Diverse role of Macrophytes in aquatic ecosystems: A brief review

  • Mitu De Department of Botany, Gurudas College, Kolkata-54, India
  • Chayanika Roy Department of Zoology, Rammohan College, Kolkata-09, India
  • Suchismita Medda M.R.K.C. Balika Vidyalaya, Domjhur, Howrah, India
  • Sulagna Roy Department of Botany, Shantipur College, Nadia, India
  • Santi Ranjan Dey Department of Zoology, Rammohan College, Kolkata-09, India
Keywords: Aquatic ecosystem, macrophytes, structuring communities

Abstract

The aquatic ecosystem is composed of aquatic flora and fauna which interact together in maintaining the aquatic ecosystem. Aquatic macrophytes are macroscopic forms of aquatic vegetation, including macro algae, mosses, ferns and angiosperms found in aquatic habitat. Macrophytes of freshwater ecosystems have diverse roles to play in the structure and functioning of these aquatic ecosystems. The depth, density, diversity and types of macrophytes present in a system are indicators of water body health. Aquatic vegetation can influence the water quality too. Macrophytes are considered as an important component of the aquatic ecosystem as the habitat and food source for aquatic life. Of all the biological treatments for controlling eutrophication, submerged macrophytes, has been recognized as being the most effective. This paper is a brief review of the diverse role of macrophytes in an aquatic ecosystem.

References

Abida, B. (2009). Concurrent removal and accumulation of Fe2+, Cd2+ and Cu2+ from waste water using aquatic macrophytes. Der Pharma Chemical. 1(1): 219-224.

Abdullah, M. I. and Fredriksen, S. (2004). Production, respiration and exudation of dissolved organic matter by the kelp Laminaria hyperborea along the West coast of Norway. J. Mar. Biol. Assoc. UK. 84: 887–894.

Albertoni, E. F., Prellvitz, L. J. and Palma-Silva, C. (2007). Macro-invertebrate fauna associated with Pistia stratiotes and Nymphoides indica in subtropical lakes (South Brazil). Brazilian Journal of Biology. 67(3): 499-507.

Araujo-Lima, V., Portugal, L. P. S. and Ferreira, E. G. (1986). Fish-macrophytes relationship in the Anavilhanas Archipelago, a black water system in the Central Amazon. Journal of Fish Biology. 29: 1-11.

Bamidele, J. F. and Nyamali, B. (2008). Ecological studies of the Ossiomo river with reference to the macrophytic vegetation. Research Journal Botany. 3(1): 29-34.

Barko, J. W., Gunnison, D. and Carpenter, S. R. (1991). Sediment interactions with submersed macrophytes growth and community dynamics. Aquat Bot. 41: 41– 65.

Barrón, C., Marbà, N., Duarte, C. M. and Pedersen, M. F. (2003). High organic carbon export precludes eutrophication responses in experimental rocky shore communities. Ecosystems. 6: 144–153.

Bergstrom, S. E., Svensson, J. E. and Westberg, E. (2000). Habitat distribution of zooplankton in relation to macrophytes in an eutrophic lake. Verhandlungen des Internationalen Verein Limnologie. 27: 2861-2864.

Blindow, A., Hargeby, A. and Hilt, S. (2014). Facilitation of clear-water conditions in shallow lakes by macrophytes: Differences between charophyte and angiosperm dominance. Hydrobiologia. 737: 99–110.

Carignan, R. and Kalff, J. (1980). Phosphorus Sources for Aquatic Weeds: Water or Sediments? Science. 207(4434) : 987-989.

Carpenter, S. R. and Lodge, D. M. (1986). Effects of submerged macrophytes on ecosystem processes. Aquat. Bot. 26: 341– 370.

Castella, E., Richardot-Coulet, M., Roux, C. and Richoux, P. (1984). Macroinvertebrates as describers of morphological and hydrological types of aquatic ecosystems abandoned by the Rhone River. Hydrobiologia. 119: 219– 226.

Chambers, P. A., Lacoul, P., Murphy, K. J. and Thomaz, S. M. (2007). Global diversity of aquatic macrophytes in freshwater. In: Balian E.V., Lévêque C., Segers H., Martens K. (eds) Freshwater Animal Diversity Assessment. Developments in Hydrobiology. Vol. 198. Springer, Dordrecht.

Christie, H., Norderhaug, K. M. and Fredriksen, S. (2009). Macrophytes as habitat for fauna. Marine Ecology Progress Series. 396 (9): 221-233.

Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., and Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science. 323: 1014–1015.

Davies, O. A., Abowei, J. F. N. and Tawari., C. C. (2009). Phytoplankton community of elechi creek, niger delta, Nigeria-a nutrient polluted tropical creek. Am. J. Appl. Sci. 6(6): 1143-1152.

De, Mitu, Medda, S. and Dey, S. R. (2018). Ecological Health of Wetland Ecosystem: An overview. International Journal of Experimental Research and Review. 17: 20-29.

del Pozo, R., Fernandez-Alaez, C. and Fernadez-Alaez, M. (2011). The relative importance of natural and anthropogenic effects on community composition of aquatic macrophytes in Mediterranean ponds. Mar. Freshw. Res. 62: 101–109.

Dibble, E. D., Killlgore, K. J. and Dick, G. O. (1996). Measurement of plant architecture in seven aquatic plants. Journal of Freshwater Ecology. 11: 311-318.

Dvořák, J. (1996). An example of relationships between macrophytes, macroinvertebrates and their food resources in a shallow eutrophic lake. Hydrobiologia. 339: 27-36.

Emmanuel, B. E. and Onyema, I. C. (2007). The plankton and fishes of a tropical creek in South Western Nigeria. Turkish J. Fish. Aquat. Sci. 7: 105-113.

Engel, S. (1998). The role and interactions of submerged macrophytes in a shallow Wisconsin lake. Fresh wat. Ecol. 4: 329– 341.

Engelhardt, K. A. (2011). Eutrophication aquatic. In: Simberloff D, Rejmánek M (eds), Encyclopedia of biological invasions. University of California Press, Berkeley, USA. pp. 209–213.

Freitas, A. and Thomaz, S. M. (2011). Inorganic carbon storage may limit the development of submersed macrophyte in habitats of the Paraná River Basin. Acta Liminlogica Brasiliensia. 23: 57-62.

Guadagnin, D. L., Maltchik, L. and Fonseca, C. R. (2009). Species-area relationship of Neotropical waterbird assemblages in remnant wetlands: looking at the mechanisms. Diversity and Distributions. 15: 319-327.

Jeppesen, E. and Søndergaard, M. (1999). Lake and catchment management in Denmark. Hydrobiologia. 396: 419–432.

Jones, R. I., Shaw, P. J. and Haan, H. D. E. (1993). Effects of dissolved humic substances on the speciation of iron and phosphate at different pH and ionic strength. Environ. Sci. Technol. 27: 691– 698.

Kantawanichkul, S., Kladprasert, S., and Brix, H. (2009). Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus. Ecol. Eng. 35: 238–247.

Klaassen, M. and Nolet, B. A. (2007). The role of herbivorous water birds in aquatic systems through interactions with aquatic macrophytes, with special reference to the Bewick's Swan-Fennel Pondweed system. Hydrobiologia. 584: 205-213.

Kronvang, B., Jeppesen, E., Conley, D. J., Søndergaard, M., Larsen, S. E., Ovesen, N. B. and Carstensen, J. (2005). Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. J. Hydrol. 304: 274–288.

Lougheed, V. L., Crosbie, B. and Chow-Fraser, P. (2001). Primary determinants of macrophyte community structure in 62 marshes across the Great Lakes basin: latitude, land use, and water quality effects. Can. J. Fish Aquat. Sci. 58: 1603– 1612.

McAbendroth, L., Ramsay, P. M., Foggo, A., Rundle, S. D. and Bilton, D. T. (2005). Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size dsitributions? Oikos. 111: 279-290.

Mack, R. N., SSimberloff, D., Lonsdale, W. M., Evans, H., Clout, M. and Bazzaz, F. A. (2000). Biotic Invasions: Causes, Epidemiology, Global Consequences and Control. Issues in Ecology. 10(3): 689-710.

Melzer, A. (1999). Aquatic macrophytes as tools for lake management. Hydrobiologia. 395/396: 181–190.

Meschiatti, A. J., Arcifa, M. S. and FenerichVerani, N. (2000). Fish communities associated with macrophytes in Brazilian floodplain lakes. Environmental Biology of Fish. 58: 133-143.

Michelan, T. S., Thomaz, S. M., Mormul, R. P. and Carvalho, P. (2010). Effects of an exotic-invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshwater Biology. 55(6): 1315-1326.

Middelboe, A. L. & Markager, S. (1997). Depths limits and minimum light requirements of freshwater macrophytes. Freshwater Biology. 37: 553-568.

Pieterse, A. H. and Murphy, K. J. (1990). Aquatic weeds: the ecology and management nuisance aquatic vegetation. Oxford University Press, Oxford. Pp.612.

Pretty, J. N., Mason, C. F., Nedwell, D. B., Hine, R. E., Leaf, S. and Dils, R. (2003). Environmental costs of freshwater eutrophication in England and Wales. Environ. Sci. Technol. 37: 201–208.

Rejmankova, E. (2011). The role of macrophytes in wetland ecosystems. Journal of Ecology and Field Biology. 34(4): 333-345.

Rooney, V. J. N., Girwat, M. W. and Savin, M. C. (2005). Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb. Ecol. 49: 163–175.

Rossier, O. (1995). Spatial and temporal separation of littoral zone fishes of Lake Geneva (Switzerland–France). Hydrobiologia. 300/301: 321–327.

Samiyappan, M., Sudhan, C., Bharathi and Aanand, S. (2019). Bioindicators in Aquatic Environment and their significance. J. Aqua. Trop. 34: (1): 73-79.

Sandilands, K. A. and Hann, B. J. (1997). Is phytophilous zooplankton community structure affected by nutrients and fathead minnows? UFS (Delta Marsh). Annual Report. 32: 47-54.

Santamaria L. (2002). Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica. 23: 137–154.

Song, C. L., Cao, X. L., Li, Q. M., Chen, G. Y. & Zhou, Y. Y. (2006). Contributions of phosphatase and microbial activity to internal phosphorus loading and their relation to lake eutrophication. Science in China (Earth Science).

Sutton, D. L. and Ornes, W. H. (1975). Phosphorous removal from static sewage effluent using duckweed. J. Environ. Qual. 4: 367-370.

Theel, H. J., Dibble, E. D. and Madsen, J. D. (2008). Differential influence of a monotypic and diverse native aquatic plant bed on a macro-invertebrate assemblage; an experimental implication of exotic plant induced habitat. Hydrobiologia. 600: 77-87.

Thomaz, S. M. and Cunha, E. R. da. (2010). The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages' composition and biodiversity. Acta Limnologica Brasiliensia. 22(2): 218-236.

Timms, R. M. and Moss, B. (1984). Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472-486.

Townsend, C. R., Harper, J. D. and Begon, M. (2000). Essentials of Ecology. 3rd, Edn., Blackwell Science, London, UK.

Vono, V. and Barbosa, A. R. (2001). Habitats and littoral zone fish community structure of two natural lakes in southeast Brazil. Environmental Biology of Fishes. 61: 371-379.

Williams, P. Withfield, M. and Biggs, J. (2008). How can we make new ponds biodiversity? A case study monitored over 7 years. Hydrobiologia. 597: 137-148.

Zedler, J. B. (2011). Wetlands. In: Encyclopedia of Biological Invasions (Simberloff D, Rejmanek M, eds). University of California Press. Betrkeley. pp. 698-704.

Zeng, J., Bian, Y., Xing, P. and Wu, Q. L. (2012). Macrophyte species drive the variation of bacterioplankton community composition in a shallow freshwater lake. Applied and Environmental Microbiology. 78(1): 177-184.

Published
2019-08-30
How to Cite
De, M., Roy, C., Medda, S., Roy, S., & Dey, S. (2019). Diverse role of Macrophytes in aquatic ecosystems: A brief review. International Journal of Experimental Research and Review, 19, 40-48. https://doi.org/10.52756/ijerr.2019.v19.005
Section
Articles