A small molecule inhibits pancreatic cancer stem cells

  • Jayanta Kumar Das Florida International University, Miami, FL, USA https://orcid.org/0000-0002-2840-1645
  • Madhumita Das Miami Dade College, Miami, FL, USA
  • Mayur Doke Florida International University, Miami, FL, USA https://orcid.org/0000-0002-7761-1251
  • Stanislaw Wnuk Florida International University, Miami, FL, USA https://orcid.org/0000-0002-3111-3919
  • Rose Mary Stiffin Florida Memorial University, Miami Gardens, FL, USA
  • Marco Ruiz Florida International University, Miami, FL, USA
  • Jonathan P. Celli University of Massachusetts Boston, Boston, MA, USA
Keywords: Pancreatic cancer, drug registrant, cancer stem cells, tumori-sphero-genesis, new molecule

Abstract

Pancreatic cancer is the fourth highest cause of cancer-related deaths in the United States, with a projected 60,430 new cases diagnosed and 48,220 patients dying in 2021. We employed a small chemical, N-(6-Chloro-2-enzothiazolyl)-3, 4-dimethoxy-benzene propanamide (KY-02111), to target suppression of tumori-sphero-genesis of PANC1ORGRCD19+31+45+133+, to propose a novel therapeutic strategy against drug registrant pancreatic cancer stem cells (PANC1ORGRCD19+31+45+133+). According to our findings, the pancreatic stem cell indicators (CD19+31+45+133+) are found to be more strongly expressed in pancreatic cancer tissues than in normal pancreatic tissues.The flow cytometry, immunoblot and immunofluorescence analysis showed that the expression ofthese markers (CD19+31+45+133+) in PANC1ORGR spheroid cells was lowered by treatment of our new therapeutic approach. Therefore, this study identified the significant relationship of inhibition of tumori-sphero-genesis of PANC1ORGR with associated novel biomarkers (CD19+31+45+133+) which could be target candidates in designing drugs against pancreatic cancer.  Further investigation and funding areneeded to find the molecular mechanism of inhibition of tumori-sphero-genesis by this small molecule. This work was partly used the financial support from award money of 2017 Translational Research Award, Society of Toxicology and 2018 AACR Minority and Minority-Serving Institution Faculty Scholar award of Dr. Jayanta K. Das.

References

American Cancer Society. (2021). Facts & Figures: Key Statistics for Pancreatic Cancer. American Cancer Society. Atlanta, Ga. 2021.

Das, J. K., Felty, Q., Poppiti, R., Jackson, R. M. and Roy, D. (2018). Nuclear Respiratory Factor 1 Acting as an Oncoprotein Drives Estrogen-Induced Breast Carcinogenesis. Cells. 7(12): Article 234 (Pp. 1-23).

Das, J. and Roy, D. (2015). Overexpression of NRF1 leads to the generation of cancer stem-like cells and resistance to anoikis_pathways to anchorage-independent growth during estrogen-induced malignant transformation. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research. Cancer Res. 75(15 Suppl): Abs. nr. 803.

Das, J. and Roy, D. (2017). Estrogen induced NRF1 signaling is a molecular mechanism underlying the generation of different breast cancer stem cell subpopulations leading to intratumoral heterogeneity. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017. Cancer Res. 77(13 Suppl): Abs. nr. 938.

Das, M., Doke, M., Gonzalez, E., Diaz, D., Pineda, B., Celli, J., Ruiz, M. and Das, J. K. (2020). Bivalent histone modifications: Clinical targets against pancreatic cancer stem cell heterogeneity [abstract]. In: Proceedings of the AACR Virtual Special Conference on Tumor Heterogeneity: From Single Cells to Clinical Impact. Cancer Res. 80(21 Suppl): Abs. nr. PO-003.

Das, M., Santana, M. C., Barraque, S., Cardenas, J., Galindo, J. A., Cortes, M., Ramos, J., Prado, A. S., Castillo, M. T., Villar, V., Vincent, C., Justo, E., Mendez, M., MeraI., Pachon, J., Perez, K., Marin, A., Murmu, N., Biswas, M., Ruiz, M. and Das, J. K. (2021). 3D spheroid: A rapid drug screening model for epigenetic clinical targets against heterogenic cancer stem cells. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; Cancer Res. 81(13_Suppl): Abs. nr. 2104.

Falco, M. M., Bleda, M., Carbonell-Caballero, J. and Dopazo J. (2016). The pan-cancer pathological regulatory landscape. Sci. Rep. 6: Article No. 39709 (Pp.1-13).

Farhana, L., Dawson, M. I., Murshed, F., Das, J. K., Rishi, A. K. and Fontana, J. A. (2013). Upregulation of miR-150* and miR-630 Induces Apoptosis in Pancreatic Cancer Cells by Targeting IGF-1R. PLoS ONE. 8(5): e61015.

Frese, K. K., Neesse, A., Cook, N., Bapiro, T. E., Lolkema, M. P., Jodrell, D. I. and Tuveson, D. A. (2012). Nab-Paclitaxel Potentiates Gemcitabine Activity by Reducing CytidineDeaminase Levels in a Mouse Model of Pancreatic Cancer. Cancer Discovery. 2: 260–269.

Menyhárt, O., Harami-Papp, H., Sukumar, S., Schäfer, R., Magnani, L., de-Barrios, O. and Győrffy, B. (2016). Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochim. Biophys. Acta. 1866 (2): 300-319.

Ortega, N., Das, M., Ruiz, M. A., RamosJ. and Das., J. K. (2020). Identification of the underlining relationship of bivalent histone modifications with pancreatic cancer stem cells by bioinformatic analysis. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020. Cancer Res. 80(16 Suppl): Abs. nr. 2431.

Rawla, P., Sunkara, T. and Gaduputi, V. (2019). Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 10(1): 10-27.

Rocha-Lima, C. M., Green, M. R., Rotche, R., Miller, W. H. Jr., Jeffrey, G. M., Cisar, L. A., Morganti, A., Orlando, N., Gruia, G. and Miller, L. L. (2004). Irinotecan plus gemcitabineresults in no survival advantage compared with gemcitabine monotherapy inpatients with locally advanced or metastatic pancreatic cancer despite increasedtumor response rate. J. Clin. Oncol. 22(18): 3776-3783.

Sun, J., Russell, C. C., Scarlett, C. J. and McCluskey, A. (2020). Small molecule inhibitors in pancreatic cancer. RSC Med. Chem. 11(2): 164-183.

Chakrabarti, R., Singh, M. K., Sharma, J. G., & Mittal, P. (2019). Dietary supplementation of vitamin C: an effective measure for protection against UV-B irradiation using fish as a model organism. Photochemical and Photobiological Sciences, 18(1), 224–231. https://doi.org/10.1039/C8PP00481A

Sharma, J. G., Singh, S. P., Mittal, P., & Chakrabarti, R. (2016). Impact of Temperature Gradient on the Indian Major Carp Catla catla Larvae. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 86(2), 269–273. https://doi.org/10.1007/s40011-014-0419-3

Mittal, P. (2014). Challenges in Managing the Blood Supply Chain, from Donor to Patient together with the Hospital. Journal of Business Management and Information Systems, 1(1), 37–47. https://doi.org/10.48001/jbmis.2014.0101003

Sharma, J. G., Mittal, P., & Chakrabarti, R. (2008). Development of survivorship model for UV-B irradiated Catla catla larvae. Aquatic Ecology, 42(1), 17–23. https://doi.org/10.1007/s10452-006-9069-8

Chakrabarti, R., Mansingh Rathore, R., Mittal, P., & Kumar, S. (2006). Functional changes in digestive enzymes and characterization of proteases of silver carp (♂) and bighead carp (♀) hybrid, during early ontogeny. Aquaculture, 253(1–4), 694–702. https://doi.org/10.1016/j.aquaculture.2005.08.018

Published
2021-12-30
How to Cite
Das, J., Das, M., Doke, M., Wnuk, S., Stiffin, R., Ruiz, M., & Celli, J. (2021). A small molecule inhibits pancreatic cancer stem cells. International Journal of Experimental Research and Review, 26, 1-15. https://doi.org/10.52756/ijerr.2021.v26.001
Section
Articles