Advancements in AI-Powered Personalized Pregnancy Care: A Comprehensive Review
DOI:
https://doi.org/10.48001/jocevd.2024.211-7Keywords:
Artificial Intelligence (AI), Childbirth, Convolutional Neural Networks (CNNs), Data science, Image analysis, Machine learning, Medical imaging, PregnancyAbstract
A comprehensive review of recent challenges faced by pregnant women and how Artificial intelligence can use to overcome these challenges is provided in this paper. In this paper, we explore various AI technologies and methodologies that contribute to the development of personalized pregnancy care system. Pregnancy is a complex vital period in a woman’s life with potential impact on her physical and psychological health.AI-driven personalized pregnancy care includes prediction of complications during pregnancy, proper diet for pregnant women and optimization of treatment plans. There are so many existing AI technologies related pregnancy care. However, these technologies are still facing many challenges. To improve existing techniques further research is required.
Downloads
References
Alim, A., & Imtiaz, M. H. (2023). Wearable sensors for the monitoring of maternal health - A systematic review. Sensors, 23(5), 2411.
https://doi.org/10.3390/s23052411
Alkhodari, M., Xiong, Z., Khandoker, A. H., Hadjileontiadis, L. J., Leeson, P., & Lapidaire, W. (2023). The role of artificial intelligence in hypertensive disorders of pregnancy: Towards personalized healthcare. Expert Review of Cardiovascular Therapy, 21(7), 531-543.
https://doi.org/10.1080/14779072.2023.2223978.
Bertini, A., Salas, R., Chabert, S., Sobrevia, L., & Pardo, F. (2022). Using machine learning to predict complications in pregnancy: A systematic review. Frontiers in Bioengineering and Biotechnology, 9, 780389.
https://doi.org/10.3389/fbioe.2021.780389.
Chandrika, V., & Surendran, S. (2022, June). AI-enabled pregnancy risk monitoring and prediction: A review. In 4th EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing: BDCC 2021 (pp. 29-43). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-031-07654-1_3.
Chen, J., Li, K., Tang, Z., Bilal, K., Yu, S., Weng, C., & Li, K. (2016). A parallel random forest algorithm for big data in a spark cloud computing environment. IEEE Transactions on Parallel and Distributed Systems, 28(4), 919-933. https://doi.org/10.1109/TPDS.2016.2603511.
Chen, X., Cheng, G., Wang, F. L., Tao, X., Xie, H., & Xu, L. (2022). Machine and cognitive intelligence for human health: systematic review. Brain Informatics, 9(1), 1-20.
https://doi.org/10.1186/s40708-022-00153-9.
Compagnone, C., Borrini, G., Calabrese, A., Taddei, M., Bellini, V., & Bignami, E. (2022). Artificial intelligence enhanced ultrasound (AI-US) in a severe obese parturient: A case report. The Ultrasound Journal, 14(1), 34. https://doi.org/10.1186/s13089-022-00283-5.
Delanerolle, G., Yang, X., Shetty, S., Raymont, V., Shetty, A., Phiri, P., ... & Shi, J. Q. (2021). Artificial intelligence: a rapid case for advancement in the personalization of gynaecology/obstetric and mental health care. Women's Health, 17. https://doi.org/10.1177/17455065211018111.
Du, Y., McNestry, C., Wei, L., Antoniadi, A. M., McAuliffe, F. M., & Mooney, C. (2023). Machine learning-based clinical decision support systems for pregnancy care: A systematic review. International Journal of Medical Informatics, 105040.
https://doi.org/10.1016/j.ijmedinf.2023.105040.
Gil, M. M., Cuenca‐Gomez, D., Rolle, V., Pertegal, M., Díaz, C., Revello, R., ... & de Paco Matallana, C. (2024). Validation of machine‐learning model for first‐trimester prediction of pre‐eclampsia using cohort from PREVAL study. Ultrasound in Obstetrics & Gynecology, 63(1), 68-74.
https://doi.org/10.1002/uog.27478.
Hong, Y. M., Lee, J., Cho, D. H., Jeon, J. H., Kang, J., Kim, M. G., ... & Kim, J. K. (2023). Predicting preterm birth using machine learning techniques in oral microbiome. Scientific Reports, 13(1), 21105.
https://doi.org/10.1038/s41598-023-48466-x.
Ismail, A., & Kumar, N. (2021, May). AI in global health: The view from the front lines. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-21).
https://doi.org/10.1145/3411764.3445130.
Letterie, G. (2021). Three ways of knowing: The integration of clinical expertise, evidence-based medicine, and artificial intelligence in assisted reproductive technologies. Journal of Assisted Reproduction and Genetics, 38(7), 1617-1625.
https://doi.org/10.1007/s10815-021-02159-4.
Maged, A. M., Moety, G. A. F., Mostafa, W. A., & Hamed, D. A. (2014). Comparative study between different biomarkers for early prediction of gestational diabetes mellitus. The Journal of Maternal-Fetal & Neonatal Medicine, 27(11), 1108-1112.
https://doi.org/10.3109/14767058.2013.850489.
Matthew, J., Skelton, E., Day, T. G., Zimmer, V. A., Gomez, A., Wheeler, G., ... & Hajnal, J. (2022). Exploring a new paradigm for the fetal anomaly ultrasound scan: Artificial intelligence in real time. Prenatal Diagnosis, 42(1), 49-59. https://doi.org/10.1002/pd.6059.
Sitaula, C., Grooby, E., Kwok, T. N. C., Sharkey, D., Marzbanrad, F., & Malhotra, A. (2023). Artificial intelligence-driven wearable technologies for neonatal cardiorespiratory monitoring. Part 2: Artificial intelligence. Pediatric Research, 93(2), 426-436.
https://doi.org/10.1038/s41390-022-02417-w.
Sufriyana, H., Husnayain, A., Chen, Y. L., Kuo, C. Y., Singh, O., Yeh, T. Y., ... & Su, E. C. Y. (2020). Comparison of multivariable logistic regression and other machine learning algorithms for prognostic prediction studies in pregnancy care: Systematic review and meta-analysis. JMIR Medical Informatics, 8(11), e16503. https://medinform.jmir.org/2020/11/e16503.
Tejera, E., Jose areias, M., Rodrigues, A., Ramoa, A., Manuel nieto-villar, J., & Rebelo, I. (2011). Artificial neural network for normal, hypertensive, and preeclamptic pregnancy classification using maternal heart rate variability indexes. The Journal of Maternal-Fetal & Neonatal Medicine, 24(9), 1147-1151.
https://doi.org/10.3109/14767058.2010.545916.
Than, N. G., & Papp, Z. (2017). Ethical issues in genetic counseling. Best Practice & Research Clinical Obstetrics & Gynaecology, 43, 32-49.