AI-Driven Prediction of Hereditary Diseases from Genetic Sequences

Authors

DOI:

https://doi.org/10.48001/978-81-966500-2-5-3

Keywords:

Hereditary Diseases, Genetic Sequences, ResNet-50, Convolutional neural networks(CNN), Recurrent Neural Network

Abstract

This study explores AI-driven algorithms for predicting hereditary diseases from genetic sequences. Using machine learning, we analyze genetic data to identify patterns and mutations linked to specific conditions. The ResNet-50 convolutional neural network (CNN) model is employed to capture spatial relationships, while recurrent neural networks (RNNs) address sequential data. Preliminary results show an accuracy of 92%, significantly improving predictive accuracy over traditional methods, with high sensitivity and specificity. This advancement enhances genetic screening and personalized medicine, promising better patient outcomes and reduced healthcare costs.

Downloads

Download data is not yet available.

References

Abdallah, S., Sharifa, M., I.KH. ALMADHOUN, M. K., Khawar, M. M., Shaikh, U., Balabel, K. M., Saleh, I., Manzoor, A., Mandal, A. K., Ekomwereren, O., Khine, W. M., & Oyelaja, O. T. (2023). The Impact of Artificial Intelligence on Optimizing Diagnosis and Treatment Plans for Rare Genetic Disorders. Cureus. https://doi.org/10.7759/cureus.46860

Choon, Y. W., Choon, Y. F., Nasarudin, N. A., Al Jasmi, F., Remli, M. A., Alkayali, M. H., & Mohamad, M. S. (2023). Artificial intelligence and database for NGS based diagnosis in rare disease. Frontiers in Genetics, 14. https://doi.org/10.3389/fgene.2023.1258083

De Paoli, F., Nicora, G., Berardelli, S., Gazzo, A., Bellazzi, R., Magni, P., Rizzo, E., Limongelli, I., & Zucca, S. (2023). Digenic variant interpretation with hypothesis driven explainable AI. bioRxiv, 2023.10.02.560464. http://biorxiv.org/content/early/2023/10/03/2023.10.02.560464.abstract

Devaki, A., & Rao, C. V. (2022). An Ensemble Framework for Improving Brain Stroke Prediction Performance. 2022 1st International Conference on Electrical, Electronics, Information and Communication Technologies, ICEEICT 2022. https://doi.org/10.1109/ICEEICT53079.2022.9768579

H Patel, U., & Mathur, R. (2024). AI-Driven Bioinformatics for Genomic Sequencing: Explore how AI and Machine Learning Techniques are Revolutionizing the Analysis 36 of Genomic Data, Leading to Breakthroughs in Personalized Medicine and Genetic Engineering. International Journal of Innovative Science and Research Technology(IJISRT), 2685–2689. https://doi.org/10.38124/ijisrt/ijisrt24may2112

Mohammed, R. K., Alrawi, A. T. H., & Dawood, A. J. (2023). Optimizing genetic prediction: Define-by-run DL approach in DNA sequencing. Journal of Intelligent Systems, 32(1). https://doi.org/10.1515/jisys-2023-0130

Raza, A., Rustam, F., Siddiqui, H. U. R., Diez, I. d. l. T., Garcia-Zapirain, B., Lee, E., & Ashraf, I. (2023). Predicting Genetic Disorder and Types of Disorder Using Chain Classifier Approach. Genes, 14(1). https://doi.org/10.3390/genes14010071

Sadichchha Naik, Disha Nevare, Amisha Panchal, & Dr. Chhaya Pawar. (2022). Prediction of Genetic Disorders using Machine Learning. International Journal of Scientific Research in Science and Technology, 01–09. https://doi.org/10.32628/ijsrst229273

Tran, T. N., Fong, C., Pichotta, K., Luthra, A., Shen, R., Chen, Y., Waters, M., Kim, S., Riely, G., Chakravarty, D., Schultz, N., & Jee, J. (2024). AI-derived predictions improve identification of real-world cancer driver mutations. Cancer Research, 84(6Supplement), 1252–1252. https://doi.org/10.1158/1538-7445.am2024-1252

Yadav, S., Mp, S., & Yadav, D. K. (2023). Predictive Analytics and AI for Personalized Treatment Plans in Genetic Heart Diseases. 3rd IEEE International Conference on ICT in Business Industry and Government, ICTBIG 2023. https://doi.org/10.1109/ICTBIG59752.2023.10456227

Downloads

Published

2024-09-18

How to Cite

S, P., .Sevugapandi, N., & .Vijayalatha, R. (2024). AI-Driven Prediction of Hereditary Diseases from Genetic Sequences. QTanalytics Publication (Books), 28–37. https://doi.org/10.48001/978-81-966500-2-5-3