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ABSTRACT: To partition transaction data values, clustering algorithms are used. To 

analyse the relationships between transactions, similarity measures are utilized. Similarity 

models based on vectors perform well with low-dimensional data. High-dimensional data 

values are clustered using subspace clustering techniques. Clustering high-dimensional 

data is difficult due to the curse of dimensionality. Projective clustering seeks out 

projected clusters in subsets of a data space's dimensions. In high-dimensional data space, 

a probability model represents predicted clusters. A model-based fuzzy projection 

clustering method to find clusters with overlapping boundaries in different projection 

subspaces. The system employs the Model Based Projective Clustering (MPC) method. 

To cluster high-dimensional data, projective clustering algorithms are used. A subspace 

clustering technique is the model-based projective clustering algorithm. Similarity 

analysis use non-axis-subspaces. Anomaly transactions are segmented using projected 

clusters. The suggested system is intended to cluster objects in high-dimensional spaces. 

The similarity analysis includes non-access subspaces. The clustering procedure validates 

anomaly data values with similarity. The subspace selection procedure has been 

optimized. A subspace clustering approach is the model-based projective clustering 

algorithm. Similarity analysis use non-axis-subspaces. Anomaly transactions are 

segmented using projected clusters. The suggested system is intended to cluster objects in 

high-dimensional spaces. The similarity analysis includes non-access subspaces. The 

clustering procedure validates anomaly data values with similarity. The subspace 

selection procedure has been improved. 
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1. INTRODUCTION 

Information clustering encompasses a wide range of 

processes and has received extensive attention from the 

statistics, information mining, and database fields. Within 

the clustering domain, multitudinous computations have 

been proposed. One recent collection of similar 

computations, model-based techniques, has sparked 

widespread interest because of their redundant focal points, 

which enable them to display the introduction structures of 

millions within the information.   

In model-based techniques, information can be derived 

from a variety of colorful conceivable sources, which are 

naturally modelled by a Gaussian mix (Jing et al., 2007). 

The objective is to comprehend Gaussian generating 

mixes. Each Gaussian source's harshness and covariance 

properties. Cases include classic K-means and its variants. 

In any event, analogous solutions for altitudinous 

dimensional information.   

In high-dimensional spaces, information is naturally 

scarce, rendering Gaussian work indecorous. According to 

Verleysen, with the dimension supplements, the rate of 
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tests of a regularized multivariate Gaussian distribution 

collapsing around its centre quickly dwindles to 0. To put 

it differently, the phenomenon of the "empty space 

miracle" takes place when the majority of the Gaussian 

distribution's volume is situated in the tails rather than the 

center within high-dimensional space. Additionally, 

clusters within such high-dimensional spaces may exist in 

entirely distinct subspaces characterized by diverse 

combinations of features. In a variety of real-world 

operations, several focuses are associated with a specific 

set of measures, while others are associated with distinct 

metrics. In document clustering, for example, groups of 

libraries on distinct themes are distinguished by different 

subsets of catchphrases.  

Keywords belonging to a particular cluster may not be 

present in the libraries of other clusters. To tackle this 

challenge, projective clustering is defined as the process of 

identifying clusters. A projection cluster comprises 

centroids, each associated with a distinct subset of features. 

For a set of information points in three dimensions, two 

unique expected clusters are defined (Moise et al., 2008).  

In the domain, numerous computational approaches have 

been introduced to identify potential similar clusters. These 

approaches can be categorized into two orders. The first 

order, which includes algorithms like PROCLUS, 

ORCLUS, and FINDIT, is centered on determining 

specific subspaces for various clusters. On the other hand, 

computations in the second order address the entire 

information space, incorporating diverse weighting values 

for various cluster measures. Examples of such algorithms 

include EWKM, FWKM, and LAC. The majority of 

computations in the second order follow a k-means-like 

structure, which shares a similar iterative framework with 

the EM algorithm.  

In any case, there is a shared requirement for initial models 

upon which these techniques might be built (Chen et al., 

2008). Extended Gaussian representations, are meant for 

projective clustering and can help clarify common 

assumptions employed in well-defined projection 

approaches through analysis.  

Currently, we derive the objective work of projective 

clustering based on liability proofs and provide MPC, an 

EM-like parameter-free computation for optimizing the 

objective work. MPC has been tested on both agricultural 

datasets and various real-world astronomical datasets, and 

preliminary results demonstrate its acceptability (Gan et 

al., 2006).  

As the key consistency task for the expected cluster is 

repeated, the expected cluster debt metric has changed. 

This yields another algorithm that is not inferior to Stoner-

defined parameters for obtaining dimension weights.  

2.  RELATED WORK 

2.1  High-Dimensional Clustering Techniques 

In high-dimensional information clustering, dimensionality 

drop procedures have been used. Point selection strategies 

choose the most important parcels for the clustering 

assignment, whereas punctuation change styles, such as 

PCA and SVD, attempt to epitomise the information set in 

a smaller number of modern measures made by straight 

combination of the first traits. Since these traditional 

techniques apply to the entire information space, problems 

can arise when clusters are in multiple subspaces 

(Domeniconi et al., 2007). Near-dimensional relaxation 

studies are conducted to provide different innovative 

measures for each cluster. 

Equivalent technical issues include ensuring the 

dimensionality of each subspace associated with a cluster. 

Furthermore, the computational complexity of LDR is 

always changing. Bi-clustering, also known as co-

clustering, has been proposed for concurrent clustering on 

high-dimensional information focuses and measurements. 

One of its common operations is within the disquisition of 

quality expression information, where the aim is to 

discover groups of rates and groups of conditions that are 

identical enough that the rates reveal profoundly associated 

exercises for each condition.  In any case, many 

perspectives are shown virtually differently within the 

jotting view for circumstance. We accept the scientific 

classification and refine the two terms based on the 

research underlying them.  

The goal of subspace clustering studies is to capture all 

thick sections of all subspaces, whereas projective 

clustering focuses on locating clusters projected into a 

particular space (Hoff, 2006). In the field of subspace 

clustering, crowding was the main strategy, followed by a 

series of calculations such as ENCLUS, MAFIA, and 

SUBCLU. This paper's focus is on projective clustering. 

We are going to concentrate on comparable procedures in 

the next runners. 

 

2.2  Methods of Projective Clustering  

Highlight weighting is the logical foundation of projective 

clustering. Each dimension in each cluster is assigned a 

weight that shows how essential that dimension is to the 

cluster. Obviously, the weight values for a specific 

dimension may differ amongst clusters. Based on how 

weights are determined, projective clustering calculations 

can be classified into two classes. Measurements of first 

order are assigned a weight of one value, resulting in a 

subtle inclusion weighting of the subspace (Lu et al., 

2011). PROCLUS is based on the classic k-Medoids 

https://doi.org/10.48001/JoITC.2023.1114-21


16  

DOI: https://doi.org/10.48001/JoITC.2023.1114-21                Copyright (c) 2024 QTanalytics India (Publications)  

method and can potentially be used for weight calculations 

of conspiracy agents. PROCLUS tests the data, then selects 

a collection of medoids and repeatedly advances the 

clustering, with the goal of minimizing the normal outside 

cluster scattering. A set of measures is picked for each 

medoid whose normal separations from the medoid are 

small in comparison to factual desire.  

Once the subspaces are identified, a conventional 

Manhattan segment spacing is employed to allocate foci to 

medoids. PROCLUS requires users to specify the standard 

number of material measures for each cluster, a task that 

may pose inherent ambiguity to users. FINDIT, which 

employs a distinct degree known as the Dimension- 

acquainted distinct (DOD), is structurally like PROCLUS. 

HARP, a colorful step-by-step clustering process, 

automatically determines the amount of material in each 

cluster without considering parameters defined by Stoner. 

HARP is based on the premise that if two information 

points are very similar in various ways, they are likely to 

belong to the same cluster (Bouguessa et al., 2006).  

Croaker defines a subspace as a subset of features whose 

focal prominence is in a partition within a section. Croaker 

uses random calculations to calculate predictive clusters to 

minimize specific work quality. MINECLUS advances 

DOC by turning the difficulty of reaching expected 

clusters into the challenge of catching booby-trapped 

visitor sets. While PROCLUS and the other calculations 

mentioned above target the axis-aligned subspace of 

clusters, many other algorithms look for the more general 

axis-unaligned subspace. Here, the latest highlight is a 

direct combination of the original majors. ORCLUS may 

be a variant of PROCLUS that can discover clusters in 

subjectively ordered subspaces. ORCLUS chooses the 

eigenvectors of the set of foci by covariance network 

diagonalization by comparing them to the network's lowest 

eigenvalues.  

A K-means sorted projection clustering computation, uses 

an SVD computation to determine subspaces whose axes 

are not aligned. On the other hand, EPCH uses histogram 

expansion to perform axes-unaligned projection clustering. 

Instead of finding a tricky subspace of clusters, the 

computation applies weights to run (0, 1) in immediate 

order. Because the weights may be any actual wide variety 

withinside the variety (0, 1), we are able to time those 

sensitive projective clustering computations. Naturally, the 

load attention for a measurement in a cluster corresponds 

to the scattering of values from the centre in the cluster`s 

measurement. In different words, an altitudinous weight 

famous a few scattering in a cluster measurement (Haralick 

& Harpaz, 2007). To all intents and purposes, all the 

computations on this order are primarily based totally on 

following not unusual place reservations. 1) the statistics 

extends alongside a vital measurement onto a narrower 

variety of values than on the opposite measures; 2) the 

statistics is much more likely to be constantly disseminated 

alongside every minor measurement.  

We will explore the demonstration potential of projective 

clustering with respect to these two typical caveats.  

Several delicate projective clustering computations have 

recently been disclosed. An algorithm based on patch mass 

optimization is shown. Because a heuristic global look 

approach is applied, this computation may obtain near-

optimal highlight weights; in any event, it will perform 

more gradationally than other computations. The k- means 

kind structure has been astronomically entered to produce 

an effective delicate projective clustering computation. 

Based on the traditional K-means clustering method, a 

redundant step of calculating weight values such as 

EWKM, FWKM, LAC, FSC, etc. is added to each cycle of 

these calculations. For these calculations, computation 1 

appears to have a standard structure.   

The absence of such a demonstration raises concerns 

regarding the development of more effective clustering 

algorithms. Consequently, we have embarked on exploring 

projected cluster modeling. We are motivated by the belief 

that this modeling process enables us to harness the full 

potential of cluster analysis. (Chen et al., 2010). 

Point weighting is a common practice in projective 

clustering, where each dimension within a cluster is 

assigned a weighted value representing its relevance to the 

cluster. These weighting values can vary across clusters. 

Projective clustering techniques fall into two categories 

based on how these weights are determined: soft subspace 

clustering and clustering boundaries. In the initial phase, 

weights in the first order are discretized to either 0 or 1, 

establishing a binary representation of the subspace's 

hardpoint weighting. An illustration of this approach can 

be found in PROCLUS, an algorithm grounded in the 

classical k-Medoids technique. In PROCLUS, the 

procedure involves data sampling, medoid selection, and 

successive iterations aimed at enhancing clustering 

accuracy by minimizing the average dissimilarity within 

clusters.  

After the subspaces have been linked, medoids are 

assigned points using an average Manhattan segmental 

distance. PROCLUS needs druggies to provide the average 

number of applicable confines each cluster, which is 

usually unknown to them. FINDIT is structurally 

comparable to PROCLUS since it employs a distance 

metric known as the Dimension-acquainted Distance 

(DOD). HARP is founded on the concept that if two data 

points are comparable across several boundaries, they are 

likely to belong to the same cluster. A subspace, according 

to Croaker, is a set of qualities in which the protuberance 
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of points in a partition is restricted within a member. 

Croaker uses a randomized technique to construct 

projected clusters to minimize a specific quality function.  

MINECLUS surpasses DOC by addressing the challenge 

of determining the projected clusters, resolving the 

analogous problem encountered in frequent item set 

booby-trapping. Unlike PROCLUS and the 

aforementioned methods, alternative approaches seek more 

versatile, non-axis-aligned subspaces. In these methods, 

new features emerge as direct combinations of the original 

constraints. PROCLUS version ORCLUS may search for 

clusters in arbitrarily familiar subspaces. PROCLUS' 

misdeeds were passed on to ORCLUS. KSM, a k-means 

type projective clustering technique, use SVD calculations 

to determine non-axis-aligned subspaces, whereas EPCH 

employs histogram construction to perform non-axis-

aligned projective clustering.  In contrast, the 

methodologies in the opposite sequence utilize weights 

ranging between 0 and 1, forsaking the establishment of 

rigid subspaces for clusters. Referred to as soft projective 

clustering, these approaches allow for weight values to 

take any real number between 0 and 1. In usual practice, 

the weight allotted to a dimension within a cluster 

correlates with the extent of dispersion of values in that 

dimension relative to the cluster center. In simpler terms, a 

dimension with a higher weight within a cluster signifies a 

lower level of dissipation.  

Numerous soft projective clustering methods have recently 

been documented. One algorithm, rooted in flyspeck mass 

optimization, stands out for achieving nearly optimal point 

weights through a heuristic global search approach. 

However, it may operate more slowly compared to other 

algorithms. A prevalent approach to creating robust soft 

projective clustering techniques involves adopting a k-

means-like structure. These algorithms, namely EWKM, 

FWKM, LAC, and FSC(5), extend the conventional k-

means clustering procedure by integrating an extra step for 

computing weighting values. Algorithm 1 delineates the 

framework of these algorithms, illustrating their structure 

and incorporation of the weighting determination process. 

Input: A dataset along with the desired number of clusters 

K;   

Output: The resulting partition C and the corresponding 

weights W assigned to each cluster;   

Find the first cluster V and set W to have equal v values;  

1.  Regroup the dataset into C based on V and W;  

2.  Recompute V based on C;  

3.  Recompute W based on C; Repeat until confluence is 

obtained. 

The prevalent projective clustering algorithm follows an 

Expectation-Maximization (EM)-based procedure which 

serves as the basis for the data in Algorithm 1. However, in 

the approaches mentioned below, the foundational F(C, V, 

W) is often overlooked. The absence of such a model poses 

challenges in developing more efficient clustering 

algorithms.  

This has motivated us to explore projected cluster 

modeling, as we believe this approach enables us to 

capitalize on the diverse opportunities within cluster 

analysis. This encompasses understanding the fundamental 

factors contributing to the cluster formation and tackling 

issues pertaining to cluster validity.  

In a standard model-based clustering assessment, the 

objective is to identify a multivariate dissimilarity 

combination that accurately captures the nuances of the 

data. However, when dealing with high-dimensional data 

and the intricacies of projective clustering as discussed 

earlier, challenges may arise due to the curse of 

dimensionality. Hoff presented an illustration of 

"clustering shifts in cruelty and friction" by employing a 

nonparametric mixture of arrangements of freely chosen 

elements in one of the experiments, showcasing the 

application of model-based clustering in high-dimensional 

information clustering.  

The show is taught using a Markov chain Monte Carlo 

handling; in any event, the computational risk is limited. A 

nonparametric consistency estimation modelling system in 

which the data is represented as a mix of direct manifolds. 

A Bayesian methodology is utilized for detecting sets of 

points that conform to or are situated within lower-

dimensional linear structures. PCA (Principal Component 

Analysis) computes reduced-dimensional spaces associated 

with individual clusters. However, difficulties with this 

method revolve around its reliability in determining the 

dimensionality of these spaces and its computationally 

intensive clustering approach. 

3. A PROBABILISTIC FRAMEWORK FOR 

PROJECTED CLUSTERING 

The characteristics of anon-axis-aligned subspace are 

regular combinations of the original information space's 

measures. Since they are worrisome to decipher, regularly 

making the clustering comes about less  precious for  

multitudinous genuine  operations,  similar as record 

clustering, as it were anticipated clusters in axis- aligned 

subspaces are homogenized within the taking after  

preface. 

3.1 Basic Notation and Definitions 

It is assumed that the dataset is normalized, ensuring each 

xij is within the range [0, 1] for j = 1, 2,...,D. The degree of 
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membership of xi in the kth cluster ck, denoted as uki, is 

subject to the following criteria: 

𝒐 ≤ 𝒖𝒌𝒊 ≤ 𝟏;∑ 𝒖𝒌𝒊
𝒌
𝒌=𝟏 = 𝟏, 𝒊 = 𝟏, 𝟐,… . . , 𝑵.(1) 

 

The weight wkj is now specific to quantify the contribution 

of the jth dimension to ck. A higher weight indicates a 

more significant influence. Additionally, we introduce the 

D × D matrix sk, which is defined as: 

 

 

3.2 Probability Model 

It is important to note that Gaussian mixing can be an 

important theory for information transfer, as shown by 

many model-based group calculations. In this case, clusters 

of information are assumed to originate from different 

imaginable sources, and the information from each source 

is modeled by a Gaussian method. In any case, Gaussian 

powers do not fit in high-dimensional space because of the 

shame of dimensionality. 

The likelihood function is formulated relying on two 

underlying assumptions. Firstly, it assumes that the 

distribution of points along each measurement within the 

subspace is independent of others. Although this 

assumption might not always be valid across all 

applications, it can often be reasonable in probabilistic 

models, enabling an approximation of the joint distribution 

of uncorrelated factors by the product of their marginals. 

Secondly, it presumes that variations in points are mutually 

independent of each other. Since

We will examine the distribution of each measurement to 

capture the fundamental structure of clusters in a high-

dimensional environment. The likelihood density function 

can be expressed as: 

 

where kj and k represent the Gaussian mean and 

covariance. The preceding expression is transformed into 

this  

 

 

 

 At this point we assume N inputs x1, x2, . . . , xN spread 

independently and indistinguishable from the population 

after mixing thickness: 

 

with 

 

3.3  Clustering Criterion 

The purpose of using the probability model for clustering 

is to approximate the given amount of data. If = (k, wk, 

wk, k)|1 and lt; k and lt; K) is an estimate, the distance 

between F(x,) and F(x,) can be calculated as follows:  
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SThe first, F(x;) ln F(x;)dx, is a meaningless constant; so, 

the following objective criterion must be applied at most: 

 

With 

 

 

According to the law of large numbers, maximization (8) 

corresponds to learning the maximum likelihood of the 

dataset DB of all inputs x1, x2, . . . , xN.  

      
(9) 

For an input xi, the following probability p(k|xi) is thought 

of as the fuzzy involvement uki in clustering. Given that  

 

 

N

1
and   

     (10) 

 

4. MODEL-DRIVEN ALGORITHM DESIGNED FOR 

PROJECTIVE CLUSTERING 

This section discusses our projection clustering calculation, 

MPC, which minimises (10) while meeting the restrictions 

of (1), (2), and (6), which may be a forced nonlinear 

optimisation problem. This can be transformed into an 

unconstrained optimisation problem procedure using 

Lagrangian multiplication 

(11) 

 

4.1 The Optimization Method 

To realize the neighborhood with the smallest objective 

work, a common strategy is to use a partial optimization of 

each parameter of the work. Following this strategy, J1 can 

be minimized in (11) by optimizing U, V, W, and Z in a 

sequential structure very similar to EM computer science. 

In each cycle, we start by setting V = , W = and Z = and 

decide U based on J1(U, , , ). The four fractional 

optimization problem can be understood by consensus after 

the hypotheses have been established. 
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4.2  MPC Algorithm  

As discussed in computation 2, the MPC computation 

performs projection clustering by minimizing the objective 

function. This framework can be seen as an extension of 

the conventional FCM algorithm, featuring an additional 

step for each centroid to compute the weights (W) for each 

cluster. Such an approach is commonly utilized in 

prevalent sensitive subspace clustering algorithms. 

Initialization 1.1 Choose K cluster centres at random. V is 

denoted as V(0). 1.2 Label all weights from W to W as W 

(0); 1.3 Assign a nonzero constant to all values and label 

them Z(0). 2. Print with the U, V, and W heads It should be 

noted that MPC does not require client-specific parameters 

for focus weighting, although other existing projection 

accumulation methods do: in cases l in PROCLUS, 

FWKM, EWKM, and so on. A quasi-pending coefficient, 

such as a weight equation within MPC, can be determined 

numerically. Step 2.4 of Calculation 2 is specifically 

developed for this purpose. All factors, however, are given 

and can thus be considered constant in the ratio. Then we 

can solve utilizing numerical strategies. 

5. PROJECTED CLUSTERING INCORPORATING 

OUTLIER ANALYSIS 

The proposed framework, developed for high-dimensional 

clustering as discussed, incorporates subspace access into 

similarity studies Wang et al. (2008). It addresses irregular 

data values in a manner akin to the clustering process. 

Optimization is applied to streamline the preparation for 

subspace definition. This framework is explicitly tailored 

for grouping data with high-dimensional values. 

Irregularity analysis plays a pivotal role in enabling 

representation-based projection clustering. Furthermore, 

the framework has been enhanced with an organizational 

handling feature. It is structured into six main modules: 

data cleaning preparation, subspace definition, subspace 

layout, coupling with MPC, MPC with exceptions, and 

coupling with feature and specificity studies. The data 

cleaning module is specifically designed to rectify variance 

noise. A subspace selection module is introduced to select 

high-quality subsets. Property layout is done under the 

subspace layout module. Clustering is performed using the 

performance-based projection clustering method. 

Exception studies are coordinated with the MPC model. 

The Assets and Irregularity Survey is linked to the MPC's 

updated presentation. 

6.  CONCLUSION  

Projective clustering techniques are employed for the 

clustering of high-dimensional data. Among these 

techniques, representation-based projection clustering 

stands out as a subspace clustering method. It specifically 

utilizes non-axial subspaces in similarity investigations. 

Irregular exchanges fall into expected clusters. The 

accuracy of the cluster in the frame is progressing. The 

featured mode option is optimized to handle unregulated 

features. Exceptional studies are given in the group handle. 

Cluster initialization proceeds with the preparation of 

subspace selection. 

REFERENCES 

Bouguessa, M., Wang, S., & Sun, H. (2006). An objective 

approach to cluster validation. Pattern Recognition 

Letters, 27(13), 1419-1430. https://doi.org/10.1016/j. 

patrec.2006.01.015.  

Chen, L., Jiang, Q., & Wang, S. (2008, December). A 

probability model for projective clustering on high 

dimensional data. In 2008 Eighth IEEE International 

Conference on Data Mining (pp. 755-760). IEEE. 

https://doi.org/10.1109/ICDM.2008.15.  

Chen, L., Jiang, Q., & Wang, S. (2010). Model-based 

method for projective clustering. IEEE Transactions 

on Knowledge and Data Engineering, 24(7), 1291-

1305. https://doi.org/10.1109/TKDE.2010.256.  

Domeniconi, C., Gunopulos, D., Ma, S., Yan, B., Al-

Razgan, M., & Papadopoulos, D. (2007). Locally 

adaptive metrics for clustering high dimensional 

data. Data Mining and Knowledge Discovery, 14, 63-

97. https://doi.org/10.1007/s10618-006-0060-8.  

Gan, G., Wu, J., & Yang, Z. (2006). A fuzzy subspace 

algorithm for clustering high dimensional data. 

In Advanced Data Mining and Applications: Second 

International Conference, ADMA 2006, Xi’an, 

China, August 14-16, 2006 Proceedings 2 (pp. 271-

278). Springer Berlin Heidelberg. 

https://doi.org/10.1007/11811305_30.  

Haralick, R., & Harpaz, R. (2007). Linear manifold 

clustering in high dimensional spaces by stochastic 

search. Pattern Recognition, 40(10), 2672-2684. 

https://doi.org/10.1016/j.patcog.2007.01.020.  

Hoff, P. D. (2006). Model-based subspace clustering. 

Bayesian Analysis, 1(2), 321-344. 

https://doi.org/10.1214/06-BA111.  

Jing, L., Ng, M. K., & Huang, J. Z. (2007). An entropy 

weighting k-means algorithm for subspace clustering 

of high-dimensional sparse data. IEEE Transactions 

on Knowledge and Data Engineering, 19(8), 1026-

1041. https://doi.org/10.1109/TKDE.2007.1048.  

Lu, Y., Wang, S., Li, S., & Zhou, C. (2011). Particle 

swarm optimizer for variable weighting in clustering 

high-dimensional data. Machine Learning, 82, 43-70. 

https://doi.org/10.1007/s10994-009-5154-2.  

https://doi.org/10.48001/JoITC.2023.1114-21
https://doi.org/10.1016/j.%20patrec.2006.01.015
https://doi.org/10.1016/j.%20patrec.2006.01.015
https://doi.org/10.1109/ICDM.2008.15
https://doi.org/10.1109/TKDE.2010.256
https://doi.org/10.1007/s10618-006-0060-8
https://doi.org/10.1007/11811305_30
https://doi.org/10.1016/j.patcog.2007.01.020
https://doi.org/10.1214/06-BA111
https://doi.org/10.1109/TKDE.2007.1048
https://doi.org/10.1007/s10994-009-5154-2


21  

DOI: https://doi.org/10.48001/JoITC.2023.1114-21                Copyright (c) 2024 QTanalytics India (Publications)  

Moise, G., Sander, J., & Ester, M. (2008). Robust 

projected clustering. Knowledge and Information 

Systems, 14, 273-298. https://doi.org/10.1007/s 

10115-007-0090-6.  

Wang, Q., Ye, Y., & Huang, J. Z. (2008, July). Fuzzy k-

means with variable weighting in high dimensional 

data analysis. In 2008 The Ninth International 

Conference on Web-Age Information 

Management (pp. 365-372). IEEE. https://doi.org/10. 

1109/WAIM.2008.50.  

.  

 

 

 

https://doi.org/10.48001/JoITC.2023.1114-21
https://doi.org/10.1007/s%2010115-007-0090-6
https://doi.org/10.1007/s%2010115-007-0090-6
https://doi.org/10.%201109/WAIM.2008.50
https://doi.org/10.%201109/WAIM.2008.50

