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Abstract 
Box-beam bridges are used in large spans and wider decks due to their high strength and greater torsional and flexural 
stiffness. They are usually prone to vibration due to moving vehicular traffic. Their eigenfrequency analysis is a crucial 
aspect of their design in order to ensure that the natural frequency is not close to the excitation frequency to avert 
resonance failures. The free torsional vibration equation is a fourth order partial differential equation (PDE) with 
variable parameters. For prismatic cross-sections, homogeneous and isotropic materials the governing PDE have 
constant parameters. This paper explores the Stodola-Vianello iteration method (SVIM) for solving the PDE for 
isotropic, homogeneous prismatic box-beams. Harmonic response is assumed, decoupling the PDE to two equations, one 
in terms of time and the second an ordinary differential equation (ODE) in terms of space coordinates. The Stodola-
Vianello method is used by the method of four successive integrations to express the ODE as an algebraic iteration 
problem with four constants of integration. The four boundary conditions are used to solve for the four constants of 
integration, thus making the problem determinate. Application of the boundary conditions results in the full 
determination of the iteration equations.  For simply supported boundaries studied in the work, a trigonometric buckling 
shape function that satisfies all the boundary conditions is employed in the SVIM formula to obtain the next bucking 
modal shape function. The requirement for convergence is then used to establish the characteristic buckling equation 
from which the eigenvalues are obtained. The solution to the characteristic buckling equation gave the exact 
mathematical expression for the natural torsional frequency at the nth vibration mode. The frequencies are determined 
for the first eight vibration modes and compared with previously obtained values. It was found that the natural 
frequencies are identical with previously found values of the exact natural frequencies. The natural frequency obtained 
is exact because it satisfies the PDE and the boundary conditions at all points in the domain. 
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1. Introduction 

 
Box-girder bridges are used for cases of large spans and 
wider decks because of their higher strength and greater 
torsional and flexural stiffnesses [1]. The natural vibration 
characteristics of box-girder bridges including the model 
parameters such as mode shape and natural frequencies need 
to be studied to comprehensively understand its fundamental 
dynamic behaviour [2]. 
 The natural frequency analysis of box-girder 
bridges is vital to their design in order to determine their 
dynamic response and ensure that the natural frequency is 
not close to the excitation frequency in order to avoid 
resonance. Every structural system has a specific pattern of 
vibration, called mode shape, under a specific frequency 
known as the natural frequency. Different modes have 
different natural frequencies. Modes depend upon the 
material properties like inertial, damping and stiffness and 
also on the boundary conditions of the structures. 
 Free vibrations occur naturally with no external 
excitation applied and responsible for the vibration. Free 
vibrations start with some energy input but dies away with 
time as the energy is dissipated. The natural frequencies and 
vibration modes depend upon the geometrical, inertial, 
elasticity and damping properties of the vibrating box-girder 
beam system. 
 Finite element method (FEM) was used by Shaikh 

and Nallasivam [3] to determine the free vibration responses 
of a box-girder bridge along with the railway subtrack 
system. Their study applied the non-closed form FEM-based 
ANSYS software. Agarwal et al [1] used the FEM for the 
free vibration analysis of simply supported reinforced 
concrete box girder bridges.  They found the fundamental 
frequencies for straight, curved, skewed and skew-curved 
box-girder bridges. They also found that the fundamental 
frequencies of skew-curved bridges were more than those 
for straight bridges making skew bridges more preferred 
than straight bridges. 
 Tang and Zhu [4] have studied the vibration 
analysis of composite box-girder beam bridges. Verma and 
Nallasivam [5] studied the natural vibration of thin walled 
concrete box-girder bridge using an experimental model. 
Verma et al [2] used the FEM to study the free vibration 
analysis of thin-walled box-girder bridge. Zhang et al [6] 
investigated the free vibration behaviour of thin-walled 
rectangular box beam using generalized coordinates. 
Ramkumar and Kang [7] have also used the FEM to study 
the buckling and vibration analysis of thin-walled box 
beams. 
 Hannewald [8] applied the finite difference method 
(FDM) to the eigenfrequency analysis of the torsional 
frequencies of box-beam bridge. The researcher considered 
harmonic vibrations of the system which decoupled the 
space and time variables in the governing partial differential 
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equation resulting in an ordinary differential equation (ODE) 
for the dynamic problem. The FDM was used to discretize 
the ODE such that the ODE becomes a system of algebraic 
equations written for each grid point in the finite difference 
grid representation of the vibrating beam. 
 The resulting algebraic equations are solved subject 
to the boundary conditions to yield the natural frequencies of 
vibration. Hannewald [8] also presented the analytical 
solutions for the refined torsional vibrating frequencies and 
found that the frequencies obtained using the FDM were 
close to the analytical solutions with differences of -1.68% 
for a four FDM grid point solution (for n = 1);  - 0.524% for 
a FDM grid with N = 8, and -0.165% for FDM grid point 
with N = 16. 
 Literature review reveals that the Stodola-Vianello 
iteration method (SVIM) has not been applied to the 
solution of the free torsional vibration equation of box 
beams. This paper applies the Stodola-Vianello iteration 
method to the eigenfrequency determination of the box beam 
problem. The viability of the Stodola-Vianello iteration for 
solving the boundary value problems of buckling and 
vibration have been illustrated by the previous applications 
of the SVIM to Euler column buckling by Ofondu et al [9]; 
buckling of beam on elastic foundations by Ike et al [10], 
[11], and Ike [12], [13] and  [14]. 
 
2. Governing Partial Differential Equation of 

Motion 
 
The governing partial differential equation (GPDE) of 
dynamic equilibrium of a monosymmetric beam with closed 
cross-section shown in Figure 1 is given by Hannewald [7] 
as: 

2 2

2 2

( , ) ( , )
( ) ( )w

x t x t
C x C x

x xx x

      
   

    
  

 
2

2
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( ) ( , )p e

x t
I x M x t

t

 
 


  (1) 

wherein, x is the longitudinal axial coordinate. 
Cw(x) is the warping stiffness of the beam with units of 
kNm

4
 where there is varying warping stiffness for non-

homogeneous beam materials. 
C(x) is the torsional stiffness in kNm

2
 where there is varying 

torsional stiffness for non-homogeneous beam materials. 
Ip(x) is the mass moment of inertia per unit length. 
 is the mass density in kg/m

3
; Ip is the polar moment of 

inertia and ( , )x t  is the angle of twist or torsional angle; t is 

time. 

( , )eM x t  is the externally applied twisting moment in 

kNm/m. 

( , )RM x t  is the intensity of the applied distributed torque. 

 

 
 

Figure 1 Monosymmetric box-beam bridge with simple 
supports at the ends 

 
 The warping stiffness Cw(x) is expressed generally 

as: 

( )w wC E x I       (2) 

where E(x) is the Young’s modulus of elasticity in MPa. 
Iw is the warping constant in m

6
. 

The torsional stiffness C(x) is expressed generally as: 

( ) ( )C x G x J       (3) 

where G(x) is the shear modulus or modulus of rigidity. 
J is the torsional moment of inertia in m

4
 or Saint Venant 

torsional constant. 
Ip is given by 

p yy zzI I I        (4) 

where Iyy is moment of inertia about yy axis 
Izz is moment of inertia about zz axis. 
Hence Equation (1) is expressed as: 

2 2 2

2 2 2
( ) ( ) ( ) ( , )w p eE x I G x J x I M x t

x xx x t

        
     

     
      
 …(5) 
For free vibrations, the external excitation vanishes and the 
equation reduces to the homogeneous equation: 

2 2 2

2 2 2
0( ) ( )w pE x I G x J I

x xx x t

        
     

     
 (6) 

For prismatic cross-sections Iw, J and Ip are constants. For 
homogeneous beams, E, G are constants. Then the GPDE is: 

2 2 2

2 2 2
0w pEI GJ I

x xx x t

        
     

     
 (7) 

Simplifying, the GPDE for homogeneous beams with 
prismatic cross-sections becomes the fourth order PDE with 
constant parameters. 

4 2 2

4 2 2
0w pEI GJ I

x x t

     
   

  
   (8) 

For harmonic torsional vibrations, it is assumed that the 
response is harmonic and ( , )x t  is considered as: 

1

( , ) ( ) ni t
n

n

x t F x e






       (9) 

where Fn(x) is the nth torsional vibration modal shape 
function and n is the angular frequency of torsional 
vibrations for the nth mode 

1i         (10) 
Then 
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The GPDE is then simplified to 
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d d
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dx dx
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  2 0( ) ni t
p nI F x e

     (14) 

Factorizing, 

4 2
2

4 2
0

( )
( ) ( ) ni tn

w n p n n

n

d F x d
EI GJ F x I F x e

dx dx


 

     
 


                     
…(15) 

For nontrivial solutions, 0,i te    hence 

2 0( ) ( ) ( )iv
w n n p nEI F x GJF x I F x        (16) 

where 
2

2

( )
( ) n
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d F x
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dx
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4

4

( )
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d F x
F x

dx
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3. Methodology 
 
Dividing Equation (16) by EIw gives: 
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Integrating once, 
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where c1 is an integration constant. 
Integrating again, 

2
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where c2 is the second integration constant. 
Integrating again, 
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where c3 is the third integration constant. 
Integrating the fourth time gives: 
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where c4 is the fourth integration constant. 
Hence the Stodola-Vianello iteration formula becomes: 
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              ...(25) 
By the Stodola-Vianello iteration method, the four constants 
of integration c1, c2, c3 and c4 are determined using the 
boundary conditions. 

For simply supported conditions at the beam ends 0,x   

,x l  the boundary conditions on F(x) are: 

0 0 0( ) ( )n nF x F x        (26a) 

0( ) ( )n nF x l F x l        (26b) 

Hence a suitable exact modal shape function which satisfies 
the boundary conditions for the nth vibration mode is: 

( ) sinn

n x
F x

l


      (27) 

The SVIM equations are: 

2
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      ...(29) 
 
4. Results 
 
Evaluating the integrals yields: 

2 2

1 1 2( ) sin sin
p

n
w w

IGJ n x l n x
F x dx c x c

EI l EI n l

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Using the boundary conditions 
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Hence, 
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For convergence at the nth buckling mode, 
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Hence, 
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The characteristic eigenvalue equation is 
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Rearranging gives 
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Solving for 2
n  gives: 
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Taking the square root of both sides gives: 
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Parametric Studies 
 
The Stodola-Vianello iteration method is applied to the free 
torsional vibration analysis of the box beam bridge structure 
studied and solved by Hannewald [8] using the analytical 
method and the finite difference method.. 
 For the symmetrical box-beam bridge structure 
with closed cross-section, the parameters are 

36000MPa,E   

32500 /kg m    

6146 1999. m ,wI   0 20.    

4609 9098. mpI    

432 0042. mJ   

78ml    

     (53) 

Then, 
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15000MPa   (54) 

636000 146 1999MPa . mw wC EI      (55a) 

45 263 196 4, , . MNmwEI      (55b) 

4 215000 32 0042 480 063MPa . m , MNmC GJ     (56) 

3 42500 / 609 9098kg m . mpI       (57) 

61 524 774 5, , . NmpI       (58) 

61 5248. MNmpI       (59) 

Hence, 

25 263 196 4 480 063

2 78 1 5248 78 1 5248

, , . ,

. .
n

n n
f

   
    

   
  (60) 

where 1 2 3, , ...n    

fn is evaluated for 1 2 3 4 5 6 7, , , , , ,n   and 8 and the values 

obtained are tabulated in Table 1 and compared with 
previously obtained values from Hannewald [8] who 
presented the analytical solution and the finite difference 
solution. 
 
Table 1: Torsional frequencies of various vibration modes 
for free torsional vibration of a box-beam bridge 
Torsio
nal 
vibrati
on 
mode 

Stodola-
Vianello 
method 
(SVM) 
Present 
study  
Hertz 
(Hz) 

Analytical 
solution 
Hannewald 
[8] Hertz 
(Hz) 

Finite difference method 
(FDM) Hannewald [8] Hertz 
(Hz) 

   N=4 N=8 N=16 N=32 
1 3.628659 3.629 3.568 3.610 3.623 3.627 
2 7.445116 7.445 6.936 7.285 7.400 7.433 
3 11.62200 11.622 9.794 11.03

1 
11.454 11.577 

4 16.306327 16.306 11.74
3 

14.75
8 

15.859 16.187 

5 21.615579 21.616  18.29 20.632 21.350 
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3 
6 27.639313 27.640  21.40

1 
25.737 27.122 

7 34.443624 34.444  23.84
1 

31.091 33.522 

8 42.076385 42.077  25.40
0 

36.579 40.546 

 
5. Discussion 
 
The problems of torsional vibrations of mono-symmetric 
beams with closed cross-sections are governed by non-
homogeneous variable parameter partial differential 
equation (PDEs). This is particularly where the vibration has 
external excitation and the elasticity and geometrical 
properties are variables due to non-homogeneous and non-
prismatic cross-sections. 
 However, when the beam material is homogeneous 
and the cross-section is prismatic, and there is no excitation 
force, the problem becomes simplified to a homogeneous 
fourth order PDE with constant parameters. Such problems 
are solvable using techniques and methods for solving 
PDEs. 
 In this work, the PDE for the problem has been 
solved in closed form using Stodola-Vianello iteration 
method. The work assumed harmonic torsional vibrations 
and harmonic response of the torsional deflections. This 
assumption resulted in the expression of ( , )x t  in the form 

of a linear combination of sinusoidal functions depending 
only on t and unknown modal shape functions depending 
only on x. 
 Consequently, the independent spatial and time 
variables of the problem became de-coupled, and the 
resulting problem became a system of homogeneous 
ordinary differential equations of fourth order. 
 Stodola-Vianello iterations method (SVIM) was 
then applied via four successive integrations to obtain the 
SVIM iteration equations for the problem. The SVIM 
iteration equation contained four integration constants which 
were obtained using the four boundary conditions at the ends 

0,x   and x l  for the simply supported beam fully 

solved. The condition for convergence of the nth SVIM 
iteration was used to find the characteristic eigenvalue 
equation, which was then solved for the eigenvalues. 
 The natural frequencies were then determined for 
the first eight modes of torsional vibration and presented in 
Table 1, together with previous values obtained via 
analytical methods and FDMs by Hannewald [8]. Table 1 
shows that the present SVIM natural frequencies are 
identical with the analytical results presented by Hannewald 
[8]. This illustrates that the SVIM results for fn are exact. 
This is expected since the exact shape functions for simply 
supported beams were used in deriving the SVIM solutions. 
 
6. Conclusions 
 
This work has presented SVIM for solving the free torsional 
vibration problem of homogeneous, prismatic beams with 
closed cross-sections. 
In conclusion 
i. The SVIM iteration equation was obtained using 

four successive integrations and contains four 
integration constants. 

ii. For simply supported ends, the exact shape 
function is a sinusoidal function and satisfies all the 
boundary conditions. 

iii. The constants of integration are computed using the 

four boundary conditions. 
iv. For simply supported ends, the characteristic 

eigenequation is an algebraic equation which is 
solved to find the eigenvalue n from which fn is 
calculated. 

v. The expressions obtained for n and fn are exact 
and yield exact values for the frequencies for any 
given mode of torsional vibration. 

vi. The effectiveness and accuracy of the SVIM has 
been demonstrated for free torsional vibration 
analysis of monosymmetric beam sections. 

vii. The exact expression was used to sole the box 
beam bridge problem previously studied using 
analytical and FDM method and identical results 
were obtained in this work via SVIM. 

 
NOMENCLATURE 
 
x longitudinal axial coordinate 
y coordinate in the breadth of the beam 
z transverse coordinate 
t time 
Cw(x) warping stiffness of the beam when there is 

variable warping stiffness for non-homogeneous 
beam material 

C(x) torsional stiffness that varies along the longitudinal 
axis of beam 

 mass density 
Ip polar moment of inertia 

( , )x t   angle of twist or torsional angle 

( , )eM x t  externally applied twisting moment or intensity of 

applied distributed torque 

pI   mass moment of inertia per unit length 

Iyy moment of inertia about yy axis 
Izz moment of inertia about zz axis 
G(x) shear modulus that varies along the longitudinal 

axis 
G constant shear modulus for homogeneous  beam 

material 
E(x) Young’s modulus of elasticity for non-

homogeneous beam material 
E Young’s modulus of elasticity for  homogeneous 

beam material 
Iw warping constant for homogeneous prismatic beam 

cross-sections 
Iw(x) warping constant that varies along the longitudinal 

axis 
J torsional moment of inertia or Saint 

 Venant torsional constant 
J(x) torsional moment of inertia for non-homogeneous, 

non-prismatic beam cross sections 
i imaginary number in complex variables theory 
Fn(x) torsional vibration mode shape  function for the nth 

mode 
n angular frequency of torsional vibration for the nth 

mode 
fn frequency of torsional vibration for the nth mode 

k

k

d

dx
  kth derivative with respect to x 

l length of beam 

x




  operator for partial derivative with respect to x 
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2

2x




  operator for second partial derivative with respect 

to x 
2

2t




  operator for second partial derivative with respect 

to t 
c1, c2, c3, c4 constants of integration 

0

( )

x

dx   integration with respect to x 

0 0

( )

x x

dxdx   two successive integrations with respect to x 

Hz Hertz 
m meter 
n torsional vibration mode number 
N number of finite difference grids used in the finite 

difference method 

0 0 0 0

( )

x x x x

dxdxdxdx     four successive integrations with respect 

to x 
GPDE governing partial differential equation 
PDE partial differential equation 
N Newton 
kN kilo Newton 
MN mega Newton 
SVIM Stodola-Vianello iteration method 
SVM Stodola-Vianello method 
FDM finite differential method 
kg kilogram 
FEM finite element method 
b width of beam 
h depth of beam 
bi internal width (inner width) 
be external width (outer width) 
hi internal depth (inner depth) 
he external depth (outer depth) 
 
References 
 
[1] P. Agarwal, P. Pal, P.K. Mehta “Free vibration 

analysis of  RC box-girder bridges using FEM.” 
Sound Vibration 56(2), 2022, 105 – 125. DOI: 
10.32604/sv.2022.014874. 

[2] V. Verma, A. Mallothu, K. Nallasivan “Modal 
analysis of a thin-walled box-girder bridge and 
railway track using finite element framework.” 
Computational Engineering and Physical Modelling 
4(4), 2021, 64 – 83. 
https://doi.org/10.22115/CEPM.2021.278798. 

[3] M.F. Shaikh, K. Nallasivam “Static and free 
vibration response of a box-girder bridge using 
finite element technique.” Multidiscipline 
Modelling in Materials and Structures 19(5), 2023, 
897 – 923. https://doi.org/10.1108/mms-12-2022-
0277. 

[4] Q-C Tang, Li Zhu “Vibration control of the steel-
concrete composite box girder bridge with slip and 
shear-lag effects by MTMDs under the train-bridge 
interaction.” Structural Control and Health 
Monitoring 2023, Article ID.6696148, 2023, 26 
pages. https://doi.org/10.1155/2023/6696148. 

[5] V. Verma, K. Nallasivam “Free vibration behaviour 
of thin-walled concrete box-girder bridge using 
Perspex sheet experimental model.” Journal of 
Achievements in Materials and Manufacturing 
Engineering 106(2), 2021, 56 – 76. DOI: 
10.5604/01-3001.0015.2418. 

[6] L. Zhang, Z. Zhu, G. Shen “Free vibration analysis 
of thin-walled rectangular box beams based on 
generalized coordinates.” Journal of 
Vibroengineering 16(8), 2014, 3900 – 3911. 

[7] K. Ramkumar, H. Kang “Finite element based 
investigation of buckling and vibration behaviour 
of thin-walled box beam.” Applied and 
Computational Mechanics 7(2), 2013, 155 – 182. 

[8] P. Hannewald  “Analysis of a dynamically loaded 
beam bridge in torsion.” Master Thesis Structural 
Design and Bridges 2006. ISSN: 1103-4297. 
https://www.diva-portal.org. Accessed on 30th 
September, 2023. 

[9] I.O. Ofondu, E.U. Ikwueze, C.C. Ike 
“Determination of the critical buckling loads of 
Euler columns using Stodola-Vianello iteration 
method.” Malaysian Journal of Civil Engineering 
30(3), 2018, 378 – 394. 

[10] C.C. Ike, O.A. Oguaghamba, J.N. Ugwu “Stodola-
Vianello iteration method for the critical buckling 
load analysis of thin beam on two-parameter 
foundation with clamped ends.” Proceedings 
Nigerian Institute of Electrical and Electronics 
Engineering (NIEEE) Nsukka Chapter 4th National 
Engineering Conference, 2023, 1 – 5. 

[11] C.C. Ike, O.A. Oguaghamba, J.N. Ugwu “Stodola-
Vianello iteration method for the critical buckling 
load analysis of thin beam on Winkler foundation 
with clamped ends.” Proceedings Nigerian Institute 
of Electrical and Electronics Engineering (NIEEE) 
Nsukka Chapter 4th National Engineering 
Conference, 2023, 34 – 38. 

[12] C.C. Ike “Critical buckling load solution of thin 
beam on Winkler foundation via polynomial shape 
function in Stodola-Vianello iteration method.” 
Journal of Research in Engineering and Applied 
Sciences 8(3), 2023, 591 – 595. 
https://doi.org/10.46565/jreas-2023-83591-595. 

[13] C.C. Ike “Stodola-Vianello method for the buckling 
load analysis of beam on Winkler foundation.” 
UNIZIK Journal of Engineering and  Applied 
Sciences 2(1), 2023, 250 – 259. 

[14] C.C. Ike “Stodola-Vianello method for the buckling 
load analysis of beam on Pasternak foundation.” 
UNIZIK Journal of Engineering and Applied 
Sciences 2(1), 2023, 217 – 226. 

https://doi.org/10.22115/CEPM.2021.278798
https://doi.org/10.1155/2023/6696148
https://www.diva-portal.org/
https://doi.org/10.46565/jreas-2023-83591-595

