Predicting Hair Loss with AI: A Deep Learning Framework Combining Genetic and Scalp Health Data
DOI:
https://doi.org/10.48001/978-81-966500-0-1-6Keywords:
Hair Loss Prediction, Long Short-Term Memory, Deep Learning, Output LayerAbstract
Hair loss, affecting millions globally, stems from complex interactions between genetic, hormonal, environmental, and lifestyle factors.In this study, we propose a deep learning-based approach to predict hair loss by integrating various data sources, including genetic markers, hormonal profiles, scalp health, and lifestyle information. Convolutional Neural Networks (CNNs) are employed for feature extraction from high-resolution scalp images, enabling the identification of thinning patterns and follicle health. Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory (LSTM) networks, are utilized to model temporal sequences of lifestyle and health data, capturing longitudinal patterns in hair loss progression.
Downloads
References
Behal, R., Priya, P., Yuvraj, Kapoor, A., & Mishra, A. (2024). Hair Loss Stage Prediction Using Deep Learning. Proceedings - International Conference on Computing, Power, and Communication Technologies, IC2PCT 2024, 1263–1267. https://doi.org/10.1109/IC2PCT60090.2024.10486442
Bharath Kumar Chowdary, P., Sadhana, A., Mahalakshmi, C., Vege, K. P., Reddy, K. Y., & Tulasi, S. (2024). A Machine Learning-Based Scalp Hair Inspection and Diagnosis System for Scalp Health, 573–581. https://doi.org/10.1007/978-981-99-9179-2_43
Duraisamy, P., Vidhya, V., Preetha, T., & Niranjani, V. (2024). Implementing Machine Learning Techniques for Hair Health Prediction in Follicle Futures. 2nd IEEE International Conference on Data Science and Information System, ICDSIS 2024. https://doi.org/10.1109/ICDSIS61070.2024.10594069
Hamilton, J. B. (1951). Patterned Loss of Hair in Man: Types and Incidence. annals of the New York Academy of Sciences, 53(3), 708–728.
Harries, M. J., Sinclair, R. D., MacDonald-Hull, S., Whiting, D. A., Griffiths, C. E., & Paus, R. (2010). Management of primary cicatricial alopecias: Options for treatment. British Journal of Dermatology, 159(1), 1–22. https://doi.org/10.1111/j.1365-2133.2008.08591.x
Hillmer, A. M., Hanneken, S., Ritzmann, S., Becker, T., Freudenberg, J., Brockschmidt, F. F., Flaquer, A., Freudenberg-Hua, Y., Jamra, R. A., Metzen, C., Heyn, U., Schweiger, N., Betz, R. C., Blaumeiser, B., Hampe, J., Schreiber, S., Schulze, T. G., Hennies, H. C., Schumacher, J., … Nöthen, M. M. (2005). Genetic variation in the human androgen receptor gene is the major determinant of common early-onset androgenetic alopecia. American Journal of Human Genetics, 77(1), 140–148. https://doi.org/10.1086/431425
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature. Nature, 521(7553),436–444.
Liu, L., Sulaiman, N. I. S., Liu, F., Zhou, S., Huang, Z., Tan, Y., & Cao, C. (2024). Classification and Identification of Male Hair Loss based on Deep Learning. ACM International Conference Proceeding Series, 252–257. https://doi.org/10.1145/3665689.3665733
Roy, M., & Protity, A. T. (2023). Hair and Scalp Disease Detection using Machine Learning and Image Processing. European Journal of Information Technologies and Computer Science, 3(1), 7–13. https://doi.org/10.24018/compute.2023.3.1.85
Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Advances in Neural Information Processing Systems, 2015-janua, 802–810.
Sultanpure, K., Shirsath, B., Bhande, B., Sawai, H., Gawade, S., & Samgir, S. (2024). Hair and scalp disease detection using deep learning. https://arxiv.org/abs/2403.07940v1
Wakpaijan, A. (2024). Hair Scalp Disease Detection Using Machine Learning Image Processing. Interantional Journal of Scientific Research in Engineering and Management, 08(05), 1–5. https://doi.org/10.55041/ijsrem33927