
Journal of Research in Engineering and Applied Sciences

ISSN (Print): 2456-6411 | ISSN (Online): 2456-6403 368 JREAS, Vol. 07, Issue 03, July 22

Secure Software Development Awareness: A Case Study of
Undergraduate Developers

Murimo Bethel Mutanga
Department of ICT, Mangosuthu University of

Technology, South Africa
{mutangamb@mut.ac.za}

Abstract
As ubiquitous computing becomes an increasingly inherent component of everyday life due to the rapid growth of communication technologies and

globalization, threats against information systems have taken a more latent yet lethal dimension. This emergent digital security challenge has correspondingly

motivated a proactive change in the software engineering process in recent decades. This change has inspired more intense research scrutiny on security as a

crucial component of any software system. Moreover, in today’s virtual world of hyperconnectivity, the most significant vulnerabilities in modern information

systems security are software centred. Nevertheless, research shows that software developers often lack the required knowledge and skills in secure software

systems development (SSD). Such knowledge ensures that all the resultant software components of each development lifecycle are correctly implemented

rather than merely following the SSD lifecycle. Also, the knowledge engenders software security consciousness as a professional attitude amongst developers.

Therefore, investigating students’ awareness of SSD principles can generate insight into evolving the undergraduate software development curriculum – a path

to building future career developers. The study used a voluntary online survey to recruit a sample of 76 undergraduate developers and employed a descriptive

approach to data analysis. Among other findings, the study revealed that participants' perception of the threat of software vulnerability impacts their attitude

towards security on online and mobile platforms. And that though over 90% of the undergraduate developers took software vulnerability threats either

“serious” or “extremely serious”, this disposition did not reflect the depth of their knowledge and experience in SSD.

Key Words - Cyber-security, Framework, Software, threat, ubiquitous-computing, vulnerability.

1. Introduction

Traditionally, security in software development is often
viewed either as a remedy or patch deployed to solve
security breaches or as an enhancement to a wholly
developed software package [1]. As further emphasized
by Alkussayer and Allen [1], developers only pay
attention to security considerations as they approach the
end of the development lifecycle, which is why such
security solutions often come as add-on mechanisms and
techniques before software systems deployment.
Therefore, security issues were often reactively addressed
when prompted by some undetected vulnerability or when
such vulnerability may have even been exploited [1], [2].

However, in recent decants, there has been a pragmatic
change away from this mundane approach for security in
software development to embrace a more proactive
approach that advocates the deliberate injection of
forethought security ramifications into all stages of the
software development lifecycle [1]–[4]. The emergent
alternative to secure software development primarily
recognizes security requirements as an integral element of
the software design and development process; therefore,
rather than treating security requirements as an ad-on or a
corrective measure, it is implemented as a “designed-in”
component.

It has become increasingly imperative to strengthen or
reengineer the existing processes for developing secure
software. The advancement of the internet and the
proliferation of other related sophisticated technologies
have escalated the scale of cyber threats against
information systems [5]. For instance, as ubiquitous
computing becomes an increasingly inherent component of
everyday life, it has become increasingly easy to use these
technologies in complex ways [6]. However, cyber
adversaries who thrive on exploiting information systems
vulnerabilities take undue advantage of this ease-of-use
and the pervasiveness of the internet [7], [8].

Furthermore, in the broad context, information security
research focuses on two fundamental drivers of
vulnerability: people-oriented and software-oriented
factors [9]. While the former can constitute a potential
loophole in information systems security [9], [10], faulty
software development in utilizing the appropriate security
requirements represents the core weakness in the landscape
of information system security. According to Luo et al.
[11], such weaknesses are “defects in software’s specific
implementation or system security policy, which can
enable attackers to access or damage the system without
authorization”.

On the other hand, research on how students undertake
software development abound. For example, in the context
of this study, the work reported in [12] discussed students’
software development knowledge at a more general level.

ISSN (Print): 2456-6411 | ISSN (Online): 2456-6403 369 JREAS, Vol. 07, Issue 03, July 22

However, current literature suggests that there has been
more emphasis on improving students’ programming
skills and optimising teaching programming techniques
[13]–[15]. But scanty investigations tend to probe
students’ awareness of emergent security challenges and
the state-of-the-art software development principles
designed to guarantee secure systems development.

The fact is, as the world becomes more and more
interconnected, the landscape and implications of
information systems security have drawn more concerns
than ever. For instance, amongst other technological
evolutions, the emerging trend of the Internet of Things
(IoT) has gained momentum in recent years. In
conjunction with mobile communication technologies,
IoT facilitates the design and supports the deployment of
intelligent and ambient devices [16], which essentially
makes it possible for things and objects to interact and
cooperate between themselves [17] autonomously. With
these advances, society will get smarter and smarter with
the gradual shift in focus to adopting innovative software-
driven systems as the hub of critical resource management
to ensure convenient and efficient resource administration
and service delivery [8]. At an industrial level, the
popularity and reliance on IoT are already rising with
critical applications such as smart grids, smart cities, IoT
connected factories, smart supply chain management,
connected healthcare systems, and smart farming.

The dominant role of software systems is not limited to
the industrial sector as governments, research, and other
corporate establishments are also heavily reliant on
information technology these days. Therefore, software
security breaches can have far more reaching
consequences.

Because of the essential nature of the global challenge
of securing information systems, this study investigates
awareness of secure software development principles
among South African undergraduate students. This study
is motivated first because South Africa has one of Africa's
most funded educational systems, the government’s
strategic interest in advancing local technological content.
Second, according to Vadra [18], South Africa’s inclusion
into the four-member grouping of fast-emerging
economies of the world, namely, Brazil, Russia, India,
and China, is both a mark of the country’s development
strides in the African continent and most importantly, a
call for a potential shift in focus knowledge-based
economy in alignment with the other countries with the
block.

As a whole, the findings of this study provide helpful
insight into the level of preparedness of upcoming
undergraduate programmers to effectively contribute
toward secure software development in the industry. Such
understanding also contributes to improving the current
computer programming teaching curriculum to
sufficiently equip undergraduate students with the
expertise to address the information system security

challenge through secure application development. This
study surveyed 2nd and 3rd undergraduate information
technology students from a South African University of
Technology and qualitatively analyzed the data.

2. Literature Review

There is increasing pressure on software development
teams to deliver secure code, as reflected in Forbs' report
on cybersecurity [19] as cited in [20]. The report asserts
that “Software security and privacy are becoming major
issues: almost every week we hear that yet another
organization’s software systems have been
compromised.” Yet, this report only reflects a subspace of
the emergent cyberwar, which threatens private lives,
organizations, and even governments.

While there are many critical factors contributing to
achieving an entity’s security and privacy, the software
used unarguably plays the most central role in whether
security breaches occur or not [20]. This argument explains
why the emphasis is on secure software development and,
therefore, further stresses the crucial responsibility of
developers. The authors in [21] explicitly encapsulate this
fack when they maintained that “If software developers
fail, the cyber-security system fails, which may lead to data
breaches.” A report by Veracode [22] on the state of
software security indicates that over “85 percent of all
applications have at least one vulnerability in them and
more than 13 percent of applications have at least one very
high severity flaw”. The authors further cited an IBM-
funded survey of 640 participants working for US-based
companies developing mobile, revealing that 73% believed
that the primary contributor to the challenge of security
issues is the developers’ lack of understanding of security
issues.

The forgoing has birthed a growing and diverse interest
in the secure software development research space. For
example, in [23], the authors sought an “in-depth
understanding of how and why software developers
produce security bugs”— their study contributes to the
design of interactive tool support for secure software
development. Interestingly, the study reveals that
developers’ conceptual understanding of security is often
not aligned with “their attitudes regarding their
responsibility and practices for software security”.
Therefore, they suggest that understanding software
security from a developer’s perspective is crucial for
mitigating security errors. In the same vein, Graff & Van-
Wyk R. (2003) [24] postulated “Good People Write Bad
Code” for the following three reasons i) Technical factors
which have to do with the underlying complexity of the
task itself being solved, ii) Psychological factors such as
poor mental models and, iii) real-world factors which
include, but not limited to production pressures and

ISSN (Print): 2456-6411 | ISSN (Online): 2456-6403 370 JREAS, Vol. 07, Issue 03, July 22

absence of financial motivations.

In challenging the status quo in secure software
development practice, which relies on using static tools
such as checklists, processes and errors to avoid to guide
developers, Weir et al. (2020) [20] found the dialectical
between the developers and a range of counterparties
spans throughout the software development life cycle.
Therefore, they proposed “six assurance techniques that
are most effective at achieving this dialectic in existing
development teams”. According to the author, their
assurance techniques and corresponding dialectical
interactions can potentially enhance the security of
development activities.

Another early scholarly study in [25] reports on a
framework and methodology for studying the causes of
software errors. Among others, in the proposed
framework, the authors highlighted the “skill, rule, and
knowledge breakdowns” as a crucial human error
component in programming activity. Also, Assal &
Chiasson (2019) [26] acknowledged the persistence of
software vulnerabilities notwithstanding software security
initiatives and drive for best practices are thriving in the
recent decade. Consequently, Assal & Chiasson (2019)
[26] “explore the interplay between developers and
software security processes”, primarily focusing on
human factors of software security, which include the
developers’ behaviour and motivation. The analysis
attributes the problem of security vulnerabilities to “a lack
of organizational or process support”.

The subject of secure software development has gained
research attention widely. However, little has been
reported about the impact of developers’ attitudes and
their lack of understanding of security on secure software
development. This study builds on the existing literature
to contribute to the above gap.

3. Research Methodology

This section presents the entire research design, which
includes the description of the population, sample
categorization, data collection instrument, and the
approach to data analysis.

3.1 Study Participants

This study targets undergraduate 2nd and 3rd-year
Information and Communication Technology students.
On the one hand, it was assumed that the 2nd year
students have enough exposure to software development
training because their three-year study curriculum is
highly streamlined to specialize in software development
or network engineering. And on the other hand, aside
from being in their final year of study, the 3rd year

students were undergoing their compulsory work-
integrated learning program (WIL), which exposes them
to various real-life industry experiences. These two
scenarios make the selected population most appropriate
for this investigation.

The study used a sample of 76 students drawn up from
the study population as described above. And Table 1
presents the characterization of the study’s participants.

Table 1: Characterization of the study’s population

Gender Year of Study
Male 56 2nd 43
Female 20 3rd 33
Total 76

1.1 Data Collection and Analysis

This study employed an online questionnaire-based survey
for gathering data. This data collection method utilized
Google Forms – a customizable virtual survey tool that
allows researchers to create suitable questionnaires
following an existing template. The instrument's suitability
was ascertained using a closed-ended questionnaire
designed and subjected to evaluation by an independent
expert. The validated questionnaire was then used to create
a customized questionnaire on Google Forms. This
questionnaire elicited demographic and other information
related to students’ awareness of secure software
development principles.

Due to the nature of the information collected, a
descriptive approach was used to analyze the data. And a
question-by-question analysis was performed to ascertain
the level of students’ awareness of secure software
development principles.

4. Results and Discussion

In this section, a summary of the study’s results is presented.
First, the data were quantitatively analyzed and presented
section-by-section according to the questionnaire design.
Second, the results are then interpreted in the discussion
subsection section.

In this section, a summary of the study’s results is
presented. First, the data were quantitatively analyzed and
presented section-by-section according to the questionnaire
design. Second, the results are then interpreted in the
discussion subsection section.

4.1 How students Perceived the threat of software
vulnerability

This investigation asked two background questions to

explore students’ understanding of and, by extension, their
attitude towards the critical issue of software security as a
global and professional challenge. These questions were as

ISSN (Print): 2456-6411 | ISSN (Online): 2456-6403 371 JREAS, Vol. 07, Issue 03, July 22

follows:
Question 1(a): How would you describe the threat

posed by software vulnerability to information system
security? As stated earlier, this question was asked to
enable the researcher to elicit information that can help
make the existing software development curriculum more
robust and better aligned with current software security
realities. Most importantly, such a curriculum can
improve the quality of graduate developers in South
Africa by ensuring that they are well-grounded in the
ethical, theoretical, and professional responsibility of
being security conscious when developing commercial
systems. Fig. 1 illustrates the outcomes.

Figure 1: Perception of software vulnerability threat

From the analysis illustrated in Fig. 1, more than 90%
of the surveyed population said they took software
vulnerability threats either “serious” or “extremely
serious”. The implication of this outcome is that majority
of the undergraduate developers are fully aware of the
threat posed by software vulnerability and, therefore, take
it as a severe threat to information systems.

Question 1(b): As a developer, which of these types of
systems would give you the most security concerns? i)
Web/online systems, ii) Mobile systems, iii) Desktop
systems.

Understanding the threat posed by software
vulnerability to information systems is one thing and
knowing the implication of this threat to different
information systems is another thing. Therefore, the
second question highlighted the students’ understanding
of the information systems most at risk.

The responses to the second question provided an
exciting perspective of the software security awareness of
the respondents. This perspective evoked the
categorization of the respondents into three groups (G1 –
G3), as shown in Fig. 2. G1 represents participants that
only picked either Web/online systems or Mobile systems
as a security concern. While the responses under the G1
category are not wrong, in the context of the study, such
responses reflected a narrow scope of the software
vulnerability landscape. On the contrary, participants who
believed that both Web/online systems and Mobile

systems post the most security concerns were labelled G2.
This group was described as “well informed” because their
view reflected an accurate understanding of the reality of
software systems’ vulnerability. Still, the other category of
participants, labelled G3, captured responses that included
Desktop systems. Such respondents were tagged
“unaware” because desktop systems pose the most
minimal security risk than the other systems listed in
question 2.

Figure 2: The Scope of information Vulnerability

The consequences of having a narrow scope of software
security can equally potentially undermine information
systems as being unaware. In this regard, it can be argued
that it essentially makes no difference for a developer to
have a narrow scope or be unaware of software security
vulnerabilities. Therefore, when interpreted in this sense,
Fig. 2. above translate to Fig 3 below:

Figure 3: A translation of Figure 2

From the illustration in Fig 3, it becomes striking to
note that the result revealed a 74% gap between the
developers who are well abreast of the scope of the
software system’s vulnerability and others who are still
unaware. Only 13% of the sample demonstrated an
adequate understanding of what software systems they, as
future developers, must design with utmost security
concerns.

4.2 Examining participants’ knowledge of state-of-the-

Extremely
serious

42%

Serious
57%

Not too
serious

1%

Extremely serious Serious Not too serious

52

10 14

G1 (Narrow scope) G2 (well informed) G3 (unaware)

G1
(Narrow
scope)

87%

G2 (well
informed)

13%

G1 (Narrow scope) G2 (well informed)

ISSN (Print): 2456-6411 | ISSN (Online): 2456-6403 372 JREAS, Vol. 07, Issue 03, July 22

art industry standards for secure software
development.

The need for developers to be informed about the

nature and scope of the threat of software vulnerability is
hugely critical but being a future career developer
requires more knowledge about existing standards for
developing secured systems. Therefore, the study poses
three sub-questions aimed at helping the study examine
how participants are consciously aligning their
undergraduate software development experiences and
skills with professional standards.

Question 2(a): Do you know about any existing secure
software development frameworks (SSDF)? This question
tested the extent of the participants’ familiarity with
existing and most popular professional standards guiding
secure software systems development. The outcome is as
presented in Fig. 4.

Figure 4: Familiarity with secure software development

frameworks

The results depicted in Fig. 4 suggest that a significant
number (42% of the sample) of undergraduate developers
have either not theoretically or practically interacted with
the fundamental frameworks of secure software
development. This number is significant because it is only
16% less than the number of participants who reported
that they knew about some existing frameworks for
developing secure software.

Question 2(b): If you answered "yes" to 3(a), then
select all the frameworks that you have known from the
list below and continue with 3(c): i) The Fundamental
Secure Software Development Guide, ii) The Microsoft
SDL, iii) The Integrated Security Development
Framework (ISDF), iv) The OWASP's CLASP, v)
Software Security TouchPoints.

With this question, the study validates the participants’
knowledge depth. The findings enabled the researcher to
understand whether the participants can demonstrate
classroom knowledge leading to experiential or
applicational knowledge (practical experience) or just
classroom knowledge. This goal aligns with Kolb’s
learning framework, which argues that learning is only
proven successful when the learners can try out whatever
has learned (active experimentation) [19].

Figure 5 Extent of classroom knowledge about specific

SSDFs

As presented in Fig. 5, the results show that fewer
participants had a broad understanding of the existing
SSDFs. For example, only 36% of the sampled developers
know at least two existing SSDFs or have applied them.
Whereas 49 participants, representing 64% of the sample,
learned only one SSDF or had used it.

Question 2c: Choose the option below that best suits
your knowledge of the framework(s) that you selected in
3b above: i) I have only learned about the framework(s), ii)
I learned about the framework(s) and applied its outlined
best practices.

Figure 6: Applicational knowledge of specific SSDFs

The results in Fig. 5 show that 64% of the sample knew
at least one SSDF or have applied it. However, as
demonstrated in Fig. 6, a further investigation revealed that
69 out of the 76 (91%) admitted that they had only learned
about some of the SSDFs. But have not practically applied
any of the SSDFs in their software development practice.
This finding, therefore, suggests that just 9% of the
sampled undergraduate developers have experiential
knowledge of software development frameworks in
context.

4.3 Attitude towards software systems security

Xie et al. [23] show a disconnect between developers'

conceptual understanding of security and their attitudes
regarding their responsibility and practices for software

58%
42%

Yes

No

27

49

0

10

20

30

40

50

60

AT LEAST TWO SSDF ONE SSDF

0

20

40

60

80

Basic Knowledge Practical
knowledge

ISSN (Print): 2456-6411 | ISSN (Online): 2456-6403 373 JREAS, Vol. 07, Issue 03, July 22

security”. Consequently, the next question provided
insight into whether the participant's attitude towards
online and mobile platforms relates to the way they
perceive and may likely handle software security as
developers. This aim was achieved in this study by asking
the following four questions:

Question 3(a): Choose all the online and mobile
platforms (OMPs) that you often use from the list below:
i) Facebook, ii) Twitter, iii) Instagram, iv) WhatsApp, v)
Linkedln, vi) Email, vii) LMS.

With this question, the researcher sought to understand
the participant's level of involvement in the use of various
online and social media platforms. This question is
motivated by the fact that these platforms constitute
software systems' vulnerability tipping point.

Figure 7: The use of online and mobile platforms

From Fig. 7, all the participants widely used online
and mobile platforms. For instance, the results indicate
that 62 of the 76 (83%) participants used at least three of
the listed OMPs. And the remaining 18% of the sample
used at least one but not more than three OMPs.

Question 3(b): Indicate what you usually do when
using social media and other online platforms? i) Use
personal security settings (UPSS) ii) Use the same
password across more than one platform (USPAP) iii)
Share password (SP) iv) Use personal security settings,
Use the same password across more than one platform
(UPSS/SPAP).

Figure 8: Personal responsibility when using OMPs - 1

Responses to question 3(b) above, as given in Fig. 8,
indicate that most participants showed an attitude of
security consciousness. For instance, 54 out of the 76
participants used personal security settings, representing
72% of the sampled population. At a personal level, this
approach shows that such participants often take personal
responsibility to prevent software security breaches. On the
contrary, the result also indicates that 21 participants do
not use personal security settings. Instead, these
participants indicated sharing their passwords or using the
same password across different OMPs.

Based on the latter finding, further investigation
became apparent. Therefore, as depicted in Fig. 9, the
outcome of Fig. 8 was linked to the participants' earlier
response to question 1(a).

Figure 9: Percept about software security threat vs attitude

toward software security 1

As presented in Fig. 9, the results suggest that the
participant's attitude towards security on online and mobile
platforms is influenced by their perception of the threat of
software vulnerability. This claim substantially supports
the above findings showing that all the participants who
either took the threat of software security “serious” or
“extremely serious” were found to use personal security
settings. Specifically, only 12 out of the 43 participants
who took software security threats “serious” did not use

82%

18%

More than three OMPs

Not more than three OMPs

49

6
2

19

0

10

20

30

40

50

60

UPSS UPSS/SPAP SP USPAP

Serious

Serious/Use PSS

Extremely serious

Extremely serious/Use PSS

Not seriously

43

31

32

22

1

ISSN (Print): 2456-6411 | ISSN (Online): 2456-6403 374 JREAS, Vol. 07, Issue 03, July 22

personal security settings when using various OMPs. And
only 10 out of 32 of those who took the threat “extremely
serious” did not use personal security settings when using
OMPs.

Question 3(c): When using social media platforms, do
you change the security and privacy settings or change
your passwords regularly? This question provided more
information on how the participants explored existing
software security features on OMPs. Such information
further reveals participants’ attitudes towards the threat of
software vulnerability.

Figure 10: Personal responsibility when using OMPs - 2

As illustrated in Fig. 10, the questions' responses show
that most (65 out of 76, that is over 85%) of the
respondents either change their passwords regularly or at
times. When the results in Fig. 10 were linked to the
participants’ earlier response to question 1(a), the
outcome in Fig. 11 the study further linked participants'
attitude towards cyber security to how they perceived the
threat of software vulnerability.

For example, as depicted in Fig. 11, the findings
suggest that out of 43 participants that claimed to take the
threat of software security either “serious”, 35 also
admitted that they change their password regularly (20) or
at times (15). Similarly, of the 32 participants that
admitted to taking software security threats “extremely
serious”, 30 change their password at least sometimes.

Figure 11: Percept about software security threat vs attitude

toward software security 2

4.4 Self-confidence in the knowledge of secure
software development (SSD)

Another factor investigated in this study was the

participants’ confidence in the fundamentals and practices
of secure software development. Therefore, in this
question, the participants were required to assert their
confidence level and provide a personal assessment of their
current curriculum with regard to software security.

Question 4: Do you think you have sufficient
knowledge in secure software development? If not, what
do you think is lacking in your current curriculum?

The above question became imperative because this
study sought to enhance the existing software development
curriculum. Therefore, the data elicited from the question
helped shape the study’s contribution.

Figure 12: Self-confidence in the knowledge of SSD

Although earlier findings, as shown in Fig. 5, show that
64% of the participants knew at least one of the SSDF, the
analysis in Fig. 12 indicates that the majority of the
respondent somewhat low confidence in their knowledge
of SSD. For instance, concerning question 4 above, only
22 participants responded in the affirmative, while 50
participants admitted they had no confidence in their SSD
knowledge.

The responses to the second part of question 4 helped
capture the participants' expectations or verdict or their
current curriculum, as illustrated in Figs. 13 and 14.

32 33

11

0

5

10

15

20

25

30

35

Yes At times No

43
20

15
8

32
13

17
2

1
1

0 10 20 30 40 50

Serious

Serious/At times

Extremely serious

Extremely serious/At…

Not serious

0
5

10
15
20
25
30
35
40
45
50

No Yes Unsure

50

22

4

ISSN (Print): 2456-6411 | ISSN (Online): 2456-6403 375 JREAS, Vol. 07, Issue 03, July 22

Figure 13: Personal assessment of software development

curriculum 1

Fig. 13 presents further analysis of the results in Fig.
12. The first part of the analysis focused on the
participants who answered “Yes” to the question: Do you
think you have sufficient knowledge in secure software
development? As illustrated in Fig. 13, the result indicates
that half the number of the participants who
acknowledged the confidence in their SSD knowledge
were unsure of what may be required to enhance the
existing curriculum. But the rest of the participants either
believed that extending the scope of the current
curriculum on SSD or providing a platform or practical
exposure can make a huge difference, as one of the
participants stated:
“Yes, I can say I have the knowledge, but it is not much
enough. When it comes to the topic of secure software
development, we need to dive deeper and learn everything
because they are very important.”

Similarly, another participant admitted:
“Yes, I do have knowledge on secure software

development even though it is just basic knowledge. I
don't really know a lot of detail in the concept, but I have
knowledge.”

Concerning the participant that responded “No” to the
question in retrospect, Fig 14 demonstrates the findings.
And the results suggest that 44, representing 88% of the
participants, saw the need to enhance the existing SD
curriculum.

Figure 14: Personal assessment of software development

curriculum 2

In responding to what may be lacking in the current
curriculum, 37 wants the curriculum to be expanded by
explicitly adding a module on SSD. In that respect, the
participants quoted below seemed most explicit and
representative of the entire feedback.

Participant A: “No, Security has only been scratched on
the surface, but we haven’t really dived deep into it and
implemented the necessary practices for secure systems
outside the obvious sign in and login password.”

Participant B: “No, I think we need a specific module or
course that teaches practically secure software
development”.

Participant C: “No, because the technology industry is
always evolving, so the knowledge that I have on security
might be outdated. So, the curriculum must keep up with
the times in terms of security updates as a developer.”

On the contrary, though the remaining 7 participants
admitted their SSD inadequacy, they opined that the
current curriculum would serve them better if it offered
them adequate provision for practical exposure.

5. Discussion and conclusion s

This research attempted to understand undergraduate

software developers’ perception of software vulnerability
threats and the developer’s response to information system
security. Essentially, the study explored the participants’
knowledge of secure software development standards and
principles and demonstrated how the developers’ sense of
personal responsibility in leading a professional attitude of
software security consciousness impacts their perception of
software security threats.

The study is motivated by the fact while the demand for
software is rapidly growing, the risk of software
vulnerabilities equally increases proportionately.
Therefore, it has become pertinent to ensure that future
career developers are adequately armed with the relevant
knowledge and skills in secure software development.
Despite the study’s relatively moderate sample (76),
primarily due to employing a voluntary online survey, the
key findings still offered valuable insights that informed
the recommendations made.

An overview of and reflection on some key findings is
as follows:

 An overwhelming majority of over 90% of the
surveyed undergraduate developers took the threat
of software vulnerability either “serious” or
“extremely serious”. Nevertheless, subsequent
results suggested that such a majority did not
necessarily reflect the depth of their knowledge
and experience in secure software development.

 Regarding the awareness software system’s
vulnerability, the gap between the well abreast
undergraduate developers and the others who are

0
2
4
6
8

10
12

Wider scope More
practical
exposure

Not sure

Yes

6 5

11

0
10
20
30
40

Addition of
SSD module

More practical
exposure

Not sure

No

37

7 6

ISSN (Print): 2456-6411 | ISSN (Online): 2456-6403 376 JREAS, Vol. 07, Issue 03, July 22

still unaware constituted a striking 74% of the
sample. The implication is that lack of adequate
practical or simulated secure software
development experience may undermine
undergraduate developers’ understanding of the
software vulnerability threat.

 The participants’ theoretical knowledge of
secure software development framework was
constrained by their lack of experiential
knowledge, as 91% of the participants admitted
that they had only learned about some of the
SSDFs but had not applied them.

 The participant's attitude towards security on
online and mobile platforms was influenced by
their perception of the threat of software
vulnerability. Therefore, it can be argued that
unless professional training or ethics override the
developers’ perception of software vulnerability
threats, their handling of security in software

development may be compromised.
 A vast majority of the sampled undergraduate

developers feel dissatisfied with the current
software development curriculum. Of this
majority, 74% advocate the addition of a module
that would explicitly deal with secure software
development, while 14% expressed the need for
more practical exposure.

Centrally, the study’s findings, as a contribution,
echoed the need to redesign the undergraduate software
development curriculum of South African universities of
technology in a manner that would guarantee two things.
First, to incorporate and facilitate the use of state-of-the-
art platforms that can enable undergraduate developers to
gain real-life exposure in software security programming.
Second, formulate a standard curricula review mechanism
to ensure the curriculum evolves in alignment with
current trends in the industry.

References

[1] A. Alkussayer and W. H. Allen, “The ISDF Framework: Towards

Secure Software Development,” J. Inf. Process. Syst., vol. 6, no. 1,

pp. 91–106, 2010.

[2] N. Davis, W. Humphrey, S. T. Redwine, G. Zibulski, and G.

McGraw, “Processes for producing secure software: Summary of

US national Cybersecurity Summit subgroup report,” IEEE Secur.

Priv., vol. 2, no. 3, pp. 18–25, May 2004.

[3] S. Faily and S. Faily, “Usable and Secure Software Design: The

State-of-the-Art,” in Designing Usable and Secure Software with

IRIS and CAIRIS, Springer International Publishing, 2018, pp. 9–53.

[4] B. Bafandeh Mayvan, A. Rasoolzadegan, and Z. Ghavidel Yazdi,

“The state of the art on design patterns: A systematic mapping of

the literature,” J. Syst. Softw., vol. 125, pp. 1339–1351, Mar. 2017.

[5] M. Z. Gunduz and R. Das, “Analysis of cyber-attacks on smart grid

applications,” in 2018 International Conference on Artificial

Intelligence and Data Processing (IDAP), Sep. 2018, pp. 1–5.

[6] S. Ghafur, E. Grass, N. R. Jennings, and A. Darzi, “The challenges

of cybersecurity in health care: the UK National Health Service as

a case study,” Lancet Digit. Heal., vol. 1, no. 1, pp. e10–e12, May

2019.

[7] C. Heitzenrater and A. Simpson, “A case for the economics of

secure software development,” in ACM International Conference

Proceeding Series, Sep. 2016, vol. 26-29-Sept, pp. 92–105.

[8] Z. A. Baig et al., “Future challenges for smart cities: Cyber-security

and digital forensics,” Digit. Investig., vol. 22, pp. 3–13, 2017.

[9] S. Omar, T. Frimpong, and J. B. Hayfron-Acquah, “Information

System Security Threats and Vulnerabilities: Evaluating the

Human Factor in Data Protection,” Int. J. Comput. Appl., vol. 143,

no. 5, pp. 0975 – 8887, 2016..

[10] M. Sharma and S. Kaur, “Cyber Crimes Becoming Threat to Cyber

Security,” Acad. J. Forensic Sci., vol. 2, no. 1, pp. 2581–4273,

2019.

[11] C. Luo, W. Bo, H. Kun, and L. Yuesheng, “Study on Software

Vulnerability Characteristics and Its Identification Method,” Math.

Probl. Eng., vol. 2020, pp. 0–6, 2020.

ISSN (Print): 2456-6411 | ISSN (Online): 2456-6403 377 JREAS, Vol. 07, Issue 03, July 22

[12] I. Bassey, D. Afuro, and M. Munienge, “An Investigation of

Software Engineering Knowledge of Undergraduate Students,”

Int. J. Mod. Educ. Comput. Sci., vol. 7, no. 12, pp. 42–50, 2015.

[13] B. Isong, O. Ifeoma, and N. Gasela, “On the integration of agile

practices into teaching: An approach to overcoming teaching and

learning challenges of programming,” in Proceedings - 2015

International Conference on Computational Science and

Computational Intelligence, CSCI 2015, Mar. 2016, pp. 264–270.

[14] S. Biju, “Benefits of Working in Pairs in Problem Solving and

Algorithms - Action Research,” Athens J. Educ., vol. 6, no. 3, pp.

223–236, Jan. 2019.

[15] B. Isong, “A Methodology for Teaching Computer Programming:

first year students’ perspective,” Int. J. Mod. Educ. Comput. Sci.,

vol. 6, no. 9, pp. 15–21, 2014.

[16] Y. Changsheng, H. Kaibin, and C. Hyukjin, “Energy Efficient

Mobile Cloud Computing Powered by Wireless Energy Transfer -

IEEE Journals & Magazine,” Sci. World J., vol. 34, no. 5, pp.

1757–1771, 2016.

[17] C. Stergiou, K. E. Psannis, B. G. Kim, and B. Gupta, “Secure

integration of IoT and Cloud Computing,” Futur. Gener. Comput.

Syst., vol. 78, pp. 964–975, Jan. 2018.

[18] R. Vadra, “Knowledge Economy in BRICS: a Case of South

Africa,” J. Knowl. Econ., vol. 8, no. 4, pp. 1229–1240, Dec. 2017.

[19] Forbs, “Top 2016 Cybersecurity Reports Out From AT&T, Cisco,

Dell, Google, IBM, McAfee, Symantec And Verizon,” 2016.

[20] C. Weir, A. Rashid, and J. Noble, “Challenging software

developers: dialectic as a foundation for security assurance

techniques,” J. Cybersecurity, vol. 6, no. 1, pp. 1–16, 2020.

[21] A. Alhazmi and N. A. G. Arachchilage, “I’m all ears! Listening to

software developers on putting GDPR principles into software

development practice,” Pers. Ubiquitous Comput., vol. 25, no. 5,

pp. 879–892, Oct. 2021.

[22] Veracode, “State of Software Security Volume 9,” 2018.

[23] J. Xie, H. R. Lipford, and B. Chu, “Why do programmers make

security errors?,” in Proceedings - 2011 IEEE Symposium on

Visual Languages and Human Centric Computing, VL/HCC 2011,

2011, pp. 161–164.

[24] M. Graff and K. Van-Wyk R., Secure coding : principles and

practices. O’Reilly, 2003.

[25] A. J. Ko and B. A. Myers, “A framework and methodology for

studying the causes of software errors in programming systems,”

J. Vis. Lang. Comput., vol. 16, no. 1–2, pp. 41–84, Feb. 2005.

[26] H. Assal and S. Chiasson, “‘Think secure from the beginning’: A

survey with software developers,” Conf. Hum. Factors Comput.

Syst. - Proc., May 2019.

[27] T. H. Morris, “Experiential learning – a systematic review and

revision of Kolb’s model,” Interact. Learn. Environ., vol. 28, no.

8, pp. 1064–1077, Nov. 2019.

