally. Traditional 

detection mechanisms, largely dependent on static, rule-

based systems, struggle to keep pace with the dynamic 

nature of modern DDoS attacks, often resulting in 

elevated false positive rates and delayed mitigation 

efforts. The need for an intelligent, adaptive detection 

system that can efficiently identify and counteract such 

threats has become increasingly pressing. 

Research Objective 

The primary objective of this research is to address the 

growing complexity and frequency of DDoS attacks, 

which significantly challenge network functionality and 

security. The study seeks to evaluate and enhance the 

efficacy of detection models by integrating advanced 

artificial intelligence and deep learning techniques. It 

aims to: 

Leverage Machine Learning Algorithms 

Utilize models such as Random Forest, Extreme 

Gradient Boosting (XGBoost), Adaptive Boosting 

(AdaBoost), Support Vector Machine (SVM) and 

Artificial Neural Network (ANN) to improve detection 

accuracy while minimizing false positives and false 

negatives. 

Develop feature selection strategies to better 

distinguish between legitimate and malicious traffic. 

Develop a Hybrid Deep Learning Model 

Create a CNN-LSTM framework to capitalize on 

Convolutional Neural Networks (CNN) to extract spatial 

features and Long Short-Term Memory (LSTM) to 

capture temporal dependencies in network traffic. 

Optimize the model with parallel execution of feature 

maps through dense layers and LSTM pathways. 

Enhance Data Processing 

Implement robust data pre-processing techniques for 

cleaning and normalizing the CICDDoS2019 dataset, 

ensuring high-quality input data for training and testing. 

 

Evaluate Performance 

Conduct a comprehensive analysis of the hybrid 

model’s performance using key metrics such as accuracy, 

precision, recall, F1-score, and confusion matrix. 

Benchmark results against traditional machine 

learning models to demonstrate superiority. 

Achieve Scalability and Real-Time Detection 

Test the CNN-LSTM model’s capacity for real-time 

detection of DDoS attacks, focusing on its scalability to 

manage large-scale network traffic effectively. 

By achieving these objectives, the research intends to 

provide a robust, scalable, and efficient solution for 

DDoS attack detection, underscoring the advantages of 

hybrid machine learning over traditional machine 

learning approaches. 

Contribution of this Study 

This research introduces several key contributions to 

the domain of DDoS detection: 

Innovative Machine Learning Models  

Two novel deep learning models are presented, 

utilizing CNN and LSTM hybrid architecture. Unlike 

conventional architectures where LSTM outputs are 

passed to CNN layers, the proposed models feature a 

parallel execution where both LSTM and CNN layers 

process the same input data concurrently. The outputs are 

combined through an element-wise addition operation 

applied across dense layers as well, resulting in a more 

efficient and accurate model. 

Binary and Multi-class Classification 

The proposed models support both binary and multi-

class classification. The binary classification model 

identifies traffic as benign or malicious, while the multi-

class model categorizes traffic into 12 distinct classes, 

covering 11 attacks and one benign class. 

Evaluation with CICDDoS2019 Dataset  

The models were thoroughly tested using the 

CICDDoS2019 dataset, which is known for its 

comprehensive nature in DDoS research. The models 

exhibited high detection and recognition accuracy, 

outperforming traditional detection approaches, 

particularly on previously unseen data. 

Lightweight Design  

The proposed models are designed to be lightweight, 

with fewer trainable parameters compared to many 

existing deep learning models. This makes them suitable 

for deployment in environments with limited 

computational resources. 

Performance Benchmarking  

The performance of the proposed models was 

benchmarked against existing solutions and baseline 

models. The results demonstrate significant 
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improvements in detection accuracy and processing 

efficiency. 

Literature Review 

Abreu et al. (2020) introduced an innovative method 

for robust DDoS attack detection through a 

multidimensional approach. They began with Higher 

Order Singular Value Decomposition (HOSVD) to filter 

out average common features among dataset instances. 

This filtered data was then processed by machine learning 

classification algorithms, categorizing traffic as legitimate 

or indicative of a DDoS attack. The proposed method 

outperforms low-rank approximations using the random 

forest algorithm, achieving 98.94% accuracy, 97.70% 

detection rate, and 4.35% false alarm rate with a 30% 

corrupted dataset. Under error-free conditions, the 

method excels further with 99.87% accuracy, 99.86% 

detection rate and 0.16% false alarm rate using the 

gradient boosting classifier. This innovative approach 

shows great promise for effective DDoS attack detection. 

Sindian et al. (2020) introduced the Enhanced Deep 

Sparse Autoencoder EDSA framework for DDoS attack 

detection, focusing on minimising cost. They used a 

sparse autoencoder for data extraction and a softmax 

layer to classify traffic as malicious or benign. They 

employed metrics like detection rate, overall accuracy 

and precision to assess the model's accuracy and 

effectiveness in intrusion detection. When tested on the 

CICDDoS2019 dataset, their method achieved a 

remarkable detection accuracy of 98% with an 

impressively low false positive rate of 1.4%. The EDSA 

framework demonstrates its potential for robust DDoS 

attack detection with high precision and minimal false 

alarms. 

Polat et al. (2020) introduced a method for DDoS 

attack detection in Software-Defined Networking (SDN) 

by employing machine learning models. They initiated 

the process by extracting specific features from SDN data 

under normal conditions and during DDoS attacks. They 

generated a new dataset through feature selection 

techniques to improve model efficiency, interpretability, 

and training time. They conducted training and testing on 

two datasets, one with feature selection and one without, 

using SVM, NB, ANN and KNN models. Their results 

highlighted the effectiveness of applying wrapper feature 

selection in conjunction with a KNN classifier, achieving 

a high accuracy rate of 98.3% in DDoS attack detection. 

This approach showcases the potential of machine 

learning and feature selection to enhance DDoS detection 

in SDN while reducing processing overhead and time 

consumption. 

Halladay et al. (2022) proposed the model with the 

efficacy of 25 time-based features to detect and classify 

12 types of DDoS attacks using binary and multiclass 

classification. Furthermore, they conducted experiments 

to compare the performance of eight traditional machine 

learning classifiers and one deep learning classifier using 

two different scenarios. Their findings show that the 

majority of models achieved over 99% accuracy in both 

control and time-based experiments for detecting DDoS 

attacks while also demonstrating around 70% accuracy in 

classifying specific DDoS attack types. 

An efficient hybrid deep neural network model, 

integrating XGBoost for feature selection with CNN-

LSTM architecture for DDoS attack detection, was 

introduced by Devan et al. (2020). This approach is 

applied to SDN-based IoT networks, achieving 

impressive results in terms of both accuracy (99.5%) and 

latency (0.179 ms), illustrating its capability to detect and 

classify attacks with minimal computational overhead. 

In another study, Jiang et al. (2020) proposed a deep 

learning-based hybrid model using CNN and 

Bidirectional LSTM (CNN-BiLSTM) to detect DDoS 

attacks in IoT networks. The model demonstrates high 

performance with an accuracy of 99.76% when tested on 

the CICIDS2017 dataset, making it a robust solution for 

identifying anomalous network behavior. This model was 

assessed using multiple performance metrics, confirming 

its efficiency in cyber-attack detection. 

In Vinayakumar et al. (2019), a deep learning 

framework using CNN and LSTM is proposed for 

detecting DDoS attacks by analyzing spatial and temporal 

patterns in network traffic data. When tested on real-

world datasets, the model exhibits strong accuracy and 

generalization capabilities, affirming the benefit of 

combining CNN and LSTM architectures for complex 

attack detection. 

Research presented by Abid et al. (2024) highlights a 

hybrid approach involving CNN and Recurrent Neural 

Networks (RNN) for DDoS detection. The hybrid model 

effectively captures both feature correlations and 

temporal dependencies, particularly in large-scale 

network traffic data, improving detection accuracy in IoT 

environments. The study underscores the potential of 

hybrid deep learning models in enhancing network 

security. 

A CNN-LSTM-based approach for detecting DDoS 

attacks is proposed by Dangi et al. (2021), combining the 

feature extraction strengths of CNN with the sequence 

modeling capabilities of LSTM. The model was 

rigorously tested using real-world datasets, demonstrating 

superior performance compared to traditional detection  
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Table 1. Systematic review of DDoS traffic attack detection previous works. 

ef. Algorithms Dataset Results Accuracy Limitation Advantages 

(Abreu et 

al., 2020) 

HOSVD + 

Random 

Forest, 

Gradient 

Boosting 

Custom 

Dataset 

Robust detection under 

corrupted and error-free 

conditions, low false 

alarm rate. 

99.87% 

(error-free) 

Requires complex 

preprocessing using 

HOSVD. 

High detection 

accuracy performs 

well even with 

corrupted datasets. 

(Sindian 

et al., 

2020) 

Enhanced 

Deep Sparse 

Autoencoder 

(EDSA) 

Framework 

CICDDoS 

2019 

Accurate DDoS 

detection with low false 

positive rates. 

98% 

Limited scalability 

and real-time 

capability focus. 

High precision and 

minimal false alarms; 

cost-effective 

framework. 

(Polat et 

al., 2020) 

KNN + 

Wrapper 

Feature 

Selection 

Custom 

SDN 

Dataset 

Enhanced efficiency and 

accuracy in SDN-based 

DDoS detection. 

98.3% 

Relies heavily on 

feature selection, 

increasing 

preprocessing 

complexity. 

Reduced processing 

overhead and effective 

classification. 

(Halladay 

et al., 

2022) 

Multiple ML 

Classifiers (8 

ML, 1 DL) 

Custom 

Time-

Based 

Data 

High accuracy in binary 

detection; moderate 

performance in multi-

class classification. 

Over 99% 

(binary), 

~70% 

(multi-

class) 

Struggles with 

accurate 

classification of 

specific attack types 

in multi-class 

detection. 

Explores the 

effectiveness of 

diverse classifiers' 

strong binary 

classification 

performance. 

(Devan et 

al., 2020) 

XGBoost + 

CNN-LSTM 

SDN-

based IIoT 

High accuracy and low 

latency 
99.50% 

Time cost of 0.179 

ms could be 

significant in real-

time applications 

Combines feature 

selection and deep 

learning for efficient 

detection 

(Jiang et 

al.,2020) 
CNN-BiLSTM 

CICIDS 

2017 

High accuracy in DDoS 

detection 
99.76% 

Potential overfitting 

due to high model 

complexity 

High accuracy and 

comprehensive 

assessment against 

common criteria 

(Vinayaku

mar et al., 

2019) 

CNN-LSTM 
CICDDoS 

2019 

Achieved robust DDoS 

detection on real-world 

datasets. 

99.24% 

High computational 

complexity, making 

it less suitable for 

real-time systems. 

Effective feature 

extraction using CNN 

and temporal pattern 

recognition with 

LSTM. 

(Abid et 

al., 2024) 
CNN-LSTM 

CICDDoS 

2019 

Ability to acquire and 

classify complex spatial 

unprocessed network 

traffic data. 

99.40% 

Could Improve the 

resilience and 

effectiveness of 

detection systems 

Extraordinary capacity 

to thoroughly analyze 

data and accurately 

detect DDoS attacks 

highlights its 

effectiveness 

(Dangi et 

al., 2021) 
CNN-LSTM 

CICDDoS 

2019 

Improved detection of 

DDoS attacks, especially 

in IoT environments. 

98.93% 

Struggles with 

large-scale real-time 

traffic due to 

resource 

consumption. 

The hybrid CNN-RNN 

model captures both 

spatial and temporal 

dependencies 

effectively. 
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methods while addressing the challenge of computational 

efficiency in large-scale intrusion detection systems. 

A deep learning method combining CNN and LSTM 

for detecting DDoS attacks is presented in Alzahrani et 

al. (2022). CNN extracts spatial features from network 

traffic data, while LSTM captures the sequential 

dependencies. This hybrid model significantly improves 

detection accuracy when tested on publicly available 

datasets, proving its effectiveness in handling complex, 

high-dimensional data in cybersecurity applications. 

In Zhang et al. (2020), the authors present a hybrid 

CNN-LSTM architecture specifically designed to detect 

DDoS attacks in high-dimensional network traffic data. 

The model outperforms several existing detection 

techniques in terms of accuracy, precision, and recall, 

highlighting the advantages of deep hybrid models in 

cyber defense. 

A hybrid CNN-LSTM model for DDoS attack 

detection is introduced by Yin et al. (2021), where CNN 

is responsible for feature extraction and LSTM handles 

time-series dependencies. When tested on multiple 

datasets, the model demonstrates enhanced performance 

over traditional detection methods, particularly in terms 

of accuracy and real-time detection capability. 

Another study Gamal et al. (2022) investigates a deep 

learning method for DDoS detection, utilizing CNN and 

LSTM networks. The model is evaluated using the 

CICIDS2017 dataset, showing high detection accuracy 

for various types of DDoS attacks. This highlights the 

importance of combining spatial and temporal feature 

extraction for network intrusion detection. 

Woo et al. (2020) propose a deep hybrid model that 

integrates CNN and LSTM for detecting DDoS attacks in 

IoT networks. The model efficiently captures spatial and 

temporal patterns, delivering high detection accuracy 

across multiple evaluation metrics. This study 

emphasizes the potential of hybrid deep learning 

architectures in addressing security challenges within IoT 

environments. 

Lastly, a framework using CNN-LSTM for real-time 

DDoS detection in cloud and IoT networks is proposed 

by Bhatt et al. (2021). The model leverages CNN for 

(Alzahrani 

et al., 

2022) 

CNN-BiLSTM 
CICDDoS 

2019 

Demonstrated high 

detection rate across 

various network traffic 

types. 

99.10% 

Requires further 

optimization for 

deployment in 

large-scale 

networks. 

Achieves high 

detection performance 

and efficiently handles 

complex network 

traffic. 

(Zhang et 

al., 2020) 
CNN-LSTM 

CICDDoS 

2019 

Significantly improved 

detection accuracy on 

the CICIDS2017 dataset. 

98.76% 

Model performance 

may degrade when 

tested on unseen 

datasets due to 

overfitting. 

Strong feature 

extraction capabilities 

using CNN and 

sequence learning with 

LSTM. 

(Yin et al., 

2021) 

Hybrid CNN-

LSTM 

CICDDoS 

2019 

Demonstrated superior 

performance in terms of 

detection metrics. 

99.28% 

Computationally 

intensive, making 

real-time 

applications 

difficult. 

High precision and 

recall rates; effective 

use of hybrid deep 

learning architectures. 

(Gamal et 

al., 2022) 
CNN-LSTM 

CICDDoS 

2019 

Achieved significant 

improvements in the 

detection of 

sophisticated DDoS 

attacks. 

99.12% 

The hybrid model's 

complexity may 

result in slower 

processing times for 

real-time detection. 

Capable of handling 

various DDoS attack 

types with high 

accuracy and 

efficiency. 

(Woo et 

al., 2020) 
CNN-LSTM 

CICDDoS 

2019 

Detected multiple types 

of DDoS attacks with 

high accuracy on 

CICIDS2017. 

98.85% 

Model may not 

generalize well to 

different datasets, 

requiring retraining. 

Efficient use of both 

CNN and LSTM to 

capture spatial and 

temporal features in 

network traffic data. 

(Bhatt et 

al., 2021) 
CNN-LSTM 

CICDDoS 

2019 

Successfully identified 

DDoS attacks in IoT 

networks. 

98.94% 

Faces challenges in 

scaling the solution 

for large IoT 

environments. 

Effective for IoT 

network security, the 

hybrid model ensures 

robustness in attack 

detection. 
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feature extraction and LSTM for capturing temporal 

dependencies, exhibiting high detection accuracy when 

tested on large-scale datasets. This research highlights the 

applicability of deep learning in dynamic and large-scale 

network environments. 

 Table 1 summarizes various hybrid deep learning 

models used for DDoS detection, highlighting each 

approach's algorithms, datasets, results, accuracy, 

limitations, and advantages. 

Background 

Cyber DDoS Attack 

In today's digital landscape, cyber threats have seen an 

alarming increase, affecting individuals and organisations. 

According to a CSO report, the financial damage caused 

by cybercrime is expected to reach trillions of dollars 

annually by 2021 (Xu et al., 2022). Among these threats, 

Distributed Denial of Service (DDoS) attacks stand out as 

one of the most destructive forms of cybercrime. These 

attacks overwhelm network infrastructures by bombarding 

them with excessive traffic, causing severe degradation in 

performance, connectivity disruptions, or even complete 

service outages. DDoS attacks take advantage of 

vulnerabilities present in system architectures, 

applications, or communication protocols (Salih et al., 

2024). The core mechanism behind DDoS attacks 

involves sending large volumes of malicious traffic to a 

target, ultimately depleting available bandwidth or 

overwhelming computational resources, which causes 

system outages. Such attacks are often coordinated from 

multiple sources simultaneously, generating a massive 

surge of requests that the targeted system cannot manage, 

resulting in crashes (Alasmari et al., 2023). DDoS 

strategies can be categorized into three primary types: 

volumetric attacks, which overload the network 

bandwidth; protocol attacks, which exploit weaknesses in 

the network layers; and application layer attacks, which 

flood servers with requests, preventing legitimate traffic 

from being processed. Often, attackers combine multiple 

strategies, making DDoS detection and mitigation 

extremely complex for security systems (Borgiani et al., 

2021). One method for mitigating DDoS attacks is real-

time packet inspection, where traffic is continuously 

monitored to detect and discard harmful packets. When 

combined with deep learning, this process becomes more 

robust, as it automates the identification of malicious 

traffic and protects systems against both volumetric and 

protocol-based attacks with minimal human intervention 

(Salehi et al., 2024). 

Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNNs) are a 

specialized subset of deep learning architectures, 

predominantly used in structured data analysis tasks. 

CNNs excel in recognizing patterns by progressively 

learning hierarchical feature representations from input 

data. A standard CNN architecture comprises three 

primary layers: convolutional layers, pooling layers, and 

fully connected layers, each playing a key role in 

identifying increasingly intricate data patterns. While 

traditionally used in image recognition tasks, CNNs are 

equally effective in analyzing one-dimensional data, such 

as network traffic or time-series sequences, particularly in 

cybersecurity applications. The architecture of a CNN is 

defined by hyperparameters such as the number of 

convolutional layers, the size and number of filters, and 

the stride applied in the pooling layers (Sumathi et al., 

2022). As the filter moves across the input data, it 

captures localized features sequentially, making CNNs 

highly suitable for classification, regression, and time-

series forecasting tasks. By combining convolutional 

layers with pooling and fully connected layers, CNN 

models effectively classify and predict patterns within 

complex datasets. One of CNN's most notable advantages 

is its ability to automatically learn essential features from 

the data, thereby reducing the need for manual feature 

selection. In recent years, CNNs have been increasingly 

used in cybersecurity to detect malicious activities, such 

as DDoS attacks. CNNs extract hierarchical features from 

network traffic data, enabling precise detection by 

processing and classifying sequential input with 

remarkable accuracy (Andresini et al., 2020). In this 

research, our goal is to utilize CNN layers to detect DDoS 

attacks by extracting meaningful features from sequential 

network traffic data and processing them through pooling 

layers and fully connected layers for improved 

classification accuracy (Hossain et al., 2020). 

Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) networks are a 

distinct form of Recurrent Neural Networks (RNN) that 

are adept at handling long-term dependencies within 

sequential data, overcoming the typical issues of 

vanishing or exploding gradients encountered during 

RNN training. These gradient issues significantly restrict 

traditional RNNs from retaining important information 

over extended time periods. The unique architecture of 

LSTMs addresses this limitation through a sophisticated 

gating mechanism, which allows the network to 

selectively preserve or discard information as necessary. 

While LSTMs require higher computational resources 

due to their complex gating mechanisms, they often 
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outperform simpler RNNs, achieving superior results 

without requiring significantly more trainable parameters 

(Behal et al., 2021). One of the defining elements of an 

LSTM is its cell state, a continuous horizontal path 

through which information flows across different time 

steps. Three distinct gates manage the regulation of this 

flow: the input gate, the forget gate, and the output gate. 

These gates work in tandem to ensure that only the most 

relevant data is retained in the cell state while irrelevant 

information is discarded. This mechanism enables 

LSTMs to maintain crucial temporal information across 

long sequences, making them highly effective in 

applications such as DDoS attack detection (Musa et al., 

2024). 

In the context of DDoS detection, LSTMs excel due to 

their ability to process and learn from sequential network 

traffic data, capturing complex patterns that indicate 

potential cyber-attacks. Their ability to identify long-term 

dependencies within network traffic allows LSTMs to 

detect abnormal traffic behaviours that often precede or 

accompany DDoS attacks. This adaptability, combined 

with the network's inherent capability to extract 

meaningful features from vast amounts of time-series 

data, renders LSTMs essential in advanced network 

defence frameworks. As a result, LSTM-based models 

are particularly well-suited for identifying and predicting 

emerging cyber threats in real time, enhancing the 

efficacy of network security systems. 

 

Dataset 

Overview of the CICDDoS-2019 Dataset 

The CIC-DDoS2019 dataset was developed by the 

Canadian Institute for Cybersecurity (CIC) in 

collaboration with the University of New Brunswick. It is 

a comprehensive dataset designed to facilitate 

cybersecurity research, specifically for detecting and 

mitigating Distributed Denial of Service (DDoS) attacks. 

This dataset offers a vast collection of network traffic 

samples, containing over 50 million malicious flows and 

more than 100,000 benign traffic samples. It covers 13 

different DDoS attack types alongside benign network 

traffic, providing a valuable resource for researchers 

aiming to study DDoS behavior in network traffic 

(DDoS, 2019). The data includes 87 distinct features, 

such as packet size, duration, and protocol type, extracted 

using the CICFlowMeter tool. An additional label column 

(88th column) indicates whether the traffic sample is 

benign or represents a specific DDoS attack category 

(Saxena et al., 2020). 

#Step 1: Define the Input Data (Traffic Features) 

Each traffic sample is represented by a feature matrix, 

X, with n traffic samples and 87 features, where the 

feature values are arranged in rows corresponding to the 

samples and columns corresponding to the individual 

features. The input data can be formalized as follows: 

Matrix X represents the feature data: 

X={xij},  i=1,2,…,n;  j=1,2,…,87 

Figure 2. Weightage % of each attack in CICDDOS2019 dataset. 
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where: xij is the value of the jth feature for the ith traffic 

sample, n is the total number of traffic samples in the 

dataset. 

Label Y represents the corresponding attack or benign 

traffic with yi=0 denoting benign traffic and yi=1 to 13 

denoting specific DDoS attack categories: 

Y={ yi }, yi ∈{0,1,2,…,13} 

#Step 2: Attack Type Identification 

The predicted label Ŷ corresponds to one of the attack 

types, which can be either benign traffic or one of the 

DDoS categories. Let C represent the set of all possible 

DDoS attacks and benign traffic: 

C= {Benign, LDAP, MSSQL, NetBIOS,…, 

SYN DDoS} 

Each traffic sample is assigned to one of these 

categories based on the predicted label Ŷ. 

#Step 3: Define the Attack Types 

The DDoS attacks in the dataset can be broadly 

categorized into two primary types: 

1. Reflection-based DDoS Attacks (R): These attacks 

leverage servers or services that reflect responses to the 

victim's server. Based on the transport protocol, 

reflection-based attacks can be further divided into: R = 

{TCP, UDP, TCP/UDP} 

II. Exploitation-based DDoS Attacks (E): These 

attacks exploit vulnerabilities in systems or protocols. 

Similar to reflection-based attacks, they can be 

categorized by the protocol type: E = {TCP, UDP} 

A=R∪ E 

Where: A is set of all DDoS attack types, R is the set 

of reflection-based attacks, E is the set of exploitation-

based attacks. 

Figure 2 graphically displays the percentage 

distribution of each attack type present in the 

CICDDoS2019 dataset. 

Hybrid Methodology  

DDoS attacks present a substantial menace to network 

infrastructure, potentially causing service disruptions by 

inundating target systems with malicious traffic. A potent 

strategy to counter these risks revolves around 

constructing a DDoS attack detection system that melds 

unsupervised and supervised machine learning 

methodologies. This hybrid approach harnesses the 

robust attributes of techniques to promptly discern and 

thwart these assaults, thereby reinforcing network 

security and safeguarding the availability and 

dependability of services. 

 
Figure 3. The Hybrid Model. 

Selection of algorithms and their hyper parameters 

This phase explains the selection of the most 

appropriate algorithms for detecting DDoS attacks. 

#Algorithm Selection Criteria 

The literature review table 1 shows that the most 

suitable algorithms have been selected for our proposed 

approach. The algorithm selection is based on four 

criteria we defined in table 2. These criteria made it 

possible to develop this research and fulfill the proposed 

objective. 

Table 2. Criteria for classification Algorithm 

Selection. 

Sl. 

No. 
Selection Criteria 

01 Captures complex patterns and sequential and non-

linear relationships. 02 Handles mixed data types. 

03 Improves weak learner algorithms 

04 Effective for multi-class classification 

05 The algorithm is available in the Python library. 

06 Low computational complexity 
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Optimized Hyper-parameters used in Algorithms 

The hybrid model combines unsupervised K-Means 

clustering for initial dataset labeling and supervised 

machine learning classifiers for attack classification. The 

supervised classifiers used include: 

1. Random Forest (RF): Known for its 

robustness and high accuracy in classification tasks. 

2. Extreme Gradient Boosting (XGBoost): 

Efficient and scalable, suitable for handling large 

datasets. 

3. Adaptive Boosting (AdaBoost): 

Combines weak classifiers to create a strong classifier. 

4. Support Vector Machine (SVM): 

Effective in high-dimensional spaces. 

5. Artificial Neural Network (ANN): 

Capable of capturing complex patterns in the data. 

Each classifier was trained and evaluated using 

accuracy, precision, recall, and F1-score metrics. Cross-

validation techniques ensured that the models were not 

over fitting. 

Building the classification model 

Step 1: Apply K-means Algorithm 

The K-means unsupervised machine learning 

algorithm has been employed on the dataset. This choice 

stems from the necessity to enable real-time classification 

of incoming data packets using machine learning 

algorithms. In real-time scenarios, procuring labelled data 

for incoming packets is often unfeasible. They facilitate 

the creation of a dataset extension, wherein new auto-

generated labels are assigned to the data. This extended 

dataset is then meticulously prepared to serve as the 

training and testing ground for the proposed model.  

Step 2: Dataset Division 

While the literature commonly advocates a 70% 

training and 30% testing data split, specific conditions 

may necessitate alternate distribution strategies. In our 

research, a higher emphasis was placed on training. 

Consequently, the dataset was randomly partitioned into 

two subsets: training set (comprising 80% of the data) 

and a test set (constituting 20% of the data). 

Step 3: Random Distribution of Training Data 

The concept of randomizing the allocation of training 

data across diverse machine learning classification 

algorithms is a process designed to enhance the overall 

classification task performance through an ensemble 

approach. This mechanism involves the random 

distribution of training data to multiple machine-learning 

classification algorithms. In our research, the mechanism 

is implemented through Python script. 

 

 

Step 4: Training by Ensemble Learning 

Ensemble learning is a machine learning paradigm 

wherein multiple models or algorithms are combined to 

make predictions. The objective is to amplify overall 

performance by harnessing the complementary strengths 

of individual models. In our proposed model, illustrated 

in Figure, we employ five supervised machine learning 

classification algorithms to create an ensemble model. 

These algorithms include Artificial Neural Network, 

Random Forest, XGBoost, AdaBoost, and SVM. What 

sets our approach apart is the unique combination of 

these algorithms within the ensemble model, a 

configuration previously unutilized in machine learning 

ensemble classification.  

Step 5: Testing of the Trained Model 

Upon the completion of the training phase, the trained 

model is invoked for the testing phase. This entails 

loading the model and assessing 20% of the dataset 

records reserved for testing. Performance metrics such as 

accuracy, precision, recall, and F1-score are employed to 

evaluate the model's effectiveness. 

Step 6: Performance Comparison 

Following the evaluation of the trained model, the 

outcomes were systematically organized and subjected to 

comparative analysis, using predefined reference 

variables. This comparison facilitated the assessment of 

the proposed model's effectiveness and enabled us to 

implement any required refinements to achieve the 

highest efficiency.  

Experiment Results and Model Performance 

Comparison 

Results 

Our proposal has undergone assessment using the 

dataset, environmental configuration, and predefined 

performance criteria as mentioned earlier. The 

experiment involved testing the system with various 

feature sets generated by employing the Chi-Square 

feature selection method. The performance summary of 

all modules with algorithm’s accuracy according to 

features is shown in table 3.  

Table 3. Module-wise attack detection accuracy. 

No. of 

Featur

es 

Module-1 Module-2 Module-3 Module-4 

ANN RF ANN 
XGBo

ost 
ANN 

AdaBo

ost 
ANN SVM 

5 0.95

27 

0.96

38 

0.95

89 

0.9764 0.96

16 

0.9768 0.95

98 

0.96

89 10 0.97

18 

0.97

67 

0.97

31 

0.9819 0.97

59 

0.9841 0.97

94 

0.97

65 15 0.99

35 

0.99

67 

0.99

31 

0.9914 0.98

59 

0.9971 0.98

94 

0.99

78 20 0.99

07 

0.99

14 

0.99

25 

0.9897 0.98

94 

0.9967 0.98

18 

0.98

34 25 0.98

26 

0.98

29 

0.97

86 

0.9761 0.97

95 

0.9718 0.98

04 

0.97

38 
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Figure 4. Attack detection accuracy with different 

features. 

Performance Comparison 

Various machine learning algorithms were employed 

on datasets with different feature sets to determine the 

optimal number of features for achieving the highest 

accuracy. Feature selection was carried out using the chi-

square feature selection algorithm. The experiment began 

with 25 features, followed by the extraction of 20, 15, 10, 

and 5 features through the chi-square method. In this 

study, we explored the feature sets within the range of 5 

to 25 features to identify the highest accuracy while 

minimizing the number of features. The classifiers were 

applied to each feature set, and the corresponding 

accuracies were computed and recorded. The maximum 

accuracy was observed with the 15-feature set. 

Parameters were fine-tuned for the proposed 

classification model to optimize accuracy, as indicated in 

Table 4. 

Table 4. Attack detection accuracy of various 

ensemble modules. 

No. of 

Features 

Ensemble 

ANN and 

RF 

Ensemble 

ANN and 

XGBoost 

Ensemble 

ANN and 

AdaBoost 

Ensemble 

ANN and 

SVM 

5 0.9582 0.9676 0.9692 0.9643 

10 0.9742 0.9775 0.9800 0.9777 

15 0.9951 0.9922 0.9965 0.9936 

20 0.9910 0.9911 0.9930 0.9826 

25 0.9827 0.9773 0.9756 0.9771 

 
Figure 6. Performance comparisons of various 

ensemble modules. 

The Limitations of the Hybrid Model 

#Lack of Temporal Dependency Modeling 

While the model incorporates various supervised 

algorithms (Random Forest, XGBoost, AdaBoost, SVM, 

ANN), it does not explicitly capture sequential or 

temporal dependencies in network traffic data. 

#Feature Engineering Dependency 

Relies on manual feature selection (e.g., Chi-square 

selection) and optimization, which can introduce bias and 

limit the ability to uncover hidden relationships. 

#Computational Complexity of Ensemble Models 

Combining multiple algorithms into an ensemble 

approach can increase computational overhead during the 

training and prediction phases. 

#Limited Integration of Spatial and Temporal 

Analysis 

The use of ANN provides some ability to capture 

complex patterns but lacks the combined spatial (from 

CNNs) and temporal (from LSTMs) insights offered by 

the hybrid CNN-LSTM model. 

Proposed Method 

To address the challenge of DDoS detection using the 

CICDDoS2019 dataset, this research synthesizes two 

advanced methodologies: traditional machine learning 

approaches with ensemble learning and a hybrid deep 

Figure 5. Proposed Model to Detect DDOS Attacks. 
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learning framework using CNN-LSTM. By integrating 

their strengths, our methodology aims to demonstrate that 

the hybrid CNN-LSTM architecture will provide superior 

performance over conventional ensemble methods. 

Data Pre-Processing 

Data pre-processing is a crucial phase in any machine 

learning pipeline. The CICDDoS2019 dataset ensures 

data integrity, quality, and compatibility with the hybrid 

CNN-LSTM model. The steps are outlined below: 

Step 1: Data Acquisition 

#Download Dataset: Obtain the CICDDoS2019 

dataset from the Canadian Institute for Cybersecurity's 

official website. 

#Verify the dataset's integrity to ensure it has been 

downloaded without corruption (e.g., using checksums). 

Step 2: Handling Missing Values 

#Identify Missing Data: Explore the dataset using 

statistical summaries or visualization tools to locate any 

missing entries. 

#Impute or Remove: 

#If missing values are minimal, remove the affected 

rows or columns. 

#For essential features with missing values, impute 

using statistical methods: 

#Mean or median for continuous variables. 

#Mode for categorical variables. 

Equation: 

�̂�𝑖 = 𝑓missing 
(𝑋𝑖) 

Where 𝑓missing  represents the imputation or removal 

operation. 

Step 3: Data Cleaning 

#Remove Irrelevant Features: Drop columns not 

relevant to DDoS detection, such as timestamps (if 

temporal analysis is not required). 

#Normalization: Standardize continuous features to 

have a mean of 0 and a standard deviation of 1 : 

�̂�𝑖 =
�̂�𝑖 − 𝜇

𝜎
 

Where: 

 𝜇 : Mean of the feature. 

 𝜎 : Standard deviation of the feature. 

Equation for cleaning: 

𝑋𝑖
′ = 𝑓clean (�̂�𝑖) 

Where 𝑓clean  denotes the cleaning function. 

Step 4: Feature Engineering 

#Create New Features: Generate additional features 

that might provide better insights for the model (e.g., 

interaction terms, aggregated statistics). 

𝑋𝑖
′′ = 𝑓eng 

(𝑋𝑖
′) 

Where 𝑓eng  represents the feature engineering 

function. 

#Encoding Categorical Features: Use one-hot 

encoding or other techniques to convert categorical 

variables into numerical values: 

𝑋𝑖
′′ =  one _hot (𝑋𝑖

′) 

Step 5: Splitting Data 

 Train-Test Split: 

 Split the dataset into three subsets: 

 Training set (𝐷train ) − 70% 

 Validation set (𝐷val ) − 15% 

 Testing set (𝐷test ) − 15% 

Step 6: Preparing for LSTM 

 Sequence Preparation: 

 LSTM models require sequential data. 

Transform the dataset into a sequence-based 

format where each sequence represents a time-

series or relevant contextual data. 

Step 7: Label Encoding 

 Encode Labels: 

 Ensure the target labels are numeric (e.g., 

binary labels as 0 and 1 ). 

 For multi-class problems, use techniques 

like one-hot encoding or label encoding. 

Step 8: Balancing the Dataset 

 Handle Class Imbalance: 

 Analyze the distribution of classes in the 

dataset. 

 Apply balancing techniques: 

 SMOTE (Synthetic Minority Over-

sampling Technique): Generates synthetic 

samples for the minority class. 

 Class Weighting: Adjust the weights 

during training to penalize the majority class less. 

Feature Extraction 

Feature extraction is essential for transforming raw 

data into meaningful representations suitable for bybrid 

models. The process involves using Carvolutional Neural 

Networks (CNNs) to extract spatial features from the 

data, followed by parallel processing in Dense and LSTM 

layers. 

Step 1: Transform Data for CNN Input 

 Reshape Data CNNs typically operate on 2D data. 

Reshape the network traffic data into a 2D matrix 

format, or 3D if sequential information is considered. 

This is akin to preparing image-like structures from 

tabular data. 
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𝑋CNv = {𝑥1, 𝑥2, … , 𝑥𝑚} 

Where: 

 𝑥𝑖 : Individual 2D (or 3D) input samples. 

Step 2: Define and Build the CNN Model 

 CNN Architecture: Design a CNN to 

effectively extract spatial features. 

 Use comolutional layers to karn patterns 

and pooling layers to reduce dimensionality. 

 Equation for camalution 

𝐹′ = 𝜎(∑  

𝐾

𝑘−1

 𝑊𝑘 ∗ 𝑋CNN
(𝐼−1)

+ 𝑏𝑘) 

Where: 

 𝑊𝑘 : Carmalutional filter. 

 *: Convplution operation. 

 by: Bias term. 

 𝜎 : Activation function (e.g, ReLU) 

 l: Layer index. 

 

Parallel Execution Through LSTM and Dense Layers 

To enhance feature representation, the architecture 

employs a parallel execution strategy. After CNN layers, 

feature maps are passed through two branches: Dense and 

LSTM layers. 

Step 1: Dense Layer Path 

 Flatten Feature Maps: Transform feature maps into a 

10 vector. 

 Dense Layers: Pass the flattened data through fully 

connected layers for learning higher-level 

representations: 

𝐷denee = Flatten(𝐹falumax ) ⋅ 𝑊𝑑 + 𝑏𝑑 

Where: 

 𝐹Ginursas  : Extracted CNN festure maps. 

 𝑊de  Dense layer weights. 

 𝑏𝑑 - Dense layer bias. 

Step 2: LSTM Path 

 Reshape for LSTM: Cormert feature maps into 

sequential format. 

 Pass Through LSTM: Extract temporal patterns 

using LSTM layers: 

ℎt = 𝜎(𝑊h𝑥𝑡 +𝑈ℎℎ𝑡−1 + 𝑏ℎ) 

Where: 

 ℎ2 : Hidrien state at time 1. 

 𝑊ℎ, 𝑈ℎ , 𝑏ℎ : ISTM parameters. 

Step 3: Concatenate Outputs 

 Combine the outputs from both paths to leverage 

spatial and temporal features: 

𝑂 = Concat(𝐷dunes , ℎ𝑇) 

Where: 

 𝐷tham:  Output from Dense layers. 

 ℎ𝑇 : Final hidden state from LSTM. 

 

Step 3: Concatenate Outputs 

 Combine the outputs from both paths to leverage 

spatial and temporal features: 

𝑂 = Concat(𝐷dues , ℎ𝑇) 

Where: 

 𝐷ilman:  Output from Dense layers. 

 ℎ𝑇 : Final hidden state from LSTM. 

Step 4: Final Classification 

 Use a final Dense layer for classification 

�̂� = 𝜎(𝑂 ⋅ 𝑊𝑐 + 𝑏𝑐) 

Where: 

 𝑊𝑐 , 𝑏𝑐-Weights and bias for the classification layer. 

 𝜎 : Activation function for the output (e.g. Softmax 

for multi-class or Sigmoid for binary 

classification). 

Step 5: Compile and Train the Model 

 Compilation 

 Loss function: Use Binary Cross-Entropy (for binary 

classification) or Categorical Cross-Entropy (for 

multi-class). 

 Optimizer: Actam or SGD for optimization. 

 Metrics: Track accuracy, precision, recall, and F1-

score 

 Training: 

 Use the training set to fit the model. 

 Validate the model on the validation set. 

 Test its performance on the test set. 

Architecture Execution Overview 

1 CNN Feature Extraction: 

 Convolutional and pooling layers are used to 

generate feature maps from the input data. 

2 Parallel Paths: 

 Dense Path: Flatten feature maps and pass them 

through Dense layers. 

 LSTM Path: Reshape feature maps into sequences 

and process them using LSTM layers. 

3 Concatenation: 

 Combine Dense and LSTM outputs to form a unified 

feature representation. 

4 Final Classification: 

 A Dense layer is used to produce the final 

classification output. 

Properties and Advantages of the proposed hybrid 

model 

#Properties 
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a) Hierarchical Feature Learning: CNN layers learn 

hierarchical features, from simple edges to complex 

patterns. 

b) Sequential Information: LSTM layers capture the 

data's temporal dependencies and sequential patterns. 

c) Dense Layers: Capture high-level abstract features. 

#Advantages 

a) Enhanced Learning: Combining CNN and LSTM 

layers allows the model to learn both spatial and temporal 

features, improving its ability to detect patterns in 

complex data. 

b) Improved Accuracy: Parallel paths can lead to 

better model performance as they leverage the strengths 

of different types of layers. 

c) Flexibility: This architecture can be adapted to 

various tasks requiring both spatial and sequential 

analysis. 

 By following these steps, we effectively implemented 

parallel execution of feature maps through Dense and 

LSTM layers, leveraging the strengths of both approaches 

in a hybrid model. 

Classification of DDoS Attack Using Hybrid CNN-

LSTM Model 

The classification of DDoS attacks using a hybrid 

CNN-LSTM model involves several detailed steps, 

including data pre-processing, building the model, 

training, and evaluating its performance. By leveraging 

both CNN and LSTM layers, the model can effectively 

capture spatial and temporal features, leading to 

improved detection of DDoS attacks. The steps outlined 

above provide a comprehensive approach to building and 

deploying such a model using the CICDDoS2019 dataset. 

The structure of the hybrid CNN-LSTM model is as 

follows: 

#CNN Block: Extract spatial features from input data 

XCNN: 

 FCNN=fCNN (XCNN) ∈ RN ×H′ × W′× C′ 

 where: N, H′, W′, C′ are the dimensions after 

convolutional layers. 

 LSTM Block: Captures temporal dependencies 

from the CNN-extracted features: 

 hT = fLSTM ( FLSTM ) 

 Dense Block: Applies a dense layer to the 

flattened CNN output: 

 Fdense=σ (Wd ⋅ Flatten ( FCNN ) + bd) 

 The hybrid CNN-LSTM model fCNN-LSTM for 

classification of DDoS attacks can be 

 expressed as: 

 Ŷ = FCNN-LSTM(Xi) = softmax(Wc ⋅ [Ddense, hT] + bc

) 

 Concatenation: Combines the outputs from 

LSTM and dense layers: 

 Ffinal = [ hT, Fdense ] 

#Classification: 

 Multi-class (12-class): Use softmax for the final 

classification: 

 Ŷ = softmax ( Wo ⋅ Ffinal + bo ) 

 Binary classification: Use sigmoid for the final 

classification: 

 Ŷ = sigmoid ( Wo ⋅ Ffinal + bo ) 

 

#Model Evaluation and Classification 

a) Evaluate the Model 

Evaluate the model on the validation set to check 

its performance. The model's performance on the 

validation set Dval is evaluated by calculating the loss 

function L(θ) typically the cross-entropy loss for 

classification: 

  L(θ) =  −
1

𝑁
 ∑ N

𝑖=1 Yi log (Ŷi ) + (1-Yi) log 

(1- Ŷi) 

  where: 

  Yi is the true label for the ith sample, 

  Ŷi  is the predicted probability for the ith 

sample, 

  N is the total number of samples in the 

validation set. 

 b)  Make Predictions: 

      Use the trained model to make predictions on new 

data.  

 Given new input data Xnew , the model generates 

predictions Ŷinew= fCNN-LSTM(Xnew) 

c)  Performance Metrics: 

     Calculate performance metrics such as confusion 

matrix, precision, recall, and F1-score. 

Performance Parameters for Evaluating the Hybrid 

CNN-LSTM Model 

Several performance metrics are essential when 

evaluating the performance of a hybrid CNN-LSTM 

model for classifying DDoS attacks. These metrics help 

assess different aspects of the model's effectiveness, 

including accuracy, precision, recall, and the balance 

between different types of errors. Below, we detail each 

performance parameter, how they are calculated, and how 

they help in assessing the model's performance. 

To assess the performance of the hybrid CNN-LSTM 

model, several metrics are used: 

 Accuracy: Accuracy is the proportion of 

correctly predicted samples to the total number of 

samples. 

 Accuracy 
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
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TP (True Positive): Correctly predicted 

positive instances. 

TN (True Negative): Correctly predicted 

negative instances. 

FP (False Positive): Incorrectly predicted 

positive instances. 

FN (False Negative): Incorrectly predicted 

negative instances. 

Significance: Accuracy provides a general 

measure of the model's performance. However, in 

imbalanced datasets,  accuracy might be 

misleading because it doesn't differentiate 

between the types of errors (FP and FN). 

Confusion Matrix: The confusion matrix is a table that 

summarizes the classification results by comparing the 

actual labels with the predicted labels:  

 Predicted Positive Predicted Negative 

Actual Positive TP FN 

Actual Negative FP TN 

 Significance: It helps understand the types of 

errors the model is making. 

Experiment Results and Model Performance 

Comparison 

The proposed framework for DDoS attack detection 

leverages well-established performance metrics and 

cutting-edge computational techniques. The 

implementation is carried out in Python and executed on 

a system equipped with NVIDIA Tesla T4 GPU, part of 

the Turing (TU104) architecture, providing substantial 

computational power. The system configuration includes 

16 GB of RAM, an 80 GB SSD, and operates on Ubuntu 

22.04.3 LTS. The tensorflow-GPU library is integrated 

into the Python environment for deep learning model 

training to fully utilize the GPU's acceleration 

capabilities. 

#Model Performance and Metrics 

*The performance of the proposed model is 

evaluated using widely recognized metrics, including 

accuracy, precision, recall, and F1-score. 

*The binary classification model achieves a high 

overall accuracy of 99.84%, with precision, recall, and 

F1 scores all matching this figure, demonstrating its 

effectiveness in distinguishing between benign and 

malicious traffic. 

*The 12-class classification model also performs 

remarkably well and attains a slightly lower overall 

accuracy of 99.76%. Similarly, its precision, recall, and 

F1-score hover around the same value, indicating strong 

performance in classifying specific types of DDoS 

attacks. 

Results 

Our proposal has undergone assessment using the 

dataset, environmental configuration, and predefined 

performance criteria as mentioned earlier.  

 

 

#Binary Classification Model 

The performance metrics for the binary classification 

model are: 

a). Accuracy 

 Accuracybinary= 0.9999 

b) Precision, Recall, F1-Score 

 Precisionbinary= 0.9999 

 Recallbinary= 0.9999 

 F1-scorebinary= 0.9999  

c)  Confusion Matrix for Binary Classification 

 
Predicted 

Positive 

Predicted 

Negative 

Actual Positive TP = 14,999 FN = 1 

Actual Negative FP = 1 TN = 14,999 

#12-Class Multi-Class Classification Model 

For the multi-class classification model, the 

performance metrics are: 

a). Accuracy 

 Accuracymulti-class=0.9976 

 

b). Precision, Recall, F1-Score 

 Precisionmulti-class=0.9976 

 Recallmulti-class=0.9976 

 F1-scoremulti-class=0.9976 

 

Result Visualization 

The binary classifier performs exceptionally well in 

distinguishing between Normal and DDoS attacks, with 

very few misclassifications. The multi-class classifier still 

shows high accuracy but struggles more with 

classification errors due to the increased complexity of 

differentiating between 12 classes. The binary model 

would be preferable for simpler DDoS detection tasks, 

while the multi-class model can be used in more complex 

scenarios, albeit with some trade-offs in performance. 

The result visualization is given below: 

#Confusion Matrix for Binary Classification 

The input dataset is divided into "Normal" and 

"DDoS." A binary classifier is trained, which could be 

based on a machine learning (ML) or deep learning (DL) 

approach like CNN-LSTM. After the model is trained 

and validated, it is tested with the test dataset, and the 

confusion matrix is generated. The confusion matrix 
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shows very high accuracy, as both Normal and DDoS 

classes have nearly perfect predictions (14999 correct out 

of 15000 for both classes). The False Positives and False 

Negatives are extremely low (just 1 in each case), leading 

to near-perfect performance. Approaching 100%, given 

the almost perfect diagonal of the confusion matrix.   

Precision/Recall/F1-Score: These metrics would also 

be close to 100% due to minimal error.  

Conclusion: The binary classifier performs 

exceptionally well for detecting DDoS attacks. 

 
Figure 7. Confusion Matrix for Binary Classification. 

#Confusion Matrix for Multi-Class Classification (12 

Classes) 

The dataset used here contains 12 different classes, 

likely representing various types of network traffic or 

different stages of a DDoS attack. A multi-class 

classification model (possibly CNN-LSTM) is trained to 

differentiate between these 12 classes. After training and 

validating the model, it is evaluated on the test dataset, 

generating the confusion matrix for all classes. The 

confusion matrix shows more diversity in predictions, 

with a noticeable amount of misclassification (off-

diagonal values). Some classes are more easily 

misclassified than others, indicating certain classes are 

harder for the model to differentiate.  

Accuracy: Lower compared to the binary 

classification model due to higher misclassification rates. 

Precision/Recall/F1-Score: These metrics would vary 

significantly across the different classes. Some classes 

would show strong performance, while others would 

reflect weaker performance. 

Conclusion: The multi-class model is effective but has 

room for improvement in detecting more nuanced 

differences between classes. 

 
Figure 8. Confusion Matrix Multi-Class 

Classification. 

#Accuracy Comparison between Binary and Mlti-

Class Models 

 The accuracy values for both models are derived from 

their respective confusion matrices.  

Binary Model achieved near-perfect accuracy 

(99.84%) based on minimal misclassification, as shown 

in the first confusion matrix. Binary model clearly 

outperforms the multi-class classification in terms of 

accuracy. The binary model is almost perfect for simple 

"Normal vs DDoS" scenarios. 

Multi-Class Model: Achieved an accuracy of 

approximately 99.76% due to higher misclassification 

rates as shown in the second confusion matrix. Although 

this model is still high, the accuracy is slightly lower due 

to the more complex nature of classifying 12 classes 

compared to binary classification. Multi-Class model 

gives good performance but with room for improvement, 

especially when distinguishing between similar classes in 

a more complex environment. 

 
Figure 9.Accuracy Comparisons between Binary and 

Multi-Class. 
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Comparison of Both Models 

#The Hybrid Machine Learning Model 

i. Focus: Combines unsupervised K-Means clustering 

and supervised classifiers (Random Forest, XGBoost, 

SVM, AdaBoost, ANN). 

ii. Dataset: CICDDoS2019, with feature selection 

using Chi-square methodology. 

iii. Performance: Achieved 99.46% accuracy in 

detecting and classifying DDoS attacks. 

iv. Contributions: 

*A focus on leveraging multiple ML classifiers for 

increased detection accuracy. 

*Real-time implementation. 

*Scalability for larger datasets and environments. 

*Integration with cyber security frameworks. 

The hybrid model excels in utilizing multiple 

supervised algorithms, focusing on a structured ensemble 

learning approach to achieve high accuracy. 

#CNN-LSTM Hybrid Model 

i. Focus: Deep learning, specifically convolutional 

neural networks (CNN), is used for feature extraction and 

long short-term memory (LSTM) is used for temporal 

pattern analysis. 

ii. Dataset: CICDDoS2019, evaluated on binary and 

multi-class classification tasks. 

iii. Performance: 

Binary classification: Achieved 99.84% accuracy. 

Multi-class classification: Reached 99.76% accuracy 

across 12 attack classes. 

iv. Contributions: 

*Advanced use of CNN-LSTM for both spatial and 

temporal feature extraction. 

*Robust results with minimal false 

positives/negatives. 

The CNN-LSTM model leverages the power of deep 

learning to handle both spatial and temporal data, 

offering state-of-the-art performance in binary and multi-

class classification. 

Discussion on the Impact of the Ensemble Method on 

Computational Complexity and System Overhead 

The proposed CNN-LSTM hybrid architecture 

represents an advanced ensemble method designed to 

enhance the detection of DDoS attacks. While the 

combination of Convolutional Neural Networks (CNN) 

and Long Short-Term Memory (LSTM) networks offers 

significant performance gains in terms of accuracy and 

adaptability, it also introduces additional computational 

complexity and system overhead that require thorough 

consideration. 

#Computational Complexity 

The CNN-LSTM model leverages CNN layers for 

spatial feature extraction and LSTM layers for temporal 

sequence learning. Although this dual-layered approach 

ensures comprehensive feature representation, it 

inherently increases computational demands. CNN 

operations involve high-dimensional convolution and 

pooling processes, which are computationally intensive, 

especially when processing large-scale datasets like 

CICDDoS2019. Similarly, LSTM networks, due to their 

recurrent structure, require sequential data processing, 

which adds to the computational burden. As a result, the 

training time and resource consumption are significantly 

higher compared to traditional machine learning methods 

such as Random Forest or Support Vector Machines. 

To mitigate this complexity, the implementation 

utilized a NVIDIA Tesla T4 GPU for parallel processing, 

optimising training time and improving efficiency. 

However, deploying this model in real-world scenarios 

may require high-performance computing infrastructure 

to achieve similar results, potentially limiting its 

applicability for organizations with constrained resources. 

#System Overhead 

In addition to computational complexity, the ensemble 

method introduces system overhead due to its need for 

larger memory and storage resources. The CNN-LSTM 

architecture processes high-dimensional input data, which 

necessitates extensive memory allocation for intermediate 

feature maps, weight matrices, and gradient storage 

during backpropagation. Furthermore, the deep learning 

framework used for implementation (e.g., TensorFlow) 

inherently adds a layer of software overhead due to 

dependencies and runtime optimizations. 

#Balancing Performance and Overhead 

Despite these challenges, the ensemble method's 

ability to achieve 99.84% accuracy in binary 

classification and 99.76% accuracy in multi-class 

classification justifies the trade-off in many high-stakes 

applications. Nevertheless, the practical deployment of 

such models should include optimization strategies to 

balance performance and overhead. 

The ensemble approach effectively elevates the 

performance of DDoS detection systems, but its 

computational demands necessitate careful planning for 

deployment in resource-constrained environments.  

Conclusion and Future Work 

This study presents a robust hybrid model for DDoS 

attack detection, combining the strengths of 

unsupervised and supervised machine learning 

techniques. By leveraging the CICDDoS2019 dataset, a 
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wide variety of attack scenarios were analyzed, with 

feature selection optimized using the chi-square method. 

The proposed hybrid machine learning classifier 

achieved an accuracy of 99.46%, demonstrating its 

efficacy in controlled environments. However, 

recognizing the limitations of traditional machine 

learning approaches in handling complex real-world 

scenarios, a novel CNN-LSTM hybrid model was 

developed. This deep learning-based architecture offers 

significant advantages through automated spatial and 

temporal feature extraction, eliminating the need for 

manual intervention.  

The CNN-LSTM hybrid model proved highly 

effective in real-world applications, achieving an 

exceptional 99.84% accuracy in binary classification 

tasks, distinguishing benign and malicious traffic with 

near-perfect precision. Though slightly less accurate at 

99.76%, the multi-class classification model 

successfully identified 12 distinct DDoS attack types, 

demonstrating its adaptability to complex and diverse 

attack patterns. Minimal false positives and negatives, as 

validated by the confusion matrices, further attest to the 

model's reliability and precision. The practical 

implications of this research lie in the potential 

integration of the optimized CNN-LSTM ensemble into 

existing intrusion detection systems (IDS) and network 

security frameworks. Its ability to process large-scale, 

high-dimensional data in real-time makes it a valuable 

tool for modern cyber security solutions. The proposed 

architecture can be deployed to monitor live network 

traffic, enabling proactive and automated DDoS 

mitigation in dynamic environments. Future work could 

further enhance the multi-class model's performance and 

explore its application in hybrid cloud and edge 

computing environments, ensuring seamless integration 

with diverse infrastructure setups. This research 

underscores the transformative role of advanced deep 

learning models in fortifying cyber security defences, 

paving the way for scalable, intelligent systems capable 

of combating evolving DDoS threats. 

Future work should focus on scalability, real-time 

capabilities, behavioural analysis, anomaly detection, 

and user-friendly tools to enhance defence against 

evolving DDoS attacks and benefit a wider user base. 

Future research will explore the following directions: 

*Integration with Existing Security Frameworks: 

Evaluating the integration of the hybrid model with 

existing cyber security frameworks to enhance overall 

network security. 

*Adaptive Learning: Developing adaptive learning 

mechanisms to keep the model updated with the latest 

attack patterns and techniques. 
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