Blood Cancer Detection and Classification using Deep Learning
DOI:
https://doi.org/10.48001/978-81-966500-2-5-4Keywords:
Illness, Categorizing blood, Inspecting human, Prompter MedicalAbstract
Blood cancer-related diagnosis and analysis is still a difficult and time-consuming procedure. In the last ten years, many methods have been developed for the detection, analysis, and classification of blood cancer; nevertheless, no model or approach now in use completely automates the process of examining human blood cells to detect the presence of cancer. The development of this type of an automated system could revolutionize the identification and prevention of disease, greatly speeding up and enhancing the accuracy of medical diagnostics. A retrospective of the developments in research toward this objective is given in this chapter.
Downloads
References
Al-Azzawi, H. M. A., Paolini, R., Cirillo, N., O’Reilly, L. A., Mormile, I., Moore, C., Yap, T., & Celentano, A. (2024). Eosinophils in Oral Disease: A Narrative Review. International journal of molecular sciences, 25(8). https://doi.org10.3390/ijms25084373
Bhaumik, S., Lockett, J., Cuffe, J., & Clifton, V. L. (2023). Glucocorticoids and Their Receptor Isoforms: Roles in Female Reproduction, Pregnancy, and Foetal Development. Biology, 12(8). https://doi.org/10.3390/biology12081104
Choudhry, N., Abawajy, J., Huda, S., & Rao, I. (2023). A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection. IEEE Access, 11. https://doi.org/10.1109/ACCESS.2023.3321800
Faust, C., Auquier, P., Hamidou, Z., Bertrand, Y., Tabone, M. D., Ansoborlo, S., Baruchel, A., Gandemer, V., Dalle, J. H., Chastagner, P., Kanold, J., Poirée, M., Sirvent, N., Plat, G., Pellier, I., Michel, G., & Berbis, J. (2023). Brothers and sisters of childhood acute leukemia survivors: Their long-term quality of life and its determinants. Cancer Medicine, 12(5), 6200–6212. https://doi.org/10.1002/cam4.5355
Hassan Abbas Gondal, C., Irfan, M., Shafique, S., Salman Bashir, M., Ahmed, M., M.Alshehri, O., H. Almasoudi, H., M. Alqhtani, S., M. Jalal, M., A. Altayar, M., & F. Alsharif, K. (2023). Automated Leukemia Screening and Sub-types Classification Using Deep Learning. Computer Systems Science and Engineering, 46(3), 3541– 3558. https://doi.org/10.32604/csse.2023.036476
Koistinen, H., Kovanen, R. M., Hollenberg, M. D., Dufour, A., Radisky, E. S., Stenman,U. H., Batra, J., Clements, J., Hooper, J. D., Diamandis, E., Schilling, O., Rannikko, A., & Mirtti, T. (2023). The roles of proteases in prostate cancer. IUBMB Life, 75(6), 493–513. https://doi.org/10.1002/iub.2700
Liu, S., Lin, Z., Qiao, W., Chen, B., & Shen, J. (2024). Cross-talk between biometal ions and immune cells for bone repair. Engineered Regeneration, 5(3), 375–408. https://doi.org/10.1016/j.engreg.2024.01.003
Murayama, M., Chow, S. K., Lee, M. L., Young, B., Ergul, Y. S., Shinohara, I., Susuki, Y., Toya, M., Gao, Q., & Goodman, S. B. (2024). The interactions of macrophages, lymphocytes, and mesenchymal stem cells during bone regeneration. Bone and Joint Research, 13(9), 462–473. https://doi.org/10.1302/2046-3758.139.BJR-2024-0122.R1
Pirsadeghi, A., Namakkoobi, N., Behzadi, M. S., Pourzinolabedin, H., Askari, F., Shahabinejad, E., Ghorbani, S., Asadi, F., Hosseini-Chegeni, A., Yousefi-Ahmadipour, A., & Kamrani, M. H. (2024). Therapeutic approaches of cell therapy based on stem cells and terminally differentiated cells: Potential and effectiveness. Cells and Development, 177. https://doi.org/10.1016/j.cdev.2024.203904
Taye, M. M. (2023). Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers, 12(5). https://doi.org/10.3390/computers12050091