A review on opportunities and challenges of nitrogen removal from wastewater using microalgae

Authors

  • Dipti Thakur Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
  • Aditya Kumar Jha Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
  • Soham Chattopadhyay Department of Bioengineering and Biotechnology, BIT Mesra, Ranchi, Jharkhand, India https://orcid.org/0000-0002-3797-5333
  • Sukalyan Chakraborty Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India https://orcid.org/0000-0002-6702-7238

DOI:

https://doi.org/10.52756/ijerr.2021.v26.011

Keywords:

Bibliographic analysis, bioremediation, denitrification, microalgae, nitrogenous waste

Abstract

This study provides information on the occurrence of nitrogenous contamination in surface water, their sources and their negative effects. In addition, the study gives an overview of the possible technical, institutional and scientific methods of various biotechnological approaches of nitrogen removal and their limitations. Microalgae have a high capacity for converting CO2 from the atmosphere into beneficial products, including carbohydrates, lipids, and other bioactive compounds. Microalgae act as biofuels that are sustainable, renewable, and cost-effective. The impact of various environmental conditions on the efficiency of nitrogenous waste removal by microalgal species was studied. Literature related to microalgae-based bioremediation has a large research area with increasing trend. A bibliometric study was undertaken Based on the Science Citation Index Expanded of the Web of Science, to examine the body of knowledge on microalgae generated nitrate removal from wastewater from the year 2011. A global map based on co-authorship and co-occurrence analysis for countries, research areas, authors and institutions is presented based on the bibliometric analysis method.

References

Adav, S. S., Lee, D. J., Show, K. Y. and Tay, J. H. (2008). Aerobic granular sludge: recent advances. Biotechnol. Adv. 26: 411–423.

Aly, H. A., Mansour, A. M., Abo-Salem, O. M., Abd-Ellah, H. F. and Abdel-Naim, A. B. (2010). Potential testicular toxicity of sodium nitrate in adult rats. Food Chem.Toxicol. 48(2): 572–578.

Ananadhi, P. M. R. and Shaleesha, A. S. (2012). Microalgae as an Oil Producer for Biofuel Applications. Res. J. Recent. Sci. 1(3): 57-62.

APHA. (2012). Standard Methods for the Examination of Water and Wastewater. Greenberg, A. E., Connors, J. J., Jenkins, D. &Franson, M. A. H. (eds.), APHA, Washington.

Appelo, C. A. J. and Postma, C. (1996). Geochemistry, groundwater and pollution. Rotterdam: A. A. Balkam Publishers.

Arbib, Z., De, Godos, I., Ruiz, J. and Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Sci. Total Environ. 589: 66–72.

Bhatia, A. and Mittal, P. (2019). Big Data Driven Healthcare Supply Chain: Understanding Potentials and Capabilities. SSRN Electronic Journal. 2019: 879-887.

Bhatnagar, A., Bhatnagar, M., Chinnasamy, S. and and Das, K. C. (2010). Chlorella minutissima—a promising fuel alga for cultivation in municipal wastewaters. Appl. Biochem. Biotechnol. 161: 523–536.

Blackburne, R., Yuan, Z. and and Keller, J. (2008). Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Water Res. 42: 2166–2176.

Boink, A. B. T. J., Dormans, J. A. M. A., Speijers, G. J. A. and Vleeming, W. (1999). Effects of nitrates and nitrites in experimental animals. In: Wilson WS, Ball AS, Hinton RH, editors. Managing risks of nitrates to humans and the environment. Cambridge Royal Society of Chemistry. 317–326.

Boonchai, R. and Seo, G. (2015). Microalgae membrane photobioreactor for further removal of nitrogen and phosphorus from secondary sewage effluent. Korean Journal of Chemical Engineering. 32(10): 2047-2052.

Boshir, M., Zhou, J. L. and Hao, H. (2016). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J. Hazard Mater. 323: 274–298.

Bosman, C. (2009). The hidden dragon: nitrate pollution from open-pit mines–a case study from the Limpopo Province, South Africa. Carin Bosman Sustainable Solutions. PO Box, 26442.

Brunato, F., Garziera, M. G. and Briguglio, E. (2003). A severe methaemo-globinemia induced by nitrates: a case report. Eur. J. Emerg. Med. 10(4): 326-330.

Cao, S., Du, R., Peng, Y., Li, B. and Wang, S. (2019). Novel two stage partial denitrification (PD)-anammox proc-ess for tertiary nitrogen removal from low carbon/nitrogen (C/N) municipal sewage. Chem. Eng. J. 362: 107–115.

Cao, S., Wang, S., Peng, Y., Wu, C., Du, R., Gong, L. and Ma, B. (2013). Achieving partial denitrification with sludge fermentation liquid as carbon source: the effect of seeding sludge. Bioresour. Technol. 149: 570–574.

Collotta, M., Champagne, P., Mabee, W., Tomasoni, G. and Alberti, M. (2019). Life Cycle Analysis of the Production of Biodiesel from Microalgae. Pp. 155-169.

De-Pauw, N. and Van-Vaerenbergh, E. (1983). Microalgal wastewater treatment systems: Potentials and limits. In: Ghette, P.F. (Ed.), Phytodepuration and the Employment of the Biomass Produced. Centro Ric. Produz, Animali, Reggio Emilia, Italy. Pp. 211–287.

Diniz, G.S., Silva, A. F., Araújo, O. Q. and Chaloub, R. M. (2017). The potential of microalgal biomass production for biotechnological purposes using wastewater resources. J. Appl. Phycol. 29: 821-832.

Du, R., Cao, S., Li, B., Wang, S. and Peng, Y. (2017b). Simultaneous domestic wastewater and nitrate sewage treatment by Denitrifying AMmoniumOXidation (DEAMOX) in sequencing batch reactor. Chemosphere. 174: 399–407.

Du, R., Cao, S., Peng, Y., Zhang, H. and Wang, S. (2019a). Combined Partial Denitrification (PD)-anammox: a method for high nitrate wastewater treatment. Environ. Int. 126: 707–716.

Du, R., Cao, S., Li, B., Niu, M., Wang, S. and Peng, Y. (2017a). Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters. Water Res. 108: 46–56.

Erisman, J. W., Galloway, J. N., Seitzinger, S., Bleeker, A., Dise, N.B., Petrescu, A. R. and and de-Vries, W. (2013). Consequences of human modi-fication of the global nitrogen cycle. Philosophical Transactions of the Royal Society B: Biol Sci. 368(1621): 20130116.

Federation, W. E. and A. P. H. Association. (2005). Standard methods for the examination of water and waste-water. American Public Health Association (APHA): Washington, DC, USA.

Fernández-Nava, Y., Marañón, E., Soons, J. and Castrillón, L. (2010). Denitrification of high nitrate concentration wastewater using alternative carbon sources. J. Hazard Mater. 173: 682–688.

Gao, F. (2015). A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresource Technology. 179: 8-12.

Gentili, F. G. and Fick, J. (2017). Algal cultivation in urban wastewater: an efficient way to reduce pharmaceutical pollutants. J. Appl. Phycol. 29: 255–262.

Ghafari, S., Hasan, M. and Aroua, M. K. (2008). Bio-electrochemical removal of nitrate from water and wastewater—a review. Bioresour. Technol. 99: 3965–3974.

Gonçalves, A., Simões, M. and Pires, J. (2014). The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater. Energy Conversion and Management. 85: 530-536.

Guo, Y., Zhou, X., Li, Y., Li, K., Wang, C., Liu, J. and Xing, J. (2013). Heterotrophic nitrification and aerobic denitri-fication by a novel Halomo-nascampisalis. Biotechnol. Lett. 35(12): 2045-2049.

Gupta, S. K., Gupta, R. C., Gupta, A. B., Seth, A. K., Bassin, J. K. and Gupta, A. (2000). Recurrent acute respiratory tract infections in areas with high nitrate concentrations in drinking water. Environ Health Perspect. 108(4): 363-366.

Honda, R. (2012). Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photo-bioreactor. Bioresource Technology. 125: 59-64.

Howarth, R. W. and Bringezu, S. E. (2009). Proceedings of the Scientific Committee on Problems of the Environment. International Biofuels Project Rapid Assessment; 2008 September 22–25; Gummersbach, Germany 2009.

Huang, C., Li, Z. L., Chen, F., Liu, Q., Zhao, Y. K., Zhou, J.Z. and Wang, A. J. (2015). Microbial community structure and function in response to the shift of sulfide/nitrate loading ratio during the denitrifying sulfide removal process. Bioresource Technology. 197: 227-234.

Huang, G., Ou, L., Pan, F., Wang, Y., Fan, G., Liu, G. and Wang, W. (2017a). Isolation of a Novel. Heterotrophic Nitrification–Aerobic Denitrification Bacterium Serratiamarcescens CL-1502 from Deep-Sea Sediment. Environ. Eng. Sci. 34(6): 453-459.

Huang, Q., Jiang, F., Wang, L. and Yang, C. (2017b). Design of photobioreactors for mass cultivation of photosynthetic organisms. Engi-neering. 3: 318-329.

Huo, S., Wang, Z., Zhu, S., Shu, Q., Zhu, L., Qin, L., Zhou, W., Feng, P., Zhu, F. and Yuan, Z. (2018). Biomass Accu-mulation of Chlorella Zofingiensis G1 Cultures Grown Outdoors in Photobioreactors. Frontiers in Energy Research. 6: 1-8.

Jin, R., Yang, G., Yu, J. and Zheng, P. (2012). The inhibition of the anammox process: a review. Chem. Eng. J. 197: 67–79.

Khan, M. I., Shin, J. H. and Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17: 36.

Kim, H., Kim, J., Shin, S. G., Hwang, S. and Lee, C. (2016). Continuous fermentation of food waste leachate for the production of volatile fatty acids and potential as a denitrification carbon source. Bioresour. Technol. 207: 440–445.

Kim, E., Shin, S. G., Jannat, M., Tongco, J. V. and Hwang, S. (2017). Use of food waste-recycling wastewater as an alternative carbon source for denitrification process: a full-scale study. Bioresour. Technol. 245: 1016–1021.

Li, D., Liang, X., Jin, Y., Wu, C. and Zhou, R. (2018). Isolation and Nitrogen Removal Characteristics of an Aerobic Heterotrophic Nitrifying-Denitrifying Bacterium, Klebsiella sp. TN-10. Appl. Biochem. Biotechnol. Pp. 1-15.

Lim, S. L., Chu, W. L. and Phang, S. M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour. Technol. 101: 7314–7322.

Luo, Y., Le-Clech, P. and Henderson. R. K. (2017). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photo bioreactors: a review. Algal Research. 24: 425-437.

Lundberg, J. O., Weitzberg, E., Cole, J. A. and Benjamin, N. (2004). Nitrate, bacteria and human health. Nat. Rev. Microbiol. 2(7): 593–602.

Lu, H., Chandran, K. and Stensel, D. (2014). Microbial ecology of denitrification in biological wastewater treatment. Water Res. 64: 237–254.

Manassaram, D. M., Backer, L. C. and Moll, D. M. (2005). A review of nitrates in drinking water: maternal exposure and adverse reproductive and developmental outcomes. Environ. Health Perspect. 114(3): 320-327.

Marbelia, L. (2014). Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bio-reactors effluent. Bioresource Technology. 163: 228-235.

Medina, M. and Neis, U. (2007). Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance. Water Sci. Technol. 55(11): 165-171.

Mensinga, T. T., Speijers, G. J. A. and Meulenbelt, J. (2003). Health implications of exposure to environmental nitrogenous com-pounds. Toxicol. Rev. 22(1): 41–51.

Morée, A., Beusen, A., Bouwman, A. and Willems, W. (2013). Exploring global nitrogen and phosphorus flows in urban wastes during the twentieth century. Global Biogeochem. Cycles. 27: 836-846.

Palmer, C. M. (1969). A composite rating of algae tolerating organic pollution. J. Phycol. 5: 78–82.

Park, J. B. K. and Craggs, R. J. (2010). Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci. Technol. 61: 633–639.

Praveen, P. and Loh, K. C. (2016). Nitrogen and phosphorus removal from tertiary wastewater in an osmotic membrane photo bioreactor. Bioresource Technology. 206: 180-187.

Ren, M. and Ogden, K. (2014). Cultivation of Nannochloropsisgaditana on mixtures of nitrogen sources. Environ. Prog. Sustain. Energy. 33(2): 551-555.

Rittmann, B. E. and McCarty, P. L. (2012). Environmental biotechnology: prin-ciples and applications. Tata McGraw-Hill Education.

Ritter, L., Solomon, K., Sibley, P., Hall, K., Keen, P., Mattu, G. and Linton, B. (2002). Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. J. Toxicol. Environ. Health A.

Seifi, M. and Fazaelipoor, M. H. (2012). Modeling simultaneous nitrification and denitrification (SND) in a fluidized bed biofilm reactor. Appl. Math. Model. 36: 5603-5613.

Shelef, G., Azov, Y., Moraine, R. and Oron, G. (1980). In: Shelef, G., Soeder, C.J. (Eds.), Algal mass production as an integral part of wastewater treatment and reclamation system in algal biomass. Elsevier. Pp. 163–190.

Sun, Y., Yu, I. K. M., Tsang, D. C. W., Cao, X., Lin, D., Wang, L., Graham, N. J. D., Alessi, D. S., Komarek, M., Ok, Y. S., Feng, Y. and Li, X. D. (2019). Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environ Int. 124: 521-532.

Sutherland, D. L. and Ralph, P. J. (2019). Microalgal bioremediation of emerging contaminants-opportunities and challenges. Water Res. 164: 114921.

Sydney, E. B., da-Silva, T. E., Tokarski, A., Novak, A. C., de-Carvalho, J. C. and Woiciecohwski, A. L. (2011). Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl. Energy. 88: 3291–3294.

Taziki, M., Ahmadzadeh, H., Murry, M. A. and Lyon, S. R. (2015). Nitrate and nitrite removal from wastewater using algae. Curr. Biotechnol. 4: 426–440.

Usher, P. K., Ross, A. B., Camargo-Valero, M. A., Tomlin, A. S. and Gale, W. F. (2014). An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels. 5(3): 331-349.

Wang, L., Yu, K., Li, J. S., Tsang, D. C. W., Poon, C. S., Yoo, J. C., Baek, K., Ding, S., Hou, D. and Dai, J. G. (2018). Low-carbon and low-alkalinity stabilization/ solidification of high-Pb contaminated soil. Chemical Engineering Journal. 351: 418-427.

Watkins, S. C., Stolz, J. F. and Basu, P. (2014). Nitrate and periplasmic nitrate reductases. Chem. Soc. Rev. 43(2): 676-706.

Wellman, T. P. and Rupert, M. G. (2016). Groundwater quality, age, and susceptibility and vulnerability to nitrate contamination with linkages to land use and groundwater flow, Upper Black Squirrel Creek Basin, Colorado, 2013 (No. 2016-5020). US Geological Survey.

WHO (1996). Toxicological evaluation of certain food additives and contaminants. Geneva: World Health Organization (WHO Food Additives Series, No. 35).

Wollmann, F., Walther, T. and Dietze, S. (2019). Microalgae wastewater treatment: biological and technological approaches. Eng. Life Sci. 19: 860–871.

Xie, M., Qiu, Y. and Song, C. (2018). Optimization of Chlorella sorokiniana cultivation condition for simultaneous enhanced biomass and lipid production via CO2 fixation. Bioresour. Technol. Reports. 2: 15–20.

Yan, F., Jiang, J., Zhang, H., Liu, N. and Zou, Q. (2018). Biological denitrification from mature landfill leachate using a food-waste-derived carbon source. J. Environ. Manag. 214: 184–191.

Zhao, Y., Zhang, B., Feng, C., Huang, F., Zhang, P., Zhang, Z., Yang, Y. and Sugiura, N. (2012). Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate contaminated drinking water treatment. Bioresour.Technol. 107: 159-165.

Zhu, L. (2013). Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Research. 47(13): 4294-4302.

Downloads

Published

2021-12-30

How to Cite

Thakur, D., Jha, A. K., Chattopadhyay, S., & Chakraborty, S. (2021). A review on opportunities and challenges of nitrogen removal from wastewater using microalgae. International Journal of Experimental Research and Review, 26, 141–157. https://doi.org/10.52756/ijerr.2021.v26.011

Issue

Section

Articles