Predictive Modeling and Analysis of Fetal Growth using Linear Regression and Random Forest

Authors

DOI:

https://doi.org/10.48001/978-81-966500-2-5-10

Keywords:

Aritifical Inteeligence, Fetal Weight, Headlock Formula, Regressor

Abstract

Low fetal birth weight is a critical concern in pregnancy care, significantly affecting neonatal health and contributing to high infant mortality rates globally. Low birth weight is associated with numerous health complications, such as respiratory distress, infections, and long-term developmental challenges. Early diagnosis of fetal growth issues is crucial, as it enables timely medical interventions to prolong the gestation period, allowing more time for fetal development and increasing the likelihood of a healthier birth weight. This project aims to develop a predictive model to estimate fetal birth weight early in pregnancy, categorizing the results as low (< 2.5 kg), normal (2.5–4.5 kg), or abnormal (> 4.5 kg).

Downloads

Download data is not yet available.

References

Abdi, E., Ali, M., Santos, C. A. G., Olusola, A., & Ghorbani, M. A. (2024). Enhancing groundwater level prediction accuracy using interpolation techniques in deep learning models. Groundwater for Sustainable Development, 26. https://doi.org/10.1016/j.gsd.2024.101213

Girard, M. J., Dupps, W. J., Baskaran, M., Scarcelli, G., Yun, S. H., Quigley, H. A., Sigal, I. A., & Strouthidis, N. G. (2015). Translating ocular biomechanics into clinical practice: Current state and future prospects. Current Eye Research, 40(1), 1–18. https://doi.org/10.3109/02713683.2014.914543

Hadlock, F. P., Harrist, R. B., Sharman, R. S., Deter, R. L., & Park, S. K. (1985). Estimation of fetal weight with the use of head, body, and femur measurements- A prospective study. American Journal of Obstetrics and Gynecology, 151(3), 333– 337. https://doi.org/10.1016/00029378(85)90298-4

Hang, Y., Liu, T., Chen, L., & Wang, Q. (2021). Prediction of fetal weight using machine learning models with sonographic measurements. Journal of Medical Imaging and Health Informatics, 11(3), 829–835.

Lamain – de Ruiter, M., Kwee, A., Naaktgeboren, C. A., Franx, A., Moons, K. G. M., & Koster, M. P. H. (2017). Prediction models for the risk of gestational diabetes: a systematic review. Diagnostic and Prognostic Research, 1(1). https://doi.org/10.1186/s41512-016-0005-7

Melamed, N., Yogev, Y., Meizner, I., Mashiach, R., Bardin, R., & Ben-Haroush, A. (2009). Sonographic Fetal Weight Estimation. Journal of Ultrasound in Medicine, 28(5), 617–629. https://doi.org/10.7863/jum.2009.28.5.617

Mennickent, D., Rodríguez, A., Opazo, M. C., Riedel, C. A., Castro, E., Eriz-Salinas, A., Appel-Rubio, J., Aguayo, C., Damiano, A. E., Guzmán-Gutiérrez, E., & Araya, J. (2023). Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications. Frontiers in Endocrinology, 14. https://doi.org/10.3389/fendo.2023.1130139

Shepard, M. J., Richards, V. A., Berkowitz, R. L., Warsof, S. L., & Hobbins, J. C. (1982). An evaluation of two equations for predicting fetal weight by ultrasound. American Journal of Obstetrics and Gynecology, 142(1), 47–54. https://doi.org/10.1016/S0002-9378(16)32283-9

Teles, G., Rodrigues, J. J., Rabêlo, R. A., & Kozlov, S. A. (2021). Comparative study of support vector machines and random forests machine learning algorithms on credit operation. Software - Practice and Experience, 51(12), 2492–2500. https://doi.org/10.1002/spe.2842

Downloads

Published

2024-09-18

How to Cite

Jotawar, R. M., Sangolli, S. S., & K R, V. (2024). Predictive Modeling and Analysis of Fetal Growth using Linear Regression and Random Forest. QTanalytics Publication (Books), 108–113. https://doi.org/10.48001/978-81-966500-2-5-10