Quantum Safe cryptography – An Overview
DOI:
https://doi.org/10.48001/978-81-980647-5-2-4Keywords:
Cryptography, QKD, PQC, Machine Learning ModelsAbstract
Quantum-safe cryptography is the term that specifies cryptographic methods secured against the threats of quantum computing. Among them are Quantum Key Distribution, which provides information-theoretic security, and Post-Quantum Cryptography, which provides scalable authentication in high-density networks but lacks the same level of theoretical security as the former. In this context, a hybrid cryptosystem that integrally combines QKD and PQC should be created to build a robust quantum-safe system. Moreover, in blockchain technology and machine learning models, quantum algorithms play an important role by improving encryption and key generation. Quantum-safe cryptography represents an important step toward the future-proofing of digital communications and systems.
Downloads
References
Bernstein, D. J., Buchmann, J., & Dahmen, E. (Eds.). (2009). Post-Quantum Cryptography. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-88702-7
Chen, L., Chen, S., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., & Smith-Tone, D. (2016). Report on post-quantum cryptography (tech. rep.). NIST.
Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Annual ACM Symposium on Theory of Computing, Part F1294, 212–219. https://doi.org/10.1145/237814.237866
Mavroeidis, V., Vishi, K., Zych, M. D., & Jøsang, A. (2018). The impact of quantum computing on present cryptography. International Journal of Advanced Computer Science and Applications, 9(3), 405–414. https://doi.org/10.14569/IJACSA.2018.090354
Moody, D., Alagic, G., Apon, D. C., Cooper, D. A., Dang, Q. H., Kelsey, J. M., Liu, Y.-K., Miller, C. A., Peralta, R. C., Perlner, R. A., Robinson, A. Y., Smith-Tone, D. C., & Alperin-Sheriff, J. (2020, July). Status report on the second round of the NIST post-quantum cryptography standardization process (tech. rep. No. 210). National Institute of Standards and Technology. Gaithersburg, MD. https://doi.org/10.6028/NIST.IR.8309
Mosca, M. (2018). Cybersecurity in an era with quantum computers: Will we be ready? IEEE Security and Privacy, 16(5), 38–41. https://doi.org/10.1109/MSP.2018.3761723
Ricci, S., Dobias, P., Malina, L., Hajny, J., & Jedlicka, P. (2024). Hybrid Keys in Practice: Combining Classical, Quantum, and Post-Quantum Cryptography. IEEE Access, 12, 23206–23219. https://doi.org/10.1109/ACCESS.2024.3364520
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301–1350. https://doi.org/10.1103/RevModPhys.81.1301
Shah, S., Munir, A., Waheed, A., Alabrah, A., Mukred, M., Amin, F., & Salam, A. (2023). Enhancing Security and Efficiency in Underwater Wireless Sensor Networks: A Lightweight Key Management Framework. Symmetry, 15(8). https://doi.org/10.3390/sym15081484
Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, 124–134. https://doi.org/10.1109/SFCS.1994.365700
Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5), 1484–1509. https://doi.org/10.1137/S0097539795293172
Wang, L.-J., Zhou, Y.-Y., Yin, J.-M., & Chen, Q. (2022). Authentication of quantum key distribution with post-quantum cryptography and replay attacks. https://doi.org/10.48550/arXiv.2206.01164
Wehner, S., Elkouss, D., & Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science, 362(6412). https://doi.org/10.1126/science.aam9288
Yang, Z., Alfauri, H., Farkiani, B., Jain, R., Pietro, R. D., & Erbad, A. (2024). A Survey and Comparison of Post-Quantum and Quantum Blockchains. IEEE Communications Surveys and Tutorials, 26(2), 967–1002. https://doi.org/10.1109/COMST.2023.3325761