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ABSTRACT: Federated learning is an innovative machine learning approach that allows 

models to be trained collaboratively across decentralized data sources, all while keeping 

sensitive information where it belongs on local devices. This method has gained 

significant attention in recent years, primarily because it offers a way to address growing 

concerns around data privacy and security. Instead of collecting data in a central location, 

federated learning enables different entities, like hospitals or financial institutions, to 

work together on model training without ever sharing their raw data. This makes it 

particularly valuable in fields where privacy is paramount. This paper explores the 

evolution, applications, and challenges of federated learning, providing a well-rounded 

understanding of its potential. The benefits are clear: enhanced privacy, increased 

collaboration, and the ability to leverage diverse datasets. However, there are also 

challenges to be addressed, such as improving communication protocols, ensuring 

scalability, and developing stronger privacy-preserving techniques. By systematically 

reviewing literature from peer-reviewed journals and reputable sources, this study reveals 

that while federated learning offers a promising path forward, more research is needed to 

overcome its current limitations. Ultimately, this paper contributes to the growing body of 

knowledge on how federated learning can shape the future of secure and efficient 

decentralized learning.  
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1. INTRODUCTION 

Federated Learning (FL) is a groundbreaking approach in the 

realm of machine learning (ML) that has garnered significant 

attention in recent years (Zheng et al., 2022). At its core, FL 

allows models to be trained on decentralized data, meaning 

that data can stay where it is on individual devices rather than 

being pooled into a central location. This shift is crucial in 

today’s data-driven world, where privacy concerns are 

increasingly at the forefront. In contrast to traditional ML 

methods, which require data centralization, FL offers a way 

to train models collaboratively without compromising 

sensitive information. This makes FL especially valuable in 

fields like healthcare, finance, and personal devices, where 

data privacy and security are paramount as given in Figure 1. 

The primary goal of this paper is to provide a 

comprehensive overview of Federated Learning from its 

inception to its current applications and potential future 

developments. FL emerged from the need to build machine 

learning models using data that cannot be easily 

centralized, either due to privacy regulations or logistical 

challenges. Over the years, FL has evolved into a 

sophisticated method that has found its place in various 
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industries, revolutionizing how we approach data and 

model training (Nilsson et al., 2018). 

 

Figure 1: Federated Learning. 

One of the standout features of FL is its ability to harness 

data from a wide range of sources, such as smartphones, 

healthcare systems, and the Internet of Things (IoT). For 

instance, consider how smartphones today are more 

personalized than ever offering predictive text, tailored 

recommendations, and more. Much of this is possible 

because of FL. By allowing models to be trained directly 

on devices, FL ensures that user data remains private while 

still benefiting from collective learning (Zhang et al., 

2021). In healthcare, the impact of FL is equally profound. 

Hospitals and research institutions can collaborate to 

develop predictive models for diseases like cancer or 

diabetes without ever sharing raw patient data. This not 

only protects patient privacy but also enables the 

development of more robust and accurate models. 

Similarly, in the IoT sector, FL allows smart devices 

ranging from home assistants to industrial sensors to learn 

from each other, enhancing their performance and 

adaptability in real-time environments. 

Despite these significant advantages, FL is not without its 

challenges. One of the major hurdles is dealing with non-

IID data a situation where data across devices is not 

independently and identically distributed. In simpler terms, 

the data on one device may be very different from the data 

on another, leading to potential biases in the model and 

reducing its overall effectiveness. Another challenge is 

systems heterogeneity, which refers to the differences in 

capabilities among devices participating in FL. Not all 

devices are created equal some have more computational 

power, better network connectivity, or longer battery life 

than others. This disparity can make it difficult to 

coordinate model training across multiple devices, 

complicating the process and potentially affecting the final 

model's performance. Additionally, while FL is designed to 

enhance privacy, it is not completely foolproof. Privacy 

risks such as model inversion attacks where adversaries 

attempt to reconstruct original data from model updates 

and the leakage of sensitive information through shared 

gradients are still concerns that need to be addressed. 

To better understand these challenges and the current state 

of FL, this paper undertakes a thorough literature review, 

systematically analyzing existing research on the topic. 

This review includes a deep dive into papers published in 

peer-reviewed journals, conference proceedings, and other 

reputable sources. By synthesizing the findings from these 

studies, this paper offers a well-rounded understanding of 

FL highlighting both its potential and the obstacles that 

must be overcome for broader adoption. 

The motivation behind this study is to equip researchers, 

practitioners, and policymakers with a thorough 

understanding of FL and its potential impact across various 

industries. As FL continues to develop, it is poised to play 

a pivotal role in shaping the future of ML, particularly in 

sectors where privacy and data security are critical (Zhu et 

al., 2021). This paper serves not only as a starting point for 

future research but also as a valuable reference for 

identifying key trends, challenges, and opportunities within 

the field of FL. 

In short, Federated Learning represents a significant leap 

forward in the development of secure, privacy-preserving 

machine learning models. By enabling collaborative 

learning across decentralized data sources, FL has the 

potential to transform industries ranging from healthcare to 

IoT, all while addressing some of the most pressing privacy 

concerns of our time. However, to fully realize this 

potential, ongoing research and innovation are necessary to 

overcome the challenges that currently limit the 

widespread adoption of FL. This paper contributes to the 

growing body of knowledge on FL, offering valuable 

insights into its past achievements, current capabilities, and 

future possibilities, ensuring that FL continues to evolve as 

a critical technology in the ML landscape. 

2. MILESTONES IN THE EVOLUTION OF 

FEDERATED LEARNING 

Centralized learning, a method of training machine 

learning (ML) models, has been the go-to approach for 

decades (Singh et al., 2022). This traditional method 

involves gathering data from various sources and sending 

it to a central server where the real magic happens analysis 

and model training. Imagine a huge library where all the 

books (data) are collected in one place so that researchers 

can dive in and uncover patterns and insights. This 

centralized approach has been a key driver of progress in 

ML, powering everything from basic image recognition to 

sophisticated natural language processing systems. 
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The origins of centralized learning date back to the 1950s, 

when it was first used for relatively simple tasks like 

character recognition. Back then, computers were much 

less powerful, so the models were simple too. But as 

technology advanced, especially with the rise of more 

powerful processors and GPUs, centralized learning 

evolved rapidly. By the 1980s and 1990s, it was being 

applied to more complex problems, such as speech 

recognition and even early forms of autonomous vehicle 

navigation. The ability to bring all data together in one 

place allowed researchers to build increasingly accurate 

and sophisticated models, driving incredible advancements 

in the field. 

However, centralized learning isn't without its challenges. 

One of the biggest issues is the need to centralize all the 

data, which can lead to several problems. First, there's the 

matter of privacy. When sensitive data like personal 

information or proprietary business data is moved to a 

central server, it raises legitimate concerns about who 

controls that data and how it is protected. There’s also the 

issue of data ownership; who really owns the data once it's 

in that central repository? On top of these concerns, 

transferring large amounts of data to a central location can 

be both time-consuming and expensive. It is like trying to 

move an entire library across town; it takes time, resources, 

and there is always a risk that something might get lost or 

damaged along the way (Goetz et al., 2019). 

Additionally, centralized learning can run into performance 

issues, particularly when the network is overloaded with 

too much traffic. This can lead to delays (latency) that slow 

down the entire process, affecting both the speed and 

accuracy of the models being trained. It is like trying to 

stream a high-definition movie over a slow internet 

connection it is frustrating and does not deliver the best 

experience. 

Because of these challenges, researchers have been looking 

into alternative approaches to ML, like on-site machine 

learning and federated learning. These new methods aim to 

address the limitations of centralized learning by keeping 

the data closer to where it’s generated, reducing the risks 

and inefficiencies associated with centralizing everything. 

As the field of ML continues to grow, these innovations 

will play a crucial role in shaping the future of how we 

develop and deploy intelligent systems. 

Distributed on-site learning is becoming increasingly 

popular, especially as people grow more concerned about 

the risks of sending private data to centralized servers. 

Imagine you have a personal trainer who comes to your 

house instead of you going to the gym. The trainer can 

tailor workouts to your specific needs without you having 

to share your health data with anyone else. That’s 

essentially what distributed on-site learning does with 

machine learning models. 

In this approach, instead of gathering all the data in one 

place and processing it centrally, a pre-trained or generic 

machine learning (ML) model is sent directly to each 

device whether it is your smartphone, a medical device, or 

even a smart appliance. These devices then take the model 

and personalize it by training on their own data. For 

instance, your smartphone might learn more about your 

voice patterns to improve speech recognition, or a 

wearable health device might better understand your 

unique heart rate trends. This way, the device can make 

predictions or run computations that are highly relevant to 

you, all without ever needing to send your data to a central 

server. 

The beauty of distributed on-site learning lies in its ability 

to protect privacy. Because the data stays on your device, 

you don’t have to worry about it being intercepted or 

misused during transmission to a central location. This is 

especially valuable in sensitive areas like healthcare. For 

example, in applications like skin cancer detection, your 

medical data can remain on your personal device, ensuring 

that your privacy is preserved while still benefiting from 

advanced AI diagnostics. In smart classrooms, teachers can 

use on-site learning to tailor educational content to each 

student without compromising their personal information. 

However, this approach does have some trade-offs (Abdul 

Rahman et al., 2020). One of the main challenges is that 

each device is working in isolation. Imagine if your 

personal trainer only knew about your fitness goals and 

routines but had no insight into what has worked for other 

people. The trainer could still give you a good workout, 

but it might not be as effective as it could be with broader 

knowledge. Similarly, in distributed on-site learning, each 

device generates a model based solely on its own data. 

While this can be very personalized, it also means the 

device isn’t benefiting from the experiences or data of 

others. 

This is where FL comes in, offering a smart solution to the 

isolation problem. Federated learning allows devices to 

work together in a way that still respects privacy. Instead 

of sharing raw data, each device shares what it has learned 

the updates to the model without revealing the underlying 

data. These updates are then combined to create a more 

robust model that benefits from the collective knowledge 

of all devices involved. It’s like your personal trainer 

learning from other trainers’ successes without needing to 

see their clients’ personal details. 

https://doi.org/10.48001/JoITC.2024.1229-38


32 

DOI: https://doi.org/10.48001/JoITC.2024.1229-38                Copyright (c) 2024 QTanalytics India (Publications)  

In summary, distributed on-site learning offers a powerful 

way to harness the benefits of machine learning while 

keeping data private and secure. And with the added 

capability of federated learning, we can enjoy the best of 

both worlds privacy and collaboration pushing the 

boundaries of what AI can do in a decentralized manner 

(Zhao et al., 2023). 

FL is an exciting concept that took shape in 2016, thanks to 

a team of researchers at Google. They were looking for a 

way to train machine learning (ML) models without having 

to centralize vast amounts of personal data. Instead of 

sending all this sensitive information to a central server, 

which can be risky, they came up with a brilliant idea: why 

not let the devices themselves do the heavy lifting? 

(Pfitzner et al., 2021). 

With FL, each device whether it is your smartphone, tablet, 

or even a wearable trains its own version of an ML model 

using the data it already has. So, your phone might learn to 

better understand your voice or typing patterns without 

ever needing to send that data off to a remote server. But 

the magic of FL doesn’t stop there. Once these devices 

have done their local training, they share their learnings in 

the form of model updates, not raw data. These updates are 

then combined to create a global model that benefits from 

the collective knowledge of all participating devices. 

This approach is a game-changer for privacy. Since the raw 

data stays on your device, there’s much less risk of it being 

intercepted, stolen, or misused. You get the best of both 

worlds: personalized learning on your device and the 

collective intelligence of a broader network all without 

compromising your privacy (Nguyen et al., 2021). 

Since its introduction, FL has quickly gained momentum, 

attracting attention from both academic researchers and 

industry leaders. It offers a smart, privacy-preserving way 

to harness the power of ML without the usual risks 

associated with data centralization. As we move forward in 

the world of AI, FL is poised to play a significant role in 

how we develop and deploy intelligent systems, making 

our devices smarter and safer (Yang et al., 2019). 

FL is a fascinating approach to training machine learning 

models that emphasizes collaboration while respecting 

privacy. Here's a detailed yet approachable breakdown of 

how FL works and why it's so innovative: 

• Initialization: Think of this as setting up a blueprint 

for our model. At the start, we need to create a global 

model, which serves as our baseline. This model can 

be initialized with pre-trained weights if we have an 

existing model to build on, or it might start from 

scratch with random parameters. This step is crucial 

because it provides the starting point for all 

subsequent learning 

• Client Selection: Not every device will be involved in 

every training cycle. Instead, we select a subset of 

devices or clients to participate. This choice can be 

influenced by various factors, such as how many 

devices are available at the time, their network 

conditions, or the quality and relevance of the data 

they hold. By carefully selecting which devices will 

participate, we ensure that the training process is both 

effective and efficient, leveraging the best data 

available while keeping the system manageable. 

• Model Distribution: Once we have picked our 

devices, we send them the global model. Each device 

gets a copy and starts training it using its own local 

data. Imagine this as sending out individual training 

programs to different gyms, where each gym (device) 

uses its own set of clients (data) to fine-tune the 

program (model). This way, the model benefits from 

diverse data sources without needing to centralize all 

that data (Li et al., 2020). 

• Local Training: On their end, each device works on 

improving its copy of the model. This involves 

running multiple training iterations, where the model 

learns from the data it has. For example, your 

smartphone might be refining a speech recognition 

model based on your unique voice patterns, while 

another device works on a similar model using 

different data. This local training allows the model to 

adapt to specific nuances in the data of each device. 

• Model Aggregation: After each device completes its 

training, it sends updates like the changes in the 

model’s parameters back to a central server. Think of 

this as collecting feedback from each gym and then 

synthesizing all that feedback to improve the overall 

training program. Importantly, only the updates are 

shared, not the raw data, which helps maintain privacy 

(Chen et al., 2021). 

• Global Model Update: The central server takes all 

these updates and combines them, usually by 

averaging or using a weighted approach. This process 

creates an updated global model that incorporates the 

learnings from all participating devices. It is like 

taking the best parts of each individual training 

program and integrating them into one improved 

program. 

• Iteration: This cycle of selecting clients, distributing 

the model, training locally, aggregating updates, and 
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updating the global model happens multiple times. 

Each round helps the model become more accurate 

and effective. It is akin to repeatedly refining a recipe 

by tasting and adjusting based on feedback until it 

reaches the perfect flavor. 

• Model Deployment: Finally, once the global model 

has been thoroughly refined and achieves the desired 

level of accuracy, it is ready for real-world use. This 

means it can now be deployed to make predictions or 

perform tasks based on new data, benefiting from the 

collective knowledge gained through federated 

learning. 

By following these steps, federated learning strikes a 

balance between harnessing the power of collaborative 

learning and safeguarding the privacy of individual data. It 

is a clever way to build smarter models while respecting 

the confidentiality of the information they use, paving the 

way for more secure and effective machine learning 

applications (Mammen, 2021). 

3. APPLICATIONS AND BENEFITS OF 

FEDERATED LEARNING 

Federated Learning (FL) is an innovative approach to 

machine learning that addresses many of the challenges 

associated with traditional centralized models, particularly 

when dealing with privacy-sensitive data. By allowing 

multiple data sources to collaborate on training a model 

without sharing the raw data, FL offers a more privacy-

conscious and efficient alternative. Although it's a 

relatively new field, FL is already making waves in several 

key areas. Here’s a closer look at eight exciting 

applications where Federated Learning is proving to be a 

game-changer: 

3.1. Smartphones 

Smartphones have become an integral part of our lives, 

generating vast amounts of personal data through various 

apps and features. Federated Learning enhances these 

features by enabling on-device learning without 

compromising privacy. For instance, next-word prediction, 

which helps users type faster and more accurately, can be 

personalized by learning from each user’s typing habits 

directly on their device. Similarly, facial recognition and 

voice recognition systems benefit from FL by improving 

their accuracy based on individual user data without ever 

sending sensitive information to a central server. This not 

only enhances user experience but also reduces the impact 

on device bandwidth and battery life, making smartphone 

apps more efficient and user-friendly. 

 

3.2. Organizations 

In many organizations, especially those handling sensitive 

information like hospitals, Federated Learning offers a 

valuable solution for collaborative data analysis while 

respecting privacy constraints. Hospitals, for example, 

manage vast amounts of patient data that can be crucial for 

developing predictive models in healthcare. Instead of 

aggregating this data in a central location, which could 

raise privacy and compliance issues, Federated Learning 

allows hospitals to train models locally on their own data 

and only share the aggregated updates. This method 

facilitates the creation of robust predictive models for 

patient outcomes and treatment plans while adhering to 

strict privacy regulations, making it easier for healthcare 

institutions to collaborate and improve patient care without 

compromising data security. 

3.3. Internet of Things (IoT) 

The Internet of Things (IoT) connects a myriad of devices, 

from wearables to smart home systems and autonomous 

vehicles, all of which generate real-time data. Federated 

Learning plays a crucial role in this ecosystem by enabling 

these devices to learn from their own data while keeping it 

local. For example, autonomous vehicles can use FL to 

continuously improve their navigation and collision 

avoidance systems based on data collected from other 

vehicles in the fleet, all while maintaining privacy. 

Similarly, smart home devices can adapt to user 

preferences and environmental changes without sending 

sensitive information to a central server. This decentralized 

approach not only enhances the functionality and safety of 

IoT systems but also respects user privacy. 

3.4. Healthcare 

In the healthcare sector, privacy regulations like HIPAA 

make it challenging to share patient data across different 

organizations. Federated Learning offers a way to leverage 

data from various sources without breaching privacy laws. 

By allowing healthcare providers to train models locally on 

their own data, FL enables the development of AI solutions 

for disease prediction, treatment planning, and patient 

monitoring while ensuring compliance with privacy 

regulations. This collaborative approach enhances the 

accuracy of healthcare models and supports more 

personalized patient care, ultimately leading to better 

health outcomes without compromising patient 

confidentiality. 

3.5. Advertising 

Personalization is key to effective advertising, but growing 

concerns about data privacy have made it challenging for 
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advertisers to gather and use personal information. 

Federated Learning addresses this issue by allowing 

advertisers to train models on user data stored locally on 

devices. For example, personalized recommendations and 

targeted ads can be generated based on a user’s interactions 

with their device without needing to aggregate personal 

data in a central database. This method respects user 

privacy and addresses concerns about data security while 

still enabling advertisers to deliver relevant and engaging 

content. 

3.6. Autonomous Vehicles 

Autonomous vehicles rely on complex models for 

perception, decision-making, and control, and Federated 

Learning is helping to make these models more accurate 

and reliable. By using FL, data from various vehicles can 

be used to train models collaboratively without centralizing 

the data. This approach allows autonomous vehicles to 

learn from diverse driving scenarios and conditions, 

improving their ability to navigate complex environments 

safely. Real-time updates on road conditions, traffic 

patterns, and pedestrian behaviors are integrated into the 

models, enhancing the overall driving experience and 

safety of self-driving cars (Lyu et al., 2020). 

3.7. Financial Fraud Detection 

The rise of digital transactions has increased the risk of 

financial crimes, including fraud and money laundering. 

Federated Learning offers a way to detect and prevent 

these crimes more effectively while protecting sensitive 

financial data. By training fraud detection models on 

decentralized data from various sources, such as 

transaction records and user behaviors, FL helps identify 

suspicious activities and patterns without centralizing 

sensitive information. This approach improves the 

accuracy of fraud detection systems, reducing the risk of 

financial losses for both institutions and their customers. 

3.8. Insurance 

In the insurance industry, Federated Learning can enhance 

risk management and business growth by integrating data 

from multiple sources while maintaining privacy. 

Insurance companies need to analyze data from various 

parties, including policyholders and third-party providers. 

Federated Learning allows insurers to build models that 

leverage this multi-party data without compromising 

privacy. For example, risk assessment models can be 

trained on decentralized data to provide more accurate 

pricing and personalized services. This approach enables 

insurers to better understand and manage risks while 

addressing concerns about data privacy and security. 

In summary, Federated Learning is transforming a variety 

of fields by enabling collaborative model training while 

preserving data privacy. Whether improving smartphone 

features, enhancing healthcare outcomes, or advancing 

autonomous vehicles, FL offers a powerful and privacy-

conscious approach to machine learning. As this 

technology continues to evolve, its potential applications 

will likely expand, driving innovation and efficiency across 

diverse industries while respecting the privacy of 

individuals (Rieke et al., 2020). 

4. CHALLENGES OF FEDERATED LEARNING 

Federated Learning (FL) is a groundbreaking approach that 

allows machine learning models to be trained across 

decentralized data sources, enhancing privacy and security. 

However, it comes with its own set of challenges, 

especially when it comes to dealing with non-IID (non-

identically distributed) data. Here’s a closer look at these 

challenges: 

4.1. Feature Distribution Skew 

Feature distribution skew, also known as covariate shift, 

occurs when different clients have varied distributions of 

input features. Imagine a healthcare scenario where one 

hospital’s data focuses on paediatric patients while 

another’s data is predominantly adult-focused. This 

discrepancy makes it hard for a model to learn effectively 

because it has to deal with different feature distributions 

from each client. As a result, the model might perform well 

on some datasets but poorly on others, reducing its overall 

effectiveness. 

4.2. Label Distribution Skew 

Label distribution skew arises when the distribution of 

target labels varies across clients. For instance, in a fraud 

detection system, one client might have data from 

numerous fraudulent transactions, while another has data 

from mostly legitimate transactions. This imbalance can 

lead to biased models that are more attuned to the 

overrepresented labels, potentially missing out on detecting 

less common but critical cases (Blanco-Justicia et al., 

2021). 

4.3. Same Label, Different Features 

Sometimes, different clients use various methods to 

capture the same label, resulting in different feature 

representations. For example, in image classification, one 

client might use high-resolution images while another uses 

lower resolution. This variation makes it challenging for 

the model to learn a consistent representation of the label, 

as the features associated with the same label might differ 

significantly across clients. 
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4.4. Same Features, Different Labels 

On the flip side, clients might use the same features but 

assign different labels due to varying labeling criteria. 

Consider sentiment analysis where one client might label 

customer reviews as positive or negative based on one set 

of criteria, while another uses a different approach. This 

inconsistency can lead to a model that struggles to make 

accurate predictions because it encounters conflicting 

information from different clients. 

4.5. Quantity Skew 

Quantity skew occurs when there is a significant imbalance 

in the amount of data each client has. Some clients may 

have vast amounts of data, while others have very little. 

This imbalance can cause issues in ensuring that model 

updates are fair and representative. Clients with more data 

might overly influence the training process, making it 

harder to build a model that works well across all clients 

(Yang et al., 2022). 

To tackle these challenges, researchers are exploring 

various strategies like data sharing and augmentation to 

balance datasets, and algorithm-based approaches like 

Federated Averaging to address discrepancies in data 

distribution. Despite these efforts, fully overcoming the 

hurdles of non-IID data remains an ongoing challenge in 

the field of Federated Learning. 

5. SYSTEMS HETEROGENEITY IN FEDERATED 

LEARNING 

In the world of Federated Learning (FL), systems 

heterogeneity presents a complex set of challenges. This 

term refers to the differences in hardware, network 

connectivity, and power availability among the various 

devices participating in the learning process (Ma et al., 

2022). Each of these factors can significantly influence 

how effectively a federated model performs and how 

efficiently it can be trained. 

5.1.  Diverse Hardware Capabilities 

One of the key aspects of systems heterogeneity is the 

diversity in hardware across devices. Imagine a federated 

learning system that includes everything from high-end 

smartphones with powerful processors to older models 

with limited capabilities. This variation means that some 

devices can handle complex computations and larger 

model updates with ease, while others may struggle or take 

much longer. For example, a cutting-edge smartphone may 

quickly process and send model updates, whereas a less 

advanced device might lag behind due to slower 

processing speeds or limited memory. This inconsistency 

can lead to uneven contributions to the global model, 

affecting its overall performance and accuracy (Kasturi et 

al., 2020). 

5.2.  Varied Network Connectivity 

Network connectivity is another major factor. Devices in a 

federated learning network might connect through various 

technologies, such as 3G, 4G, 5G, or Wi-Fi. These 

differences in connectivity can result in varying speeds and 

reliability. Devices on slower or less stable connections 

might experience delays when sending updates, or they 

might struggle to maintain a constant connection, leading 

to disruptions in the training process. For instance, a device 

using a 3G network might take significantly longer to 

upload model updates compared to one on a 5G network. 

These connectivity issues can impact how quickly the 

global model can be updated and synchronized, potentially 

leading to inefficiencies and delays. 

5.3.  Power Availability Challenges 

Power availability adds another layer of complexity. Many 

devices involved in federated learning are battery-powered, 

such as smartphones and IoT sensors. These devices may 

face constraints based on their battery levels. When a 

device’s battery is running low, it might reduce its 

computational load or even shut down temporarily. This 

can lead to incomplete data or missed updates. For 

example, if a device participating in federated learning 

runs out of battery, it won’t be able to contribute to model 

training until it’s recharged. This variability in power can 

lead to inconsistent participation, affecting the reliability of 

the model training process (Yang et al., 2022). 

5.4.  Addressing the Challenges 

To tackle these challenges, several strategies are employed. 

Asynchronous communication is one approach that allows 

devices to update the model independently, 

accommodating different connectivity and power 

constraints. This means that devices don’t need to be 

constantly online or active to contribute, which helps 

manage the variability in participation. 

Active device sampling is another useful technique. This 

involves selecting a subset of responsive devices for model 

updates, which helps balance the contributions and ensures 

that the model updates are more consistent. Additionally, 

fault tolerance mechanisms are put in place to handle 

device failures or dropouts, ensuring that the learning 

process remains robust even when some devices are 

unreliable. 

By implementing these strategies, federated learning 

systems can better manage the effects of systems 

heterogeneity. This helps in creating a more effective and 
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resilient model that can handle the diverse nature of the 

devices involved, ultimately leading to improved 

performance and accuracy in the learning process. 

6. PRIVACY CONCERNS IN FEDERATED 

LEARNING 

Federated Learning (FL) is a powerful approach that aims 

to keep data decentralized, enhancing privacy by not 

requiring raw data to be shared. Instead, it focuses on 

aggregating model updates from various devices. However, 

despite these privacy-focused intentions, there are still 

significant concerns. Even though the raw data stays on 

individual devices, the process of sending model updates to 

a central server can inadvertently expose sensitive 

information. 

6.1.  How Privacy Risks Arise 

The primary privacy risk in FL comes from the model 

updates themselves. These updates represent the 

incremental changes made to a global model based on local 

data. While these updates are meant to be aggregated in a 

way that maintains overall privacy, they can still leak 

implicit details about the data. For example, an adversary 

who gains access to these updates might analyze them over 

time and deduce specific information about the data or the 

users. This could include sensitive information about user 

preferences, behaviors, or even personal identifiers (Mu et 

al., 2023). 

Another serious risk involves the central server that 

aggregates these updates. If this server is compromised, it 

might be possible for attackers to glean insights about the 

private data from the aggregated updates. Essentially, 

while the server does not see the raw data, the aggregated 

information might still be analyzed to infer details about 

the individual datasets. 

6.2.  Strategies for Mitigating Privacy Risks 

To combat these privacy concerns, several techniques are 

employed: 

• Secure Computations: Techniques such as 

homomorphic encryption and secure multi-party 

computation (MPC) are at the forefront. Homomorphic 

encryption allows computations to be performed on 

encrypted data, so the actual data remains hidden even 

while being processed. Similarly, MPC involves multiple 

parties working together to compute results without 

disclosing their individual inputs. Both methods aim to 

keep the data safe throughout the training process. 

• Privacy-Preserving Aggregation: Federated learning 

frameworks often include mechanisms to minimize the 

exposure of sensitive information. One approach is 

differential privacy, which adds random noise to the model 

updates before they are sent for aggregation. This noise 

makes it harder for adversaries to extract meaningful 

information from the updates. 

• Model Update Sanitization: Another strategy 

involves sanitizing the model updates before they are 

aggregated. This process ensures that any potentially 

sensitive information is removed or obscured, further 

protecting user privacy. 

While these techniques are effective, they are not perfect. 

Research is ongoing to find better ways to secure federated 

learning processes and to strike a balance between privacy 

and model performance. The goal is to continue improving 

the privacy measures while maintaining the practical 

benefits of federated learning, ensuring that users can 

benefit from advanced machine learning technologies 

without compromising their personal data (Ziller et al., 

2021).f 

7. CONCLUSION 

This paper has provided a comprehensive look at federated 

learning (FL), examining its development, practical uses, 

and the challenges it faces. Federated learning offers a 

robust solution for collaborative model training while 

keeping data private. It allows multiple parties to work 

together on model development without sharing their raw 

data, which is increasingly important in a privacy-

conscious world. We've seen how FL can enhance features 

in smartphones, improve healthcare analytics, and boost 

safety in automated vehicles. The potential applications are 

vast and exciting. Looking ahead, research can focus on 

making communication more efficient, scaling up the 

technology, and strengthening privacy protections. There’s 

also room to explore FL's use in finance, energy, and social 

media, and how it can work with cutting-edge technologies 

like blockchain and edge computing. Federated learning is 

set to revolutionize collaborative machine learning, and 

ongoing research will help unlock its full potential for 

secure and efficient data processing. 

REFERENCES 

Abdul Rahman, S., Tout, H., Ould-Slimane, H., Mourad, 

A., Talhi, C., & Guizani, M. (2020). A survey on 

federated learning: The journey from centralized to 

distributed on-site learning and beyond. IEEE 

Internet of Things Journal, 8(7), 5476-5497. 

https://doi.org/10.1109/JIOT.2020.3030072.  

Blanco-Justicia, A., Domingo-Ferrer, J., Martínez, S., 

Sánchez, D., Flanagan, A., & Tan, K. E. (2021). 

https://doi.org/10.48001/JoITC.2024.1229-38
https://doi.org/10.1109/JIOT.2020.3030072


37 

DOI: https://doi.org/10.48001/JoITC.2024.1229-38                Copyright (c) 2024 QTanalytics India (Publications)  

Achieving security and privacy in federated learning 

systems: Survey, research challenges and future 

directions. Engineering Applications of Artificial 

Intelligence, 106, 104468. https://doi.org/ 

10.1016/j.engappai.2021.104468.  

Chen, M., Shlezinger, N., Poor, H. V., Eldar, Y. C., & Cui, 

S. (2021). Communication-efficient federated 

learning. Proceedings of the National Academy of 

Sciences, 118(17), e2024789118. https://doi.org/10. 

1073/pnas.2024789118.  

Goetz, J., Malik, K., Bui, D., Moon, S., Liu, H., & Kumar, 

A. (2019). Active federated learning. arXiv preprint 

arXiv:1909.12641. 

https://doi.org/10.48550/arXiv.1909.12641.  

Kasturi, A., Ellore, A. R., & Hota, C. (2020). Fusion 

learning: A one shot federated learning. 

In Computational Science–ICCS 2020: 20th 

International Conference, Amsterdam, The 

Netherlands, June 3–5, 2020, Proceedings, Part III 

20 (pp. 424-436). Springer International Publishing. 

https://doi.org/10.1007/978-3-030-50420-5_31.  

Li, L., Fan, Y., Tse, M., & Lin, K. Y. (2020). A review of 

applications in federated learning. Computers & 

Industrial Engineering, 149, 106854. 

https://doi.org/10.1016/j.cie.2020.106854.  

Lyu, L., Yu, H., Zhao, J., & Yang, Q. (2020). Threats to 

federated learning. Federated Learning: Privacy and 

Incentive, 3-16. https://doi.org/10.1007/978-3-030-

63076-8_1.  

Ma, X., Zhu, J., Lin, Z., Chen, S., & Qin, Y. (2022). A 

state-of-the-art survey on solving non-iid data in 

federated learning. Future Generation Computer 

Systems, 135, 244-258. https://doi.org/10.1016/ 

j.future.2022.05.003.  

Mammen, P. M. (2021). Federated learning: Opportunities 

and challenges. arXiv Preprint arXiv:2101.05428. 

https://doi.org/10.48550/arXiv.2101.05428.  

Mu, X., Shen, Y., Cheng, K., Geng, X., Fu, J., Zhang, T., & 

Zhang, Z. (2023). Fedproc: Prototypical contrastive 

federated learning on non-iid data. Future Generation 

Computer Systems, 143, 93-104. 

https://doi.org/10.1016/j.future.2023.01.019.  

Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A., 

Li, J., & Poor, H. V. (2021). Federated learning for 

internet of things: A comprehensive survey. IEEE 

Communications Surveys & Tutorials, 23(3), 1622-

1658. https://doi.org/10.1109/COMST.2021.3075439.  

Nilsson, A., Smith, S., Ulm, G., Gustavsson, E., & 

Jirstrand, M. (2018, December). A performance 

evaluation of federated learning algorithms. 

In Proceedings of the Second Workshop on 

Distributed Infrastructures for Deep Learning (pp. 1-

8). https://doi.org/10.1145/3286490.3286559.  

Pfitzner, B., Steckhan, N., & Arnrich, B. (2021). Federated 

learning in a medical context: A systematic literature 

review. ACM Transactions on Internet Technology 

(TOIT), 21(2), 1-31. https://doi.org/10.1145/3412357.  

Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R., 

Albarqouni, S., ... & Cardoso, M. J. (2020). The 

future of digital health with federated learning. NPJ 

Digital Medicine, 3(1), 1-7. https://doi.org/10. 

1038/s41746-020-00323-1.  

Singh, J., Patel, C., & Chaudhary, N. K. (2022, December). 

Resilient Risk-Based Adaptive Authentication and 

Authorization (RAD-AA) Framework. 

In International Conference on Information Security, 

Privacy and Digital Forensics (pp. 371-385). 

Singapore: Springer Nature Singapore. 

https://doi.org/10.1007/978-981-99-5091-1_27. 

Singh, P., Singh, M. K., Singh, R., & Singh, N. (2022). 

Federated learning: Challenges, methods, and future 

directions. In Federated Learning for IoT 

Applications (pp. 199-214). Cham: Springer 

International Publishing. https://doi.org/10.1007/978-

3-030-85559-8_13.  

Tong, X., Yuan, H., Hao, Y., Fang, J., Liu, G., & Zhao, P. 

(2024, August). Logic Preference Fusion Reasoning 

on Recommendation. In Asia-Pacific Web (APWeb) 

and Web-Age Information Management (WAIM) 

Joint International Conference on Web and Big 

Data (pp. 99-114). Singapore: Springer Nature 

Singapore. https://doi.org/10.1007/978-981-97-7235-

3_7..  

Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated 

machine learning: Concept and applications. ACM 

Transactions on Intelligent Systems and Technology 

(TIST), 10(2), 1-19. https://doi.org/10.1145/3298981.  

Yang, S., Park, H., Byun, J., & Kim, C. (2022). Robust 

federated learning with noisy labels. IEEE Intelligent 

Systems, 37(2), 35-43. 

https://doi.org/10.1109/MIS.2022.3151466.  

Yang, Z., Chen, M., Wong, K. K., Poor, H. V., & Cui, S. 

(2022). Federated learning for 6G: Applications, 

challenges, and opportunities. Engineering, 8, 33-41. 

https://doi.org/10.1016/j.eng.2021.12.002.  

https://doi.org/10.48001/JoITC.2024.1229-38
https://doi.org/%2010.1016/j.engappai.2021.104468
https://doi.org/%2010.1016/j.engappai.2021.104468
https://doi.org/10.1073/pnas.2024789118
https://doi.org/10.1073/pnas.2024789118
https://doi.org/10.48550/arXiv.1909.12641
https://doi.org/10.1007/978-3-030-50420-5_31
https://doi.org/10.1016/j.cie.2020.106854
https://doi.org/10.1007/978-3-030-63076-8_1
https://doi.org/10.1007/978-3-030-63076-8_1
https://doi.org/10.1016/j.future.2022.05.003
https://doi.org/10.1016/j.future.2022.05.003
https://doi.org/10.48550/arXiv.2101.05428
https://doi.org/10.1016/j.future.2023.01.019
https://doi.org/10.1109/COMST.2021.3075439
https://doi.org/10.1145/3286490.3286559
https://doi.org/10.1145/3412357
https://doi.org/10.1038/s41746-020-00323-1
https://doi.org/10.1038/s41746-020-00323-1
https://doi.org/10.1007/978-981-99-5091-1_27
https://doi.org/10.1007/978-3-030-85559-8_13
https://doi.org/10.1007/978-3-030-85559-8_13
https://doi.org/10.1007/978-981-97-7235-3_7
https://doi.org/10.1007/978-981-97-7235-3_7
https://doi.org/10.1145/3298981
https://doi.org/10.1109/MIS.2022.3151466
https://doi.org/10.1016/j.eng.2021.12.002


38 

DOI: https://doi.org/10.48001/JoITC.2024.1229-38                Copyright (c) 2024 QTanalytics India (Publications)  

Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., & Gao, Y. 

(2021). A survey on federated learning. Knowledge-

Based Systems, 216, 106775. 

https://doi.org/10.1016/j.knosys.2021.106775.  

Zhao, Z., Mao, Y., Liu, Y., Song, L., Ouyang, Y., Chen, X., 

& Ding, W. (2023). Towards efficient 

communications in federated learning: A 

contemporary survey. Journal of the Franklin 

Institute, 360(12), 8669-8703. 

https://doi.org/10.1016/j.jfranklin.2022.12.053.  

Zheng, Z., Zhou, Y., Sun, Y., Wang, Z., Liu, B., & Li, K. 

(2022). Applications of federated learning in smart 

cities: Recent advances, taxonomy, and open 

challenges. Connection Science, 34(1), 1-28. 

https://doi.org/10.1080/09540091.2021.1936455.  

Zhu, H., Xu, J., Liu, S., & Jin, Y. (2021). Federated 

learning on non-IID data: A 

survey. Neurocomputing, 465, 371-390. 

https://doi.org/10.1016/j.neucom.2021.07.098.  

Ziller, A., Trask, A., Lopardo, A., Szymkow, B., Wagner, 

B., Bluemke, E., ... & Kaissis, G. (2021). Pysyft: A 

library for easy federated learning. Federated 

Learning Systems: Towards Next-Generation AI, 111-

139. https://doi.org/10.1007/978-3-030-70604-3_5.  

  

 

 

 

  

  

 

   

 

 

 

https://doi.org/10.48001/JoITC.2024.1229-38
https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/10.1016/j.jfranklin.2022.12.053
https://doi.org/10.1080/09540091.2021.1936455
https://doi.org/10.1016/j.neucom.2021.07.098
https://doi.org/10.1007/978-3-030-70604-3_5

